Input-Aware Dynamic Backdoor Attack

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Tuan Anh Nguyen, Anh Tran

Abstract

In recent years, neural backdoor attack has been considered to be a potential security threat to deep learning systems. Such systems, while achieving the state-of-the-art performance on clean data, perform abnormally on inputs with predefined triggers. Current backdoor techniques, however, rely on uniform trigger patterns, which are easily detected and mitigated by current defense methods. In this work, we propose a novel backdoor attack technique in which the triggers vary from input to input. To achieve this goal, we implement an input-aware trigger generator driven by diversity loss. A novel cross-trigger test is applied to enforce trigger nonreusablity, making backdoor verification impossible. Experiments show that our method is efficient in various attack scenarios as well as multiple datasets. We further demonstrate that our backdoor can bypass the state of the art defense methods. An analysis with a famous neural network inspector again proves the stealthiness of the proposed attack. Our code is publicly available.