Baxter Permutation Process

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental


Masahiro Nakano, Akisato Kimura, Takeshi Yamada, Naonori Ueda


In this paper, a Bayesian nonparametric (BNP) model for Baxter permutations (BPs), termed BP process (BPP) is proposed and applied to relational data analysis. The BPs are a well-studied class of permutations, and it has been demonstrated that there is one-to-one correspondence between BPs and several interesting objects including floorplan partitioning (FP), which constitutes a subset of rectangular partitioning (RP). Accordingly, the BPP can be used as an FP model. We combine the BPP with a multi-dimensional extension of the stick-breaking process called the {\it block-breaking process} to fill the gap between FP and RP, and obtain a stochastic process on arbitrary RPs. Compared with conventional BNP models for arbitrary RPs, the proposed model is simpler and has a high affinity with Bayesian inference.