Interpretable and Personalized Apprenticeship Scheduling: Learning Interpretable Scheduling Policies from Heterogeneous User Demonstrations

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental


Rohan Paleja, Andrew Silva, Letian Chen, Matthew Gombolay


Resource scheduling and coordination is an NP-hard optimization requiring an efficient allocation of agents to a set of tasks with upper- and lower bound temporal and resource constraints. Due to the large-scale and dynamic nature of resource coordination in hospitals and factories, human domain experts manually plan and adjust schedules on the fly. To perform this job, domain experts leverage heterogeneous strategies and rules-of-thumb honed over years of apprenticeship. What is critically needed is the ability to extract this domain knowledge in a heterogeneous and interpretable apprenticeship learning framework to scale beyond the power of a single human expert, a necessity in safety-critical domains. We propose a personalized and interpretable apprenticeship scheduling algorithm that infers an interpretable representation of all human task demonstrators by extracting decision-making criteria via an inferred, personalized embedding non-parametric in the number of demonstrator types. We achieve near-perfect LfD accuracy in synthetic domains and 88.22\% accuracy on a planning domain with real-world data, outperforming baselines. Finally, our user study showed our methodology produces more interpretable and easier-to-use models than neural networks ($p < 0.05$).