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Abstract

Self-attention architectures, which are rapidly pushing the frontier in natural lan-
guage processing, demonstrate a surprising depth-inefficient behavior: Empirical
signals indicate that increasing the internal representation (network width) is just as
useful as increasing the number of self-attention layers (network depth). In this pa-
per, we theoretically study the interplay between depth and width in self-attention.
We shed light on the root of the above phenomenon, and establish two distinct pa-
rameter regimes of depth efficiency and inefficiency in self-attention. We invalidate
the seemingly plausible hypothesis by which widening is as effective as deepening
for self-attention, and show that in fact stacking self-attention layers is so effective
that it quickly saturates a capacity of the network width. Specifically, we pinpoint
a “depth threshold" that is logarithmic in the network width: for networks of depth
that is below the threshold, we establish a double-exponential depth-efficiency of
the self-attention operation, while for depths over the threshold we show that depth-
inefficiency kicks in. Our predictions accord with existing empirical ablations,
and we further demonstrate the two depth-(in)efficiency regimes experimentally
for common network depths of 6, 12, and 24. By identifying network width as a
limiting factor, our analysis indicates that solutions for dramatically increasing the
width can facilitate the next leap in self-attention expressivity.

1 Introduction
The golden age of deep learning has popularized the depth-efficiency notion: From an expressiveness
standpoint, increasing a neural network’s size by adding more layers (deepening) is advantageous
relatively to other parameter increase alternatives, such as increasing the dimension of the internal
representation (widening). Beyond overwhelming empirical signals for this notion [Simonyan and
Zisserman, 2014, He et al., 2016], depth-efficiency was theoretically supported from a variety of
angles [Cohen et al., 2016, Eldan and Shamir, 2016, Raghu et al., 2017, Daniely, 2017].

Diminishing returns in the case of very deep networks were mainly attributed to optimization issues,
and indeed the alleviation of these issues has allowed network depths to mount from 10s to 100s and
beyond [He et al., 2016], enabling deep convolutional networks (ConvNets) to advance the state-of-
the-art in computer vision applications. However, as the field matured, a more nuanced perspective
emerged. Empirical [Zagoruyko and Komodakis, 2016, Wu et al., 2019] and theoretical [Lu et al.,
2017] studies suggest that the interplay between depth and width may be more subtle. Recently, a
heuristic method for increasing width and depth in tandem has lead to the current state-of-the-art on
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Figure 1: An ablation by Kaplan et al. [2020], examining the perplexity scores on the language
modeling task in an extended version of the WebText dataset [Radford et al., 2019], attained when
training autoregressive self-attention networks of varying depths and widths. (a) Original figure. The
perplexity is reported as a function of the overall network size, excluding embedding parameters (b) A
zoom-in on a parameter regime fitting common widths of d ≥ 200, which are shown to be sufficient
for the task of language modeling. Experiments on the L > 6 curve (yellow) include self-attention
networks of depths L = 12, 24, 36, 48, 207, all approximately obeying the same improvement trend
which depends only on the number of network parameters and not on the depth to width ratio (“depth
inefficiency"). For L ≤ 6, depth-efficiency is clearly demonstrated.

ImageNet to be set by a ConvNet using a fraction of the parameters used by previous leaders [Tan
and Le, 2019].

Since the introduction of the Transformer [Vaswani et al., 2017], along with its encoder-only variant,
BERT [Devlin et al., 2019], self-attention based deep learning architectures have taken over the
field of natural language processing [Liu et al., 2019, Radford et al., 2019, Yang et al., 2019, Raffel
et al., 2019, Clark et al., 2020]. However, in contrast to the depth “arms race" that took place in the
ConvNet case, the leading self-attention networks are not much deeper than the original BERT model.
In fact, even the strongest self-attention models trained to date, which increased the parameter count
of BERT-large by factors of 100s, from 0.3B to 11B [Raffel et al., 2019] and 175B [Brown et al.,
2020], have only increased its depth by factors of 2-4. The remaining size increase stems from an
increase in layer widths, clearly countering the depth-efficiency notion.

A recent empirical ablation study by Kaplan et al. [2020] provides support for the above signal.
Figure 1(a), taken from this study, shows that the overall (non-embedding) network size, given
by 12 · L · d2

x where L is the number of self-attention layers (network depth) and dx is the hidden
representation dimension (network width), is the main predictor of performance regardless of the
depth to width ratio. This suggests that depth does not play as crucial a role in self-attention networks
as it does in convolutional networks. A question may arise whether this phenomenon is not rooted in
expressivity but in optimization, which has been shown to be delicate in Transformers [Huang et al.].

