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Abstract

Self-attention architectures, which are rapidly pushing the frontier in natural lan-
guage processing, demonstrate a surprising depth-inefficient behavior: previous
works indicate that increasing the internal representation (network width) is just
as useful as increasing the number of self-attention layers (network depth). We
theoretically predict a width-dependent transition between depth-efficiency and
depth-inefficiency in self-attention. We conduct systematic empirical ablations on
networks of depths 6 to 48 that clearly reveal the theoretically predicted behaviors,
and provide explicit quantitative suggestions regarding the optimal depth-to-width
allocation for a given self-attention network size. The race towards beyond 1-
Trillion parameter language models renders informed guidelines for increasing
self-attention depth and width in tandem an essential ingredient. Our guidelines elu-
cidate the depth-to-width trade-off in self-attention networks of sizes up to the scale
of GPT3 (which is too deep for its size), and beyond, marking an unprecedented
width of 30K as optimal for a 1-Trillion parameter self-attention network.

1 Introduction

The golden age of deep learning has popularized the depth-efficiency notion: From an expressiveness
standpoint, increasing a neural network’s size by adding more layers (deepening) is advantageous
relatively to other parameter increase alternatives, such as increasing the dimension of the internal
representation (widening). Beyond overwhelming empirical signals for this notion [Simonyan and
Zisserman, 2014, He et al., 2016], depth-efficiency was theoretically supported from a variety of
angles [Cohen et al., 2016, Eldan and Shamir, 2016, Raghu et al., 2017, Daniely, 2017].

Diminishing returns in the case of very deep networks were mainly attributed to optimization issues,
and indeed the alleviation of these issues has allowed network depths to mount from 10s to 100s
and beyond [He et al., 2016], enabling deep convolutional networks (ConvNets) to advance the
state-of-the-art in computer vision applications. However, as the field matured, a more nuanced
perspective emerged. Empirical [Zagoruyko and Komodakis, 2016, Wu et al., 2019] and theoretical
[Lu et al., 2017] studies suggest that the interplay between depth and width may be more subtle.
Recently, a method for increasing width and depth in tandem (“EfficientNet" by Tan and Le [2019])
has lead to the state-of-the-art on ImageNet while using a ConvNet with a fraction of the parameters
used by previous leaders. Our work provides principled guidelines for increasing width and depth in
tandem in self-attention networks.

Since the introduction of the Transformer [Vaswani et al., 2017], along with its encoder-only variant,
BERT [Devlin et al., 2019], self-attention based deep learning architectures have taken over the
field of natural language processing [Liu et al., 2019, Radford et al., 2019, Yang et al., 2019, Raffel
et al., 2019a, Clark et al., 2020]. However, in contrast to the depth “arms race" that took place in the
ConvNet case, the leading self-attention networks are not much deeper than the original BERT model.
In fact, even the strongest self-attention models trained to date, which increased the 0.3B parameter
count of BERT-large by factors of 100s to 11B [Raffel et al., 2019a] and 175B [Brown et al., 2020],
have only increased its depth by factors of 2 and 4, respectively. The remaining size increase stems
from an increase in layer widths, clearly countering the depth-efficiency notion.
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Figure 1: (a) An ablation taken from figure 6 in Kaplan et al. [2020], examining the perplexity
scores of self-attention networks of varying depths and widths. Experiments on the L > 6 curve
(yellow) all approximately obey the same improvement trend which depends only on the number
of network parameters and not on the depth-to-width ratio. For L ≤ 6, depth-efficiency is clearly
demonstrated, but due to the L > 6 curve the authors conclude “depth inefficiency" of self attention.
(b) A representative of our experimental plots, which shows that a transition between depth-efficiency
and inefficiency takes place, and that both regimes affect the behavior also at L > 6. Figure 2 shows
that this trend continues at least up to depth 48, and figure 3 shows that the transition between regimes
grows exponentially with depth, as predicted by our theory.

A recent empirical ablation study by Kaplan et al. [2020] provides support for the above signal.
Figure 1(a), taken from this study, leads the authors to conclude that the overall (non-embedding)
network size, given by 12 · L · d2

x where L is the number of self-attention layers (network depth)
and dx is the hidden representation dimension (network width), is the main predictor of performance
regardless of the depth-to-width ratio. This suggests that depth may not play as crucial a role in
self-attention networks as it does in convolutional networks.

