#### Neural Networks Learning and Memorization with (almost) no Over-Parameterization

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

#### Authors

*Amit Daniely*

#### Abstract

Many results in recent years established polynomial time learnability of various models via neural networks algorithms
(e.g. \cite{andoni2014learning, daniely2016toward, daniely2017sgd, cao2019generalization, ziwei2019polylogarithmic, zou2019improved, ma2019comparative, du2018gradient, arora2019fine, song2019quadratic, oymak2019towards, ge2019mildly, brutzkus2018sgd}).
However, unless the model is linear separable~\cite{brutzkus2018sgd}, or the activation is a polynomial~\cite{ge2019mildly}, these results require very large networks -- much more than what is needed for the mere existence of a good predictor.
In this paper we prove that SGD on depth two neural networks can memorize samples, learn polynomials with bounded weights, and learn certain kernel spaces, with {\em near optimal} network size, sample complexity, and runtime. In particular, we show that SGD on depth two network with $\tilde{O}\left(\frac{m}{d}\right)$ hidden neurons (and hence $\tilde{O}(m)$ parameters) can memorize $m$ random labeled points in $\sphere^{d-1}$.