In this paper, we theoretically address the above question of the depth to width interplay in self-
attention network expressivity, and reveal fundamental subtleties in the above picture. We analyze
self-attention networks in which all non-linear activations and normalization operations are re-
moved. Otherwise, the analyzed class (presented in section 2) has the regular deep multi-headed
Key/Query/Value structure of common self-attention. After presenting this class in detail, we point
to recent studies which demonstrate that normalization and position-wise activations are much less
pertinent to the ability of self-attention to correlate inputs than its core connectivity, described in full
by our analyzed model. More generally, removing non-linearities for analysis of deep network connec-
tivity traits is commonly done: results on expressiveness and optimization of fully-connected [Saxe
et al., 2013, Kawaguchi, 2016, Hardt and Ma, 2016], convolutional [Cohen et al., 2016], and recur-
rent [Khrulkov et al., 2018, Levine et al., 2018a] networks have been attained via this technique.

Theoretical results on Transformers include a proof that they are universal approximators of sequence
to sequence functions [Yun et al., 2019], an examination of their robustness [Shi et al., 2020], a
comparison between a single self-attention layer and a single convolutional layer [Cordonnier et al.,
2019], and an analysis of the low-rank constraint caused by the multi-headed mechanism [Bhojanapalli
et al., 2020]. A different empirical trend demonstrated in Kaplan et al. [2020] was recently addressed
theoretically in Sharma and Kaplan [2020], which shed light on the scaling exponent of the loss with
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model size in neural models. To the best of our knowledge, our analysis is the first to address the
question of parameter allocation between depth and width in self-attention networks.

We employ the tool of a function’s separation rank with respect to subsets of its inputs, which
quantifies its ability to model input dependencies (presented in section 3). The separation rank
was employed for attaining theoretical insights on the dependencies modeled by convolutional and
recurrent networks [Cohen and Shashua, 2017, Levine et al., 2018a].

Rather than reinforcing the seemingly plausible hypothesis for the trend in figure 1, by which
widening a self-attention network is as effective as deepening it, we confirm the contrary. We
show that the operation of stacking self-attention layers is so effective that it quickly saturates a
capacity of the network’s width. We establish in section 4 the existence of a depth threshold which
depends logarithmically on the width dx, denoted Lth(dx) = log3(dx). Below the threshold, we
prove that depth-efficiency takes place in self-attention networks: a network of depth L ≤ Lth(dx)
cannot be replicated by a shallower network, unless the latter’s width grows double-exponentially
with L. We prove the above by showing that the separation rank of functions realized by self-attention
networks grows double-exponentially with depth, but only polynomially with width, shedding light
on the effectiveness of the self-attention mechanism in modeling input interactions when recursively
repeated. However, we show that this overwhelming advantage of depth is quickly replaced by a
balanced growth. We prove that for self-attention networks with L > Lth(dx) the ability to model
input dependencies, as modeled by the separation rank, increases similarly with depth and width.

A closer look at the experiment of Kaplan et al. [2020], displayed in figure 1(b), reveals an agreement
with our theoretical indications. For two networks with the same parameter count but of different
depths L1 < L2 and widths d2 < d1: (1) the performance is the same when the dimension of the
deeper network d2 is too small (our theory indicates that the width caps the benefit of the added
layers of depths L1 + 1, ..., L2), but (2) the deeper network outperforms the shallower one when its
width d2 is large enough such that the added layers are in the depth efficiency regime. Thus, even
though a depth inefficiency of self-attention was concluded from this experiment, it shows traces of
the more nuanced phenomenon predicted by our theory. The experiments in figure 1 show the depth
efficiency regime for networks of depths L ≤ 6. In section 5 we demonstrate empirically that depth
efficiency/inefficiency regimes affect more commonly used self-attention depths of L = 6, 12, 24.
Following the presentation of our results, we discuss in section 6 practical outcomes derived from our
theoretical insights.