In this paper, we theoretically address the above question of the depth-to-width interplay in self-
attention network expressivity, and reveal fundamental subtleties in the above picture. Rather than
reinforcing the seemingly plausible hypothesis for the trend in figure 1(a), by which widening
a self-attention network is as effective as deepening it, we confirm the contrary. We show that
the operation of stacking self-attention layers is so effective that it quickly saturates a capacity of
the network’s width. We establish in section 4 the existence of a depth threshold which depends
logarithmically on the width dx, denoted Lth(dx) ∼ log(dx). Below the threshold, we prove that
depth-efficiency takes place in self-attention networks: a network of depth L ≤ Lth(dx) cannot
be replicated by a shallower network, unless the latter’s width grows double-exponentially with L.
However, we show that this overwhelming advantage of depth is quickly replaced by a balanced
growth. We prove that for self-attention networks with L > Lth(dx) the ability to model input
dependencies increases similarly with depth and width.

After presenting our theoretical analysis in sections 2-4, we provide a thorough empirical evaluation
in section 5, which validates our predicted trends for self-attention networks of depths 6 to 48.
Importantly, our theoretical and empirical results provide quantitative guidelines for optimal depth-to-
width parameter allocation given a fixed parameter budget (see for example table 1). It seems that
popular self-attention architectures at all sizes trained up to GPT3’s crossing of the 100B parameter
threshold, could generally benefit from deepening, with the appropriate widening (indicated by our
guidelines). With that, our results clearly indicate the importance of widening self-attention
networks when aiming for the 1 Trillion parameter mark. We project the optimal architecture at
that size to have depth 95 and width 30K, wider than any self-attention network trained to date.

2 The self-attention mechanism

Differentiable attention models in which the output attends over all LSTM-based input representations
have been introduced in the context of machine translation [Bahdanau et al., 2014]. Self-attention
(also referred to as intra-attention), which relates different inputs to each other, was first employed
for machine reading [Cheng et al., 2016], and soon thereafter shown to be useful for a variety of
language applications when operating over LSTM-based representations [Parikh et al., 2016, Paulus
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Borrowed from Brown et al. [2020] Trained in practice Optimal by our fit
Model Name Size in params Depth (L) Width (dx) Depth (L) Width (dx)

GPT-3 Small 125M 12 768 23 555
GPT-3 Medium 350M 24 1024 32 886
GPT-3 Large 760M 24 1536 38 1220
GPT-3 XL 1.3B 24 2048 42 1550
GPT-3 2.7B 2.7B 32 2560 47 2110
GPT-3 6.7B 6.7B 32 4096 54 3150
GPT-3 13B 13.0B 40 5140 60 4200
GPT-3 175B or “GPT-3” 175.0B 96 12288 80 13500

Optimal 1-Trillion arch 1T – – 95 30100

Table 1: Our projections regarding optimal depth-to-width parameter distribution at self-attention
sizes corresponding to huge language models trained in Brown et al. [2020], according to the fit in
section 5 (see figure 4 for the statistical uncertainty in these predictions).

et al., 2017, Lin et al., 2017]. Vaswani et al. [2017] were the first to demonstrate that a model based
solely on attention, the Transformer, can be better than LSTM based networks. The Transformer’s
encoder, BERT [Devlin et al., 2019], based entirely on self-attention, has demonstrated unprecedented
performance across natural language understanding tasks.
2.1 The Transformer encoder architecture

We begin by describing the self-attention operation of the original Transformer, and then in the
next subsection we present the modifications made in our analyzed model. Each layer l ∈ [L] :=
{1, ..., L} of a depth-L Transformer encoder is comprised of two sub-layers. The H-headed self-
attention sublayer of layer l computes the following function at position i ∈ [N ], over its N inputs
{xl,j ∈ Rdx}Nj=1:

f l,iSA

(
xl,1,, ...,xl,N

)
=

N∑
j=1

H∑
h=1

SMj

{
1/
√
da

〈
WQ,l,hxl,i,WK,l,hxl,j

〉}
WO,l,hWV,l,hxl,j (1)

