Bayesian Causal Structural Learning with Zero-Inflated Poisson Bayesian Networks

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Junsouk Choi, Robert Chapkin, Yang Ni

Abstract

Multivariate zero-inflated count data arise in a wide range of areas such as economics, social sciences, and biology. To infer causal relationships in zero-inflated count data, we propose a new zero-inflated Poisson Bayesian network (ZIPBN) model. We show that the proposed ZIPBN is identifiable with cross-sectional data. The proof is based on the well-known characterization of Markov equivalence class which is applicable to other distribution families. For causal structural learning, we introduce a fully Bayesian inference approach which exploits the parallel tempering Markov chain Monte Carlo algorithm to efficiently explore the multi-modal network space. We demonstrate the utility of the proposed ZIPBN in causal discoveries for zero-inflated count data by simulation studies with comparison to alternative Bayesian network methods. Additionally, real single-cell RNA-sequencing data with known causal relationships will be used to assess the capability of ZIPBN for discovering causal relationships in real-world problems.