2 The self-attention mechanism

Differentiable attention models in which the output attends over all LSTM-based input representations
have been introduced in the context of machine translation [Bahdanau et al., 2014]. Self-attention
(also referred to as intra-attention), which relates different inputs to each other, was first employed
for machine reading [Cheng et al., 2016], and soon thereafter shown to be useful for a variety of
language applications when operating over LSTM-based representations [Parikh et al., 2016, Paulus
et al., 2017, Lin et al., 2017]. Vaswani et al. [2017] were the first to demonstrate that a model based
solely on attention, the Transformer, can be better than LSTM based networks. The Transformer’s
encoder, BERT [Devlin et al., 2019], based entirely on self-attention, has demonstrated unprecedented
performance across natural language understanding tasks.
2.1 The Transformer encoder architecture

We begin by describing the self-attention operation of the original Transformer, and then in the
next subsection we present the modifications made in our analyzed model. Each layer l ∈ [L] :=
{1, ..., L} of a depth-L Transformer encoder is comprised of two sub-layers. The H-headed self-
attention sublayer of layer l computes the following function at position i ∈ [N ], over its N inputs
{xl,j ∈ Rdx}Nj=1:

f l,iSA

(
xl,1,, ...,xl,N

)
=

N∑
j=1

H∑
h=1

SMj

{
1/
√
da

〈
WQ,l,hxl,i,WK,l,hxl,j

〉}
WO,l,hWV,l,hxl,j (1)

where SMj {f(j)} := ef(j)/
∑
j′ e

f(j′) is the softmax operation and ∀h ∈ [H] the learned weights
matrices WK,l,h,WQ,l,h,WV,l,h ∈ Rda×dx convert the representation from its dimension dx into the
attention dimension da = dx/H, creating Key, Query, and Value representations, respectively. The
learned weights matrix WO,l,h ∈ Rdx×da converts the attention result back into the representation
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dimension. The multi-headed self-attention sublayer output in eq. (1), followed by a residual
connection and layer-norm [Ba et al., 2016], is inserted into a position-wise feed-forward + ReLU
sublayer, such that each layer’s output at position i ∈ [N ] is:

f l,iLayer

(
xl,1, ...,xl,N

)
= W FF,2ReLU

(
W FF,1LayerNorm

(
f l,iSA + xl,i

))
, (2)

where the feed-forward matrices are usually taken to be W FF,1 ∈ R4dx×dx ,W FF,2 ∈ Rdx×4dx , such
that the parameter count for an entire layer is 12 · d2

x. Finally, the depth-L multi-headed self-attention
operation of the Transformer encoder is obtained by a composition of L such layers, i.e., when setting
∀l ∈ {2, ..., L}, j ∈ [N ] : xl,j = LayerNorm

(
f l−1,j

Layer

)
, with x1,j denoting the input to the deep

self-attention network at position j.1

2.2 The analyzed architecture

We analyze a deep multi-headed self-attention network variant which excludes the layer-norm
operation, the softmax normalization, and the ReLU activation (see a thorough discussion on the
effect of these relaxations in the next subsection). For cleanliness of presentation, we defer the
analysis of the residual connection to the appendix (it bears insignificant impact on our bounds).
Specifically, in the analyzed network, each layer l ∈ [L] computes the following function at position
i ∈ [N ] over its inputs {xl,j ∈ Rdx}Nj=1:

yl,i
(
xl,1, ...,xl,N

)
=

N∑
j=1

H∑
h=1

〈
WQ,l,hxl,i,WK,l,hxl,j

〉
WO,l,hWV,l,hxl,j , (3)

where the Feed-Forward matrices can be now effectively embedded within WO,l,h. Our analysis
below treats a deep multi-headed self-attention network that is attained by a concatenation of L such
layers. Importantly, the resultant “linearized" network form, where activations and normalizations are
removed, is by no means a linear mapping over the network input – every layer integrates 3 copies of
its input in the above non-linear fashion.

By recursively applying eq. (3) L times we attain the analyzed depth-L self-attention network. We
denote the function realized by a network with embedding dimension dx and H attention heads per
layer at output location i ∈ [N ] by:

yi,L,dx,H,Θ
(
x1, ...,xN

)
:=

N∑
j1,...,jC=1

gL
(
xi,xj1 , ...,xjC

)
, (4)

where Θ denotes all 4LH learned weight matrices: ∀(l, h) ∈ [L]⊗ [H] :WK,l,h,WQ,l,h,WV,l,h ∈
Rda×dx , and WO,l,h ∈ Rdx×da , and the function gL is a placeholder, fully detailed in the appendix,
which integrates C = 3L−1

2 different input vectors. Network connectivity implies that the number of
summed position indices is also C. Comparing the form of eq. (4) to the operation of a single layer
in eq. (3), it can be seen schematically that while a single layer mixes the output position i with every
input position j once and aggregates the result, depth brings forth an exponential enhancement to the
amount of inputs mixed at once as well as to the amount of summed terms. In section 4, we quantify
this effect and analyze the limitations posed by the dimension of the internal representation (the
width) on the network’s ability to make use of this exponential growth with depth. In the following
subsection, we comment on the differences between the Transformer encoder architecture described
in eqs. (1) and (2) and the self-attention architecture presented in eqs. (3) and (4).