where SMj {f(j)} := ef(j)/
∑
j′ e

f(j′) is the softmax operation and ∀h ∈ [H] the learned weights
matrices WK,l,h,WQ,l,h,WV,l,h ∈ Rda×dx convert the representation from its dimension dx into the
attention dimension da = dx/H, creating Key, Query, and Value representations, respectively. The
learned weights matrix WO,l,h ∈ Rdx×da converts the attention result back into the representation
dimension. The multi-headed self-attention sublayer output in eq. (1), followed by a residual
connection and layer-norm [Ba et al., 2016], is inserted into a position-wise feed-forward + ReLU
sublayer, such that each layer’s output at position i ∈ [N ] is:

f l,iLayer

(
xl,1, ...,xl,N

)
= W FF,2ReLU

(
W FF,1LayerNorm

(
f l,iSA + xl,i

))
, (2)

where the feed-forward matrices are usually taken to be W FF,1 ∈ R4dx×dx ,W FF,2 ∈ Rdx×4dx , such
that the parameter count for an entire layer is 12 · d2

x. Finally, the depth-L multi-headed self-attention
operation of the Transformer encoder is obtained by a composition of L such layers, i.e., when setting
∀l ∈ {2, ..., L}, j ∈ [N ] : xl,j = LayerNorm

(
f l−1,j

Layer

)
, with x1,j denoting the input to the deep

self-attention network at position j.1

2.2 The analyzed architecture

We analyze a deep multi-headed self-attention network variant which excludes the layer-norm
operation, the softmax normalization, and the ReLU activation (see a thorough discussion on the
effect of these relaxations in the next subsection). For cleanliness of presentation, we defer the
analysis of the residual connection to the appendix (it bears insignificant impact on our bounds).
Specifically, in the analyzed network, each layer l ∈ [L] computes the following function at position
i ∈ [N ] over its inputs {xl,j ∈ Rdx}Nj=1:

1Focusing on the self-attention operation, we omit a description of the input embedding matrix, as well as of
the positional embeddings added at the input, which do not affect our analysis given realistic vocabulary sizes.
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yl,i
(
xl,1, ...,xl,N

)
=

N∑
j=1

H∑
h=1

〈
WQ,l,hxl,i,WK,l,hxl,j

〉
WO,l,hWV,l,hxl,j , (3)

where the Feed-Forward matrices can be now effectively embedded within WO,l,h. Our analysis
below treats a deep multi-headed self-attention network that is attained by a concatenation of L such
layers. Importantly, the resultant “linearized" network form, where activations and normalizations are
removed, is by no means a linear mapping over the network input – every layer integrates 3 copies
of its input in the above non-linear fashion. By recursively applying eq. (3) L times we attain the
analyzed depth-L self-attention network.

We denote the function realized by a network with embedding dimension dx and H attention heads
per layer at output location i ∈ [N ] by:

yi,L,dx,H,Θ
(
x1, ...,xN

)
:=

N∑
j1,...,jC=1

gL
(
xi,xj1 , ...,xjC

)
, (4)

where Θ denotes all 4LH learned weight matrices: ∀(l, h) ∈ [L]⊗ [H] :WK,l,h,WQ,l,h,WV,l,h ∈
Rda×dx , and WO,l,h ∈ Rdx×da , and the function gL is a placeholder, fully detailed in the appendix,
which integrates C = 3L−1

2 different input vectors. In the following subsection, we comment on
the differences between the Transformer encoder architecture described in eqs. (1) and (2) and the
self-attention architecture presented in eqs. (3) and (4).

2.3 Relaxations

Empirical evidence indicates that while the ReLU activations and softmax normalization contribute
to performance, the basic mechanism in eqs. (3) and (4) above captures the defining self-attention
characteristic of integrating the inputs with each other in a flexible manner:

The ReLU activation relaxation: Press et al. [2019] demonstrate that a “self-attention first" BERT
variant that first performs all of the self-attention operations (eq. (1)) consecutively, and only then
performs all of the position-wise feed-forward+ReLU operations, achieves comparable language
modeling performance relatively to the Baseline, which takes the regular approach of interleaving
these functionalities (i.e., concatenating the BERT’s layer described in eq. (2)). They report that the
interleaved Baseline achieves a perplexity score of 18.63± 0.26 on the WikiText-103 test [Merity
et al., 2016] when averaged over 5 random seeds, while the “self-attention first" model achieves a
perplexity score of 18.82 on this test set. The best pre-Transformer perplexity result on the WikiText-
103 test, reported by an LSTM-based architecture, was 29.2 [Rae et al., 2018]. Since ReLU and
feed-forward do not mix different locations, this outcome directly implies that the self-attention
mechanism itself provides all of the elaborate input integration which differentiates BERT from
previous architectures.

