Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
Luigi Acerbi
Variational Bayesian Monte Carlo (VBMC) is a recently introduced framework that uses Gaussian process surrogates to perform approximate Bayesian inference in models with black-box, non-cheap likelihoods. In this work, we extend VBMC to deal with noisy log-likelihood evaluations, such as those arising from simulation-based models. We introduce new global' acquisition functions, such as expected information gain (EIG) and variational interquantile range (VIQR), which are robust to noise and can be efficiently evaluated within the VBMC setting. In a novel, challenging, noisy-inference benchmark comprising of a variety of models with real datasets from computational and cognitive neuroscience, VBMC+VIQR achieves state-of-the-art performance in recovering the ground-truth posteriors and model evidence.
In particular, our method vastly outperforms
local' acquisition functions and other surrogate-based inference methods while keeping a small algorithmic cost. Our benchmark corroborates VBMC as a general-purpose technique for sample-efficient black-box Bayesian inference also with noisy models.