2.3 Relaxations

Empirical evidence indicates that while the ReLU activations and softmax normalization contribute to
performance (layer-norm mainly contributes to optimization), the basic mechanism in eqs. (3) and (4)
above captures the defining self-attention characteristic of integrating the inputs with each other in a
flexible manner:

The ReLU activation relaxation: Press et al. [2019] demonstrate that a “self-attention first" BERT
variant that first performs all of the self-attention operations (eq. (1)) consecutively, and only then

1Focusing on the self-attention operation, we omit a description of the input embedding matrix, as well as of
the positional embeddings added at the input, which do not affect our analysis given realistic vocabulary sizes.
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performs all of the position-wise feed-forward+ReLU operations, achieves comparable language
modeling performance relatively to the Baseline, which takes the regular approach of interleaving
these functionalities (i.e., concatenating the BERT’s layer described in eq. (2)). They report that the
interleaved Baseline achieves a perplexity score of 18.63± 0.26 on the WikiText-103 test [Merity
et al., 2016] when averaged over 5 random seeds, while the “self-attention first" model achieves a
perplexity score of 18.82 on this test set. The best pre-Transformer perplexity result on the WikiText-
103 test, reported by an LSTM-based architecture, was 29.2 [Rae et al., 2018]. Since ReLU and
feed-forward do not mix different locations, this outcome directly implies that the self-attention
mechanism itself provides all of the elaborate input integration which differentiates BERT from
previous architectures.

The softmax normalization relaxation: Initially, an intuitive interpretation of attention as distributing
“fractions" of an overall attention budget among inputs was given to its actual operation of dynamically
linking input and output locations. The intuitive interpretation, tightly linked to the need to transform
the Key/Query similarity score into a distribution, has been recently challenged, as a growing body of
work shows that the attention weights distribution does not directly correlate with predictions [Jain
and Wallace, 2019, Pruthi et al., 2019, Brunner et al., 2020]. Moreover, Richter and Wattenhofer
[2020] recently point out undesirable traits of the softmax operation, demonstrating that its property
of confining the outcome to the convex hull of its inputs unnecessarily limits the expressibility of
the self-attention mechanism. They experiment on a suite of synthetic tasks with a BERT variant in
which the softmax normalization is removed, and find it to perform on par on almost all examined
tasks. When replacing the softmax with other normalizations they report improvements. Finally,
completely linearized attention (softmax removed) was employed on real tasks as means of reducing
costs, since the softmax operation cost scales with the input size [de Brébisson and Vincent, 2016,
Wang et al., 2020].

The goal of the above points is not to advocate modifications in BERT’s non-linearity or normalization
operations (we leave that to other works), but to note that while these are under examination and are
susceptible for alteration, the connectivity of self-attention, manifested by eqs. (3) and (4) , is the
core mechanism driving its functionality. Our results, to be presented in section 4, demonstrate how
conclusions drawn by directly analyzing this mechanism accord with the operation of commonly
employed self-attention networks.

3 A measure of capacity for modeling input dependencies

In this section, we introduce the separation rank of the function realized by a self-attention network as
a measure that quantifies its ability to model dependencies between subsets of its variable set {xj}Nj=1.
We will use this measure in order to establish the two depth efficiency/ inefficiency regimes in self-
attention. The separation rank, introduced in Beylkin and Mohlenkamp [2002] for high-dimensional
numerical analysis, was employed for various applications, e.g., chemistry [Harrison et al., 2003],
particle engineering [Hackbusch, 2006], and machine learning [Beylkin et al., 2009]. Importantly, the
separation rank has been established as a measure of dependencies modeled by deep convolutional
and recurrent networks w.r.t. their inputs [Cohen and Shashua, 2017, Levine et al., 2018a,b].