The softmax normalization relaxation: Initially, an intuitive interpretation of attention as distributing
“fractions" of an overall attention budget among inputs was given to its actual operation of dynamically
linking input and output locations. The intuitive interpretation, tightly linked to the need to transform
the Key/Query similarity score into a distribution, has been recently challenged, as a growing body of
work shows that the attention weights distribution does not directly correlate with predictions [Jain
and Wallace, 2019, Pruthi et al., 2019, Brunner et al., 2020]. Moreover, Richter and Wattenhofer
[2020] recently point out undesirable traits of the softmax operation, demonstrating that its property
of confining the outcome to the convex hull of its inputs unnecessarily limits the expressibility of
the self-attention mechanism. They experiment on a suite of synthetic tasks with a BERT variant in
which the softmax normalization is removed, and find it to perform on par on almost all examined
tasks. When replacing the softmax with other normalizations they report improvements. Finally,
completely linearized attention (softmax removed) was employed on real tasks as means of reducing
costs, since the softmax operation cost scales with the input size [de Brébisson and Vincent, 2016,
Wang et al., 2020].

The goal of the above points is not to advocate modifications in BERT’s non-linearity or normalization
operations (we leave that to other works), but to note that while these are under examination and are
susceptible for alteration, the connectivity of self-attention, manifested by eqs. (3) and (4) , is the
core mechanism driving its functionality. Our results, to be presented in section 4, demonstrate how
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conclusions drawn by directly analyzing this mechanism accord with the operation of commonly
employed self-attention networks.

3 A measure of capacity for modeling input dependencies

In this section, we introduce the separation rank of the function realized by a self-attention network as
a measure that quantifies its ability to model dependencies between subsets of its variable set {xj}Nj=1.
We will use this measure in order to establish the two depth-efficiency/ inefficiency regimes in self-
attention. The separation rank, introduced in Beylkin and Mohlenkamp [2002] for high-dimensional
numerical analysis, was employed for various applications, e.g., chemistry [Harrison et al., 2003],
particle engineering [Hackbusch, 2006], and machine learning [Beylkin et al., 2009]. Importantly, the
separation rank has been established as a measure of dependencies modeled by deep convolutional
and recurrent networks w.r.t. their inputs [Cohen and Shashua, 2017, Levine et al., 2018a,b].

Let (A,B) be a partition of the input locations, i.e., A and B are disjoint subsets of [N ] whose union
gives [N ]. The separation rank of a function y(x1, . . . ,xN ) w.r.t. partition (A,B), is the minimal
number of summands that together sum up to equal y, where each summand is multiplicatively
separable w.r.t. (A,B), i.e., is equal to a product of two functions – one that intakes only inputs from
one subset {xj : j ∈ A}, and another that intakes only inputs from the other subset {xj : j ∈ B}.
Formally, the separation rank of y : (Rdx)N → R w.r.t. the partition (A,B) is defined as follows:

sep(y;A,B) := min
{
R ∈ N ∪ {0} : ∃g1. . .gR : (Rdx)|A| → R, g′1. . .g′R : (Rdx)|B| → R s.t. (5)

y
(
x1, . . . ,xN

)
=
∑R

r=1
gr
(
{xj : j ∈ A}

)
g′r
(
{xj : j ∈ B}

)}
If the separation rank of a function w.r.t. a partition of its input is equal to 1, the function is
separable, meaning it cannot take into account consistency between the values of {xj}j∈A and those
of {xj}j∈B . In a statistical setting, if y is a probability density function, this would mean that
{xj}j∈A and {xj}j∈B are statistically independent. The higher sep(y;A,B) is, the farther y is from
this situation, i.e. the more it models dependency between {xj}j∈A and {xj}j∈B , or equivalently,
the stronger the correlation it induces between the inputs indexed by A and those indexed by B.

