Flows for simultaneous manifold learning and density estimation

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Johann Brehmer, Kyle Cranmer

Abstract

<p>We introduce manifold-learning flows (ℳ-flows), a new class of generative models that simultaneously learn the data manifold as well as a tractable probability density on that manifold. Combining aspects of normalizing flows, GANs, autoencoders, and energy-based models, they have the potential to represent data sets with a manifold structure more faithfully and provide handles on dimensionality reduction, denoising, and out-of-distribution detection. We argue why such models should not be trained by maximum likelihood alone and present a new training algorithm that separates manifold and density updates. In a range of experiments we demonstrate how ℳ-flows learn the data manifold and allow for better inference than standard flows in the ambient data space.</p>