Let (A,B) be a partition of the input locations, i.e., A and B are disjoint subsets of [N ] whose union
gives [N ]. The separation rank of a function y(x1, . . . ,xN ) w.r.t. partition (A,B), is the minimal
number of summands that together sum up to equal y, where each summand is multiplicatively
separable w.r.t. (A,B), i.e., is equal to a product of two functions – one that intakes only inputs from
one subset {xj : j ∈ A}, and another that intakes only inputs from the other subset {xj : j ∈ B}.
Formally, the separation rank of y : (Rdx)N → R w.r.t. the partition (A,B) is defined as follows:

sep(y;A,B) := min
{
R ∈ N ∪ {0} : ∃g1. . .gR : (Rdx)|A| → R, g′1. . .g′R : (Rdx)|B| → R s.t. (5)

y
(
x1, . . . ,xN

)
=
∑R

r=1
gr
(
{xj : j ∈ A}

)
g′r
(
{xj : j ∈ B}

)}
If the separation rank of a function w.r.t. a partition of its input is equal to 1, the function is
separable, meaning it cannot take into account consistency between the values of {xj}j∈A and those
of {xj}j∈B . In a statistical setting, if y is a probability density function, this would mean that
{xj}j∈A and {xj}j∈B are statistically independent. The higher sep(y;A,B) is, the farther y is from
this situation, i.e. the more it models dependency between {xj}j∈A and {xj}j∈B , or equivalently,
the stronger the correlation it induces between the inputs indexed by A and those indexed by B.
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The fixed connectivity of ConvNets has been shown to yield high separation ranks w.r.t. partitions
which separate neighboring inputs (e.g., where all odd positions are in A and all even positions are
in B), while suffering from low separation ranks w.r.t. partitions which separate distant inputs (e.g.,
where A = 1, ...,N/2 and B = N/2 + 1, ..., N ). Our analysis establishes a qualitatively different trait
for self-attention networks, which treat all balanced partitions alike:

Proposition 1. For p ∈ [dx], let yi,L,dx,H,Θp be the scalar function computing the pth entry of an
output vector at position i ∈ [N ] of the depth-L self-attention network with embedding dimension dx
and H attention heads per layer, defined in eqs. (3) and (4). Then, its separation rank w.r.t. balanced
partitions, which obey A ·∪B = [N ], |A| , |B| = N/2, is invariant to the identity of the partition, i.e.,
∀A ·∪B = [N ], Ã ·∪ B̃ = [N ], s.t. |A| , |B| , |Ã|, |B̃| = N/2:

sep(yi,L,dx,H,Θp ;A,B) = sep(yi,L,dx,H,Θp ; Ã, B̃) (6)

Accordingly, we will omit the specification of the partition in future uses, denoting sep(yi,L,dx,H,Θp )

as the separation rank of yi,L,dx,H,Θp w.r.t. any balanced partition of the inputs.
This result accords with the intuition regarding the flexibility of the attention mechanism – it does
not integrate the input in a predefined pattern like convolutional networks, but dynamically learns
to correlate any inter-dependent subsets of the inputs. Natural text exhibits non-smooth non-local
dependency structures, as correlations between input segments can abruptly rise and decay with
distance. The fact that self-attention facilitates all correlation patterns equally poses it as a more
natural architecture for language modeling related tasks. Convolutional networks, with their local
connectivity, may have the right inductive bias for imagery data, but partitions unfavored by them
may reflect more erratic correlations that are nonetheless relevant for natural language inputs.

However, the above property of indifference to the input partition is not enough for succeeding at
tasks with elaborate input dependencies, since a function with equally low separation ranks for all
input partitions has limited ability to model such dependencies. In the following section, we analyze
how different architectural parameters affect the ability of self-attention networks to correlate their
inputs, and by bounding their separation ranks, we establish the different depth-efficiency regimes in
self-attention networks.

4 The effect of depth in self-attention networks
In this section, we present tight bounds on the separation rank of self-attention networks, which reveal
two qualitatively different regimes. In the first regime of L < log3(dx), analyzed in subsection 4.1,
we establish that deepening is clearly preferable to widening. In the second regime of L > log3(dx),
analyzed in subsection 4.2, we show that deepening and widening play a similar role in enhancing
the expressiveness self-attention networks.
4.1 Depth efficiency in self-attention

The recursive structure of deep self-attention hints at an exponential increase of input mixing with
depth: The output of each layer is introduced 3 times into the Key/Query/Value computation made
by the subsequent layer. In this subsection, we formalize this intuition for self-attention networks
of sufficient width, dx > 3L. Theorem 1 below bounds the separation rank of such networks.
Subsequent to its statement and brief outline of its proof, we explicitly show in corollary 1 the implied
double-exponential requirement from a bounded depth network attempting to replicate a deeper one.