The fixed connectivity of ConvNets has been shown to yield high separation ranks w.r.t. partitions
which separate neighboring inputs (e.g., where all odd positions are in A and all even positions
are in B), while suffering from low separation ranks w.r.t. partitions which separate distant inputs
(e.g., where A = 1, ...,N/2 and B = N/2 + 1, ..., N ). We establish a qualitatively different trait
for self-attention networks, which treat all balanced partitions alike, i.e., ∀A ·∪B = [N ], Ã ·∪ B̃ =

[N ], s.t. |A| , |B| , |Ã|, |B̃| = N/2: sep(yi,L,dx,H,Θp ;A,B) = sep(yi,L,dx,H,Θp ; Ã, B̃) (see proof in
the appendix). Accordingly, we will omit the specification of the partition in future uses, denoting
sep(yi,L,dx,H,Θp ) as the separation rank of yi,L,dx,H,Θp w.r.t. any balanced partition of the inputs.

This result accords with the intuition regarding the flexibility of the attention mechanism – it does
not integrate the input in a predefined pattern like convolutional networks, but dynamically learns
to correlate any inter-dependent subsets of the inputs. Natural text exhibits non-smooth non-local
dependency structures, as correlations between input segments can abruptly rise and decay with
distance. The fact that self-attention facilitates all correlation patterns equally poses it as a more
natural architecture for language modeling related tasks. Convolutional networks, with their local
connectivity, may have the right inductive bias for imagery data, but partitions unfavored by them
may reflect more erratic correlations that are nonetheless relevant for natural language inputs.

However, the above property of indifference to the input partition is not enough for succeeding at
tasks with elaborate input dependencies, since a function with equally low separation ranks for all
input partitions has limited ability to model such dependencies. In the following section, we analyze
how different architectural parameters affect the ability of self-attention networks to correlate their
inputs, and by bounding their separation ranks, we establish the different depth-efficiency regimes in
self-attention networks.

4 The effect of depth in self-attention networks

In this section, we present tight bounds on the separation rank of self-attention networks, which reveal
two qualitatively different regimes. In the first regime of L < log3(dx), analyzed in subsection 4.1,
we establish that deepening is clearly preferable to widening. In the second regime of L > log3(dx),
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analyzed in subsection 4.2, we show that deepening and widening play a similar role in enhancing
the expressiveness self-attention networks.
4.1 Depth-efficiency in self-attention

The recursive structure of deep self-attention hints at an exponential increase of input mixing with
depth: The output of each layer is introduced 3 times into the Key/Query/Value computation made
by the subsequent layer. In this subsection, we formalize this intuition for self-attention networks
of sufficient width, dx > 3L. Theorem 1 below bounds the separation rank of such networks.
Subsequent to its statement and brief outline of its proof, we explicitly show in corollary 1 the implied
double-exponential requirement from a bounded depth network attempting to replicate a deeper one.

Theorem 1. For p ∈ [dx], let yi,L,dx,H,Θp be the scalar function computing the pth entry of an output
vector at position i ∈ [N ] of the depth-L self-attention network with embedding dimension dx and
H attention heads per layer, defined in eqs. (3) and (4). Let sep(yi,L,dx,H,Θp ) be its separation rank
(section 3). If L, dx obey L < log3 (dx), then the following holds almost everywhere in the network’s
learned parameter space, i.e. for all values of the weight matrices (represented by Θ) but a set of
Lebesgue measure zero:

3L−2 (log3 (dx −H) + a) ≤ log3

(
sep(yi,L,dx,H,Θp )

)
≤ 3L − 1

2
log3 (dx +H) (6)

with a = −L+ [2− log3 2]. (note that log3 (dx −H) + a > 0 in this regime of L < log3(dx)).

Theorem 1 bounds the separation rank of a deep self-attention network of sufficient width between two
functions that grow double-exponentially with depth and polynomially with width, tightly describing
its behavior w.r.t. depth and width. Because equivalence cannot hold between two functions of
different separation ranks, the above result implies a double-exponential requirement from the width
of a shallow network attempting to replicate the deep one, and clear depth-efficiency holds:
Corollary 1. With probability 1, the function realized upon randomization of the weights of a deep
self-attention network defined in eqs. (3) and (4) with depth Ldeep and width ddeep

x > 3L
deep

, may only
be realized by a shallower network with depth Lshallow = Ldeep

/d and width dshallow
x = wdshallow

x , where
d > 1, w > 1 (i.e., the deep network is deeper by a factor of d and the shallow network is wider by a
factor of w), if the following holds:

w ∝ exp(exp(d)).

