The Smoothed Possibility of Social Choice

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Lirong Xia

Abstract

We develop a framework that leverages the smoothed complexity analysis by Spielman and Teng to circumvent paradoxes and impossibility theorems in social choice, motivated by modern applications of social choice powered by AI and ML. For Condrocet’s paradox, we prove that the smoothed likelihood of the paradox either vanishes at an exponential rate as the number of agents increases, or does not vanish at all. For the ANR impossibility on the non-existence of voting rules that simultaneously satisfy anonymity, neutrality, and resolvability, we characterize the rate for the impossibility to vanish, to be either polynomially fast or exponentially fast. We also propose a novel easy-to-compute tie-breaking mechanism that optimally preserves anonymity and neutrality for even number of alternatives in natural settings. Our results illustrate the smoothed possibility of social choice—even though the paradox and the impossibility theorem hold in the worst case, they may not be a big concern in practice.