Theorem 1. For p ∈ [dx], let yi,L,dx,H,Θp be the scalar function computing the pth entry of an output
vector at position i ∈ [N ] of the depth-L self-attention network with embedding dimension dx and
H attention heads per layer, defined in eqs. (3) and (4). Let sep(yi,L,dx,H,Θp ) be its separation rank
(section 3). If L, dx obey L < log3 (dx), then the following holds almost everywhere in the network’s
learned parameter space, i.e. for all values of the weight matrices (represented by Θ) but a set of
Lebesgue measure zero:

3L−2 (log3 (dx −H) + a) ≤ log3

(
sep(yi,L,dx,H,Θp )

)
≤ 3L − 1

2
log3 (dx +H) (7)

with a = −L+ [2− log3 2]. (note that log3 (dx −H) + a > 0 in this regime of L < log3(dx)).

We provide below a short proof sketch of the lower bound in the above theorem. The derivation of
the upper bound is more straightforward, and is left for the appendix, along with a formal proof of
the lower bound.
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Proof sketch for the lower bound in theorem 1: We make use of grid tensor based function discretiza-
tion [Hackbusch, 2012] – The function realized by a self-attention network is evaluated for a set
of points on an exponentially large grid in the input space, and the outcomes are stored in a matrix
M
(
yi,L,dx,H,Θp

)
, which we prove upholds: rank

[
M
(
yi,L,dx,H,Θp

)]
≤ sep(yi,L,dx,H,Θp ), i.e., its

rank lower bounds the separation rank. Since the entries of M
(
yi,L,dx,H,Θp

)
vary polynomially

with the self-attention network’s weights, we show that it suffices to find a single network weights
assignment Θ for which the rank of the matrix is greater than the desired lower bound, in order
to prove the case for almost all of the configurations of the network’s learned weights (but a set
of measure zero). Thus, we prove the lower bound in theorem 1 by choosing a simple weight
assignment that still represents the self-attention connectivity, and showing that for this value of Θ,
rank

[
M
(
yi,L,dx,H,Θp

)]
achieves the lower bound, in turn lower bounding the separation rank.

Theorem 1 bounds the separation rank of a deep self-attention network of sufficient width between two
functions that grow double-exponentially with depth and polynomially with width, tightly describing
its behavior w.r.t. depth and width. Because equivalence cannot hold between two functions of
different separation ranks, the above result implies a double-exponential requirement from the width
of a shallow network attempting to replicate the deep one:
Corollary 1. With probability 1, the function realized upon randomization of the weights of a deep
self-attention network defined in eqs. (3) and (4) with depth Ldeep and width ddeep

x > 3L
deep

, may only
be realized by a shallower network with depth Lshallow = Ldeep

/d and width dshallow
x = wdshallow

x , where
d > 1, w > 1 (i.e., the deep network is deeper by a factor of d and the shallow network is wider by a
factor of w), if the following holds:

w ∝ exp(exp(d)).

The above requirement implies clear-cut (double-exponential) depth-efficiency: the shallow network
must grow impractically large to match the deeper one. For example, for BERT-large parameters of
ddeep
x = 1000, H = 16, by taking the deep network under the depth-efficiency threshold Ldeep = 6,

the width of a depth Lshallow = 2 network has to be dshallow
x ' 2 · 1017 and the width of a depth

Lshallow = 3 network has to be dshallow
x ' 2 · 105 to match the deep network’s operation. These

numbers were attained by numerically equating the upper bound in eq. (7) for the shallow network
and the lower bound in eq. (7) for the deep network, i.e., by asking when the upper bound on the
shallow network is larger than the lower bound on the deep network.

4.2 Depth in-efficiency in self-attention

Beyond establishing depth-efficiency in early self-attention layers, the above analysis sheds light
on the contribution of a self-attention network’s depth to its ability to correlate input subsets. The
separation rank (w.r.t. any partition) of a single layer, given by eq. (3), is only linear in H and dx,
showcasing a limitation of the class of functions realized by single self-attention layers to model
elaborate input dependencies. Theorem 1 quantifies the double exponential growth of this capacity
measure with the number of stacked self-attention layers. The following theorem shows that this
growth is capped by the dimension of the internal representation:

Theorem 2. For yi,L,dx,H,Θp as defined in theorem 1, if L > log3 (dx), then the following holds
almost everywhere in the network’s learned parameter space, i.e. for all values of the weight matrices
(represented by Θ) but a set of Lebesgue measure zero:

1

2
dx · L+ b1 + b2 ≤ log3

(
sep(yi,L,dx,H,Θp )

)
≤ 2dx · L+ c1 + c2 (8)

with corrections on the order of L: b1 = −L
(
H
2 + 1

)
, c1 = L, and on the order of dx log3(dx):

b2 = −dx
(
1 + 1

2 log3

(
dx−H

2

))
, c2 = −2dx · log3

dx/2
√

2e + log3 dx.