4.2 Depth in-efficiency in self-attention

Beyond establishing depth-efficiency in early self-attention layers, the above analysis sheds light
on the contribution of a self-attention network’s depth to its ability to correlate input subsets. The
separation rank (w.r.t. any partition) of a single layer, given by eq. (3), is only linear in H and dx,
showcasing a limitation of the class of functions realized by single self-attention layers to model
elaborate input dependencies. Theorem 1 quantifies the double exponential growth of this capacity
measure with the number of stacked self-attention layers. The following theorem shows that this
growth is capped by the dimension of the internal representation:

Theorem 2. For yi,L,dx,H,Θp as defined in theorem 1, if L > log3 (dx), then the following holds
almost everywhere in the network’s learned parameter space, i.e. for all values of the weight matrices
(represented by Θ) but a set of Lebesgue measure zero:

1

2
dx · L+ b1 + b2 ≤ log3

(
sep(yi,L,dx,H,Θp )

)
≤ 2dx · L+ c1 + c2 (7)

with corrections on the order of L: b1 = −L
(
H
2 + 1

)
, c1 = L, and on the order of dx log3(dx):

b2 = −dx
(
1 + 1

2 log3

(
dx−H

2

))
, c2 = −2dx · log3

dx/2
√

2e + log3 dx.

Theorem 2 states that when the network’s depth passes a width dependent threshold, the separation
rank turns from increasing polynomially with width and double-exponentially with depth to increasing-
exponentially with width and depth together. Thus, while an increase in network size increases its
capacity to model input dependencies, our result shows that there is no longer a clear cut advantage
of depth in this respect:
Corollary 2. Let ydeep denote the function realized by a deep self-attention network at any output
location i ∈ [N ], defined in eqs. (3) and (4) with depth and width denoted Ldeep, ddeep

x such that
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Figure 2: An experimental validation of the existence of the two depth-efficiency/inefficiency regimes
for common self-attention networks. The transition between regimes, occurs in exponentially larger
network sizes as the shallower network gets deeper, in agreement with our theory (see figure 3).

Ldeep > log3 d
deep
x . Denote β1 :=

log3 d
deep
x

Ldeep < 1. Then, there exists β2 = O(log(H) · log(ddeep
x ) ·

log(Ldeep)) such that the function realized by a network of depth: Lshallow = β1 · Ldeep + β2, and
width: dshallow

x = 3β2ddeep
x , denoted yshallow, has higher separation rank, i.e.:

sep(yshallow
p ) > sep(ydeep

p′ ) ; where p, p′ ∈ [dx] (8)
Corollary 2, which follows from theorems 1 and 2, shows that the separation rank of a function realized
by a self-attention network of arbitrary depth L > log3(dx) can be surpassed by a shallower network
of polynomial width, contrarily to the established behavior for networks of depth L < log3(dx).

We leave it as an open conjecture that a polynomially sized shallower network can exactly replicate
the operation of a deeper network in this regime. With that, we point out that a variety of results which
directly bound different complexity measures of deep networks have been put forward, shedding light
on their operation [Montufar et al., 2014, Bianchini and Scarselli, 2014, Raghu et al., 2017, Serra
et al., 2017, Inoue, 2019]. Bounds on the separation rank have been used to explain the operation of
more veteran architectures, and we find them to be particularly relevant in the case of self-attention:
this complexity measure quantifies the amount of input inter-dependency induced by the network,
directly reflecting a widespread intuition on the success behind the self-attention mechanism.

