Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
Yibo Yang, Robert Bamler, Stephan Mandt
We consider the problem of lossy image compression with deep latent variable models. State-of-the-art methods build on hierarchical variational autoencoders (VAEs) and learn inference networks to predict a compressible latent representation of each data point. Drawing on the variational inference perspective on compression, we identify three approximation gaps which limit performance in the conventional approach: an amortization gap, a discretization gap, and a marginalization gap. We propose remedies for each of these three limitations based on ideas related to iterative inference, stochastic annealing for discrete optimization, and bits-back coding, resulting in the first application of bits-back coding to lossy compression. In our experiments, which include extensive baseline comparisons and ablation studies, we achieve new state-of-the-art performance on lossy image compression using an established VAE architecture, by changing only the inference method.