We provide below a proof sketch of the upper bound in the above theorem. The formal proof, along
with the proof of the lower bound, which is similar to the one illustrated above for the lower bound in
theorem 1, are left for the appendix.

Proof sketch for the upper bound in theorem 2: By observing that yi,L,dx,H,Θp is a polynomial of
degree 2C = 3L − 1 (C is introduced in eq. (4)), we find a kernel ψ

(
x1, ...,xN

)
that maps the

input into a space where each of the output monomials is a linear functional. We find a basis for
the subspace V spanned by the output monomials, and bound the separation rank of each element
in that basis by a constant. The dimension of V is exponential in Ndx and polynomial in 3L − 1,
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providing equal groundings for depth and width. A careful analysis that exploits the sums over the
indices j1, ..., jC in eq. (4), removes the dependence on N .

Theorem 2 states that when the network’s depth passes a width dependent threshold, the separation
rank turns from increasing polynomially with width and double-exponentially with depth to increasing-
exponentially with width and depth together. Thus, while an increase in network size increases its
capacity to model input dependencies, our result shows that there is no longer a clear cut advantage
of depth in this respect:

Corollary 2. Let ydeep denote the function realized by a deep self-attention network at any output
location i ∈ [N ], defined in eqs. (3) and (4) with depth and width denoted Ldeep, ddeep

x such that

Ldeep > log3 d
deep
x . Denote β1 :=

log3 d
deep
x

Ldeep < 1. Then, there exists β2 = O(log(H) · log(ddeep
x ) ·

log(Ldeep)) such that the function realized by a network of depth: Lshallow = β1 · Ldeep + β2, and
width: dshallow

x = 3β2ddeep
x , denoted yshallow, has higher separation rank, i.e.:

sep(yshallow
p ) > sep(ydeep

p′ ) ; where p, p′ ∈ [dx] (9)

Corollary 2, which follows from theorems 1 and 2, shows that the separation rank of a function realized
by a self-attention network of arbitrary depth L > log3(dx) can be surpassed by a shallower network
of polynomial width, contrarily to the established behavior for networks of depth L < log3(dx).

We leave it as an open conjecture that a polynomially sized shallower network can exactly replicate
the operation of a deeper network in this regime. With that, we point out that a variety of results which
directly bound different complexity measures of deep networks have been put forward, shedding light
on their operation [Montufar et al., 2014, Bianchini and Scarselli, 2014, Raghu et al., 2017, Serra
et al., 2017, Inoue, 2019]. Bounds on the separation rank have been used to explain the operation of
more veteran architectures, and we find them to be particularly relevant in the case of self-attention:
this complexity measure quantifies the amount of input inter-dependency induced by the network,
directly reflecting a widespread intuition on the success behind the self-attention mechanism.

5 Depth efficiency regimes in common self-attention networks
While we proved the existence of the two different depth efficiency regimes for a simplified version of
self-attention networks (described in section 2), our theoretical predictions are manifested in common
self-attention networks. Kaplan et al. [2020] emphasize the depth inefficiency trait of self-attention
[figure 1(a)], but the depth efficiency regime is clearly demonstrated in their experiments for L < 6
[figure 1(b)]. To show that the predicted phenomenon occurs for networks of more practical depths,
we conducted a similar experiment which focuses on depths L = 6, 12, 24.

Specifically, we trained decoder-only (unidirectional) self-attention architectures of varying depths
and widths, while optimizing the autoregressive log-likelihood. Importantly, our experiments were
conducted over common self-attention architectures which include all nonlinearity and normalization
operations that were omitted in our theoretical analysis. Our training set was English Wikipedia,
tokenized using byte-pair encoding with a vocabulary size of 1000. Autoregressive models were
shown to work well even on character level vocabularies [Peters et al., 2018]; we used a small
vocabulary size so that the embedding parameters would constitute a small fraction of the learned
parameters for all data points. The remainder of the training details are given in the appendix.