5 Depth-efficiency regimes in common self-attention networks
In the previous sections, we analyzed a simplified version of self-attention networks (described in
section 2). For this class, we proved the existence of the two different depth-efficiency/inefficiency
regimes in self-attention networks, and further quantified the transition point to be exponential
in network width (and accordingly in network size). In this section, we demonstrate that our
theoretical predictions are manifested in common self-attention networks: the experiments below
were conducted over common self-attention architectures which include all operations that were
omitted in our theoretical analysis. The training apparatus details are given in the appendix.
5.1 Distinct depth-efficiency regimes in self-attention
Figure 2 shows that the predicted devision into two depth-efficiency/inefficiency regimes indeed
takes place in common self-attention architectures. When comparing depths (Lshallow, Ldeep) =
{(6, 12), (12, 24), (24, 48)}, a qualitatively different depth-efficiency behavior is observed as the
network size varies. For smaller network sizes, deepening is not favorable over widening. Our
theoretical analysis predicts this, showing that when the width of the deeper network is not large
enough it can not use its excess layers efficiently. However, when the network’s size is increased by
widening, a transition into the depth-efficiency regime is clearly demonstrated: for the same parameter
budget the deeper network performs better. Once the deeper network becomes wide enough, such
that the depth threshold for depth-efficiency surpasses Lshallow, it is significantly more expressive.

5.2 Transition between regimes depends exponentially on depth
Importantly, beyond a qualitative match to the two predicted depth-efficiency/inefficiency behaviors,
the experiments corroborate our prediction for an exponential dependence of the “depth-efficiency
width" — the width for which a network becomes depth-efficient — on the network’s depth. By
quantifying this exponential behavior we attain practical guidelines for depth-to-width parameter
allocation in a self-attention network of a given size (figure 4).

Per network depth, we examine the width in which it diverges from the subse-
quent trained depth, i.e., we examine the following pairs of trained adjacent depths:
(6, 12), (12, 18), (18, 24), (24, 30), (30, 36), (36, 48). For each pair, we estimate the shallower net-
work’s transition width (marking the crossing between gray and white areas in figure 2) as the
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Figure 3: (a) A fit of the predicted exponential dependence of network width on its depth at the
transition point between the depth-efficiency/inefficiency regimes. (b) The network size at the
transition between regimesNTransition as a function of network depth. The green area marks an interval
of 2∆NTransition as calculated in eq. 9. Architectures to the top-left of the curve can be improved
by deepening. (c) The color in each range of network sizes corresponds to the color of the depth
reaching the minimal loss in this range. This implies that architectures to the bottom-right of the
curve in figure (b) can be improved by widening.

average of its width in two points: the first point in which the shallower network under-performs in a
statistically significant manner (see standard deviation estimation in the appendix), and the point to
its left in which the performance of the two is not distinguishable. We take the empirical error of this
estimation to be the distance between the two points.

Our theoretical results in section 4 predict that the above empirically estimated transition should
occur when the shallower network’s width dx is exponential in its depth L. Accordingly, we fit
a linear dependence of the log of the width on the depth and receive the fit coefficients (a, b):
log (dx) = a + b · L. The linear fit, shown in Figure 3(a) yields measures of R2 = 0.998 and
χ2

red = 0.854. These measures imply a good compatibility of the theoretically predicted dependence
to the measurements, and further reinforce the practical use we make of the fit parameters a and b
hereinafter, for predicting the network size for which the regime transition occurs per depth.

Specifically, we insert dx = ea · ebL into the dependence N = 12 · L · d2
x and calculate the transition

size and its propagated uncertainty as:

NTransition(L) = 12 · L · e2a · e2bL (9)

∆NTransition(L) =

√
(dN/da)

2
σ2
a + (dN/db)

2
σ2
b + 2 (dN/da) (dN/db)σab

with the fit parameters given by:

(a b) =
(
5.039± 0.030 5.55 · 10−2 ± 1.3 · 10−3

)
(10)(

σ2
a σab

σab σ2
b

)
=

(
9.4 · 10−4 −3.74 · 10−5

−3.74 · 10−5 1.7 · 10−6

)
Figure 3(b) shows the empirical transition sizes per depth on top of the projection and its error,
calculated by eq. 9 with the fit parameters in eq. 10. Networks to the left of the curve are too shallow
given their parameter budget, and can be improved by deepening at the expense of their width.

5.3 “Width-efficiency" and practical implications
Our experiments reveal an empirical phenomenon that was not predicted by our theory. We established
in section 4 that depth does not have an advantage when the width is too small, but our bounds
do not separate wider networks from deeper ones in this depth-inefficiency regime. A surprising
phenomenon is seen in figures 2(b,c): for small enough network sizes, deeper self-attention networks
perform worse than shallow ones. We leave a theoretical treatment of this regime for future work.

