Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
Michael Janner, Igor Mordatch, Sergey Levine
We introduce the gamma-model, a predictive model of environment dynamics with an infinite, probabilistic horizon. Replacing standard single-step models with gamma-models leads to generalizations of the procedures that form the foundation of model-based control, including the model rollout and model-based value estimation. The gamma-model, trained with a generative reinterpretation of temporal difference learning, is a natural continuous analogue of the successor representation and a hybrid between model-free and model-based mechanisms. Like a value function, it contains information about the long-term future; like a standard predictive model, it is independent of task reward. We instantiate the gamma-model as both a generative adversarial network and normalizing flow, discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors, and empirically investigate its utility for prediction and control.