Figure 2 shows that the two depth efficiency/inefficiency regimes impact common self-attention
architectures. When comparing depths Lshallow = 6 to Ldeep = 12, or depths Lshallow = 12 to
Ldeep = 24, a qualitatively different depth efficiency behavior is observed as the network size varies.
For smaller network sizes, the shallow and deep networks perform comparably. Our theoretical
analysis predicts this, showing that when the width of the deeper network is not large enough it can
not use its excess layers efficiently. However, when the network size in increased by widening, a clear
advantage of depth is demonstrated: for the same parameter budget a deeper network performs better.

6 Discussion
An apparent “depth-inefficiency" of self-attention networks was pointed out by prior works [Kaplan
et al., 2020] – in contrast to other successful deep learning architectures, in the case of self-attention
there does not seem to be a clear advantage to deepening vs. widening. Our theoretical analysis clearly
reflects this behavior in one parameter setting, but suggests an important nuance regarding its origins,
while predicting a separate “depth-efficiency" regime in another parameter setting. Rather than an
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Figure 2: An experimental validation of the existence of the two depth efficiency/inefficiency regimes
for common self-attention networks. The number of the non-embedding parameters is 12 · L · d2

x
(network widths dx are given in the appendix). In the right plot (depths 12 and 24), the transition
between regimes occurs in larger network sizes than in the left plot (depths 6 and 12), in agreement
with our theory.

obvious explanation for the observed depth inefficiency, by which the self-attention mechanism does
not benefit much from the operation of compounding, our analysis strongly points at the converse:
self-attention is so effective at integrating its inputs, that it very quickly reaches saturation in the
amount of dependencies that can be supported by the representation dimension.

Thus, for early self-attention compounding, we prove a rapid growth in expressiveness with depth,
and specifically in the ability to flexibly correlate between any input locations, which can not be
accounted for by any reasonable widening. However, our analysis pinpoints a transition in which the
capacity of width to support the above rapid growth exhausts. Thus, when the width of a self-attention
network is not large enough, the above depth efficiency disappears – deepening and widening become
equivalent in terms of expressiveness.

We did not find a result which directly upper bounds depth-efficiency in other architecture classes.
Works by Sharir and Shashua [2018], Levine et al. [2019] show an exponential growth with depth
of a measure related to the separation rank in certain classes of convolutional networks. Comparing
this with the double-exponential growth shown in theorem 1 for early self-attention layers, it may
be conjectured that convolutional networks seemingly benefit more from depth than self-attention
does because their separation rank grows less rapidly, so they do not saturate some width dependent
threshold as quickly as self-attention does. We leave these investigations for future work.

Our analysis yields practical implications. On the one hand, the proved depth efficiency suggests
always to exploit any parameter budget such that depth does not fall below a width related threshold.
In this case, we have shown a clear theoretical disadvantage in the expressiveness of shallower
networks, reinforced by the experiments in figure 2. On the other hand, by indicating the network
width as the limiting factor for depth-efficiency, our analysis encourages the development of methods
for significantly increasing network width. GPT3, the deepest self-attention network trained to date
with 96 layers, has matched this depth with an unprecedented width of 12K [Brown et al., 2020].
Perhaps, given the right theoretical motivation, width can be increased even more drastically.

For example, we point at the concept of ShuffleNet [Ma et al., 2018] for increasing the representation
dimension while using only a fraction of it for computation in each layer. This way, the computa-
tion costs are contained, but the theoretical limitations posed by our work are relaxed. Similarly,
alternative methods for efficiently increasing the representation dimension are also supported by our
analysis [Bengio et al., 2013, Shazeer et al., 2017]. Generally, width increases have greater potential
for speeding up network training and inference because it can be parallelized [Shoeybi et al., 2019], as
opposed to depth which yields a sequential computation. A theoretical indication that the contribution
of depth and width is indeed on the same order, and that width constrains depth from contributing
further, motivates the development of more extensive model parallelism methods for Transformers.
Indeed, we view our work as part of an effort to provide timely theoretical interpretations as feedback
for the tremendous empirical pull in our field.
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Broader Impact

Our work aims at providing fundamental guidelines which can assist all fields that employ
Transformer-based architectures to use more efficient models. This way, these fields can achieve
their goals while consuming less resources. Additionally, this work made an effort to provide a
theoretical interpretation by examining the (many) empirical signals already published by others,
while providing only a required minimum of further experimentation. This was done under the belief
that while experiments are crucial for the advancement of the field, it is important not to conduct
them superfluously as they incur an environmental price [Schwartz et al., 2019].
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