The above “width-efficiency" empirical phenomenon leads to an important observation: for a given
network size, a certain network can be too shallow, as we predicted theoretically and corroborated
empirically above, but it can also be too deep. In other words, the region to the right of the fit curve
in figure 3(b) includes networks that can be improved by widening at the expense of their depth.
This implies that rather than representing a minimal depth per given self-attention network size,
the curve in figure 3(b) represents the area of an optimal depth per network size. We provide a
demonstration of this idea in figure 3(c), which clearly shows that when comparing networks of
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depths L = 6, 12, 24, 48, each one would be best to use in a different range of network sizes (the
color in each range corresponds to the best performing depth in that range).

Beyond reflecting our theoretical predictions, the fit in figure 3 can be used to project beyond the
scope of our experiments in order to shed light on architecture design decisions made for much larger
self-attention networks, like the contemporary huge Transformer-based language models [Brown
et al., 2020, Raffel et al., 2019b, Rosset, 2020]. Figure 4 shows the extrapolation of the fitted function
and the uncertainty up to networks of depth 100. Notably, despite the uncertainty growing as the scope
extends, ∆NTransition(L=100)

NTransition(L=100) = 0.2, i.e., the predictions for the optimal network size in the L = 100

case are likely to be accurate up to 20% of the predicted size, yielding meaningful and unforeseen
practical implications.

Figure 4: An extrapolation of the function in eq. 9 to sizes
that are beyond the scope of our experiments.

For example, when examining the ar-
chitecture of GPT3, the deepest self-
attention network trained to date with
96 layers, we get NTransition(96) =
1.17 ± 0.23 · 1012, or over a Trillion
parameters. This places GPT3 with
its 175B parameters significantly be-
low our fit, suggesting that it may be
too deep given its parameter budget.
In fact, the optimal depth for GPT3’s
size is predicted to be L = 80, since
NTransition(80) = 1.65 ± 0.25 · 1011.
Table 1 includes further suggestion for
huge models following our fit. With
high certainty given our experimental
data, the optimal model size increase
towards 1 Trillion parameter models
and beyond is via widening.

6 Discussion
An apparent “depth-inefficiency" of self-attention networks was pointed out by prior works – in
contrast to other successful deep learning architectures, in the case of self-attention there does not
seem to be a clear advantage to deepening vs. widening. Our theoretical analysis clearly reflects
this behavior in one parameter setting, but suggests an important nuance regarding its origins, while
predicting a separate “depth-efficiency" regime in another parameter setting. Rather than an obvious
explanation for the observed depth inefficiency, by which the self-attention mechanism does not
benefit much from the operation of compounding, our analysis strongly points at the converse: self-
attention is so effective at integrating its inputs, that it very quickly reaches saturation in the amount
of dependencies that can be supported by the representation dimension.

For early self-attention compounding, we prove a rapid growth in expressiveness with depth, and
specifically in the ability to flexibly correlate input locations, which can not be accounted for by
reasonable widening. However, our analysis pinpoints a transition in which the capacity of width to
support the above rapid growth exhausts. Thus, when the width of a self-attention network is not
large enough, deepening and widening become equivalent in terms of expressiveness.

The experiments presented in section 5 reveal a qualitative and quantitative match to our theoretical
predictions. Beyond reinforcing the validity of our theoretical interpretation, our comprehensive
experimental setup allowed us to extrapolate and project depth-to-width trade-offs in huge self-
attention networks, that are currently being trained as powerful language models. For example, GPT3,
the deepest self-attention network trained to date with 96 layers, has matched this depth with an
unprecedented width of 12K. However, our projections clearly show that for this number of layers the
network should be much wider. In fact, the logarithmic dependence that we establish between
the optimal depth and width clearly dictates that size increase should be mainly via widening
from this point ( ∼ 100B models) onwards. This is good news from an engineering perspective:
width can be increased more efficiently than depth in terms of parallelization. The high price tag on
these architectures, along with the pressing race towards 1-Trillion parameter models and beyond,
make such informed guidelines an essential ingredient. Indeed, we view our work as part of an effort
to provide timely interpretations as feedback for the tremendous empirical pull in our field.

9



Broader Impact

Our work aims at providing fundamental guidelines which can assist all fields that employ
Transformer-based architectures to use more efficient models. This way, these fields can achieve their
goals while consuming less resources.
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