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Abstract

Despite tremendous success in many application scenarios, deep learning faces
serious intellectual property (IP) infringement threats. Considering the cost of
designing and training a good model, infringements will significantly infringe
the interests of the original model owner. Recently, many impressive works have
emerged for deep model IP protection. However, they either are vulnerable to
ambiguity attacks, or require changes in the target network structure by replacing
its original normalization layers and hence cause significant performance drops.
To this end, we propose a new passport-aware normalization formulation, which is
generally applicable to most existing normalization layers and only needs to add
another passport-aware branch for IP protection. This new branch is jointly trained
with the target model but discarded in the inference stage. Therefore it causes no
structure change in the target model. Only when the model IP is suspected to be
stolen by someone, the private passport-aware branch is added back for ownership
verification. Through extensive experiments, we verify its effectiveness in both
image and 3D point recognition models. It is demonstrated to be robust not only
to common attack techniques like fine-tuning and model compression, but also to
ambiguity attacks. By further combining it with trigger-set based methods, both
black-box and white-box verification can be achieved for enhanced security of
deep learning models deployed in real systems.

1 Introduction

Deep learning has achieved huge success in broad artificial intelligent tasks, such as image recognition
[1, 2, 3], object detection [4, 5, 6], and neural language processing [7, 8]. In order to obtain high-
performance deep models, we often need to design a good network architecture, collect massive
high-quality training dataset, and consume expensive computation resources. Therefore, these deep
models are of great commercial value and may even be the core techniques for some companies.
However, recent works [9, 10, 11] have shown that deep models are vulnerable to IP infringement.
For example, the attackers can utilize transfer learning to adapt the target model to a new task by
fine-tuning [12] or even get a new efficient model by model compression techniques [13]. All these
attack methods will seriously infringe the interests of the original model owner.
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In the past several years, deep model IP protection has drawn much attention from both academia
and industry and many great works emerge. The main idea of these works is to add some special
watermarks into the network weights [9, 14] or predictions [10, 15, 11, 16] while trying to maintain
the original model performance. In detail, a weight regularizer is added into the objective loss
function in [9, 14] so that the learned weights can follow some special distribution. In contrast,
prediction watermarking [10, 15, 11] adds a special image trigger set into the training process, so
that the learned network can classify them into some pre-defined labels. Despite the effectiveness in
resisting the aforementioned IP attacks, a recent work [17] shows that these methods are all fragile
to ambiguity attacks, i.e., the attackers can embed another watermark into the watermarked model
for ownership claim, thus causing ambiguous forensics. To address this problem, a passport-based
method is proposed by modulating the network performance based on the passport correctness. In
other words, the target model can get good performance only when the correct passport is given and
they use such “fidelity verification" to resist ambiguity attacks. However, since the passport learning
and target model learning are coupled too tightly in [17], we find they have a major limitation: they
need to change the network structure by replacing normalization layers, which may affect the original
model performance significantly. Both of them are unfriendly and harmful to service quality for the
end-users.

This paper shares a similar spirit in defending against ambiguity attacks, but targets at no network
structure change and less performance drop. To this end, a new passport-aware normalization
formulation is proposed. It is generally applicable to most popular normalization layers and only needs
to add an extra passport-aware branch for IP protection. During training, some secret passports are pre-
defined and these extra branches are jointly trained with the target model. After training, both these
secret passports and new branches will be kept by the model owner for future ownership verification,
and only the original target model is delivered to end-users to run the inference. Therefore, from
the end-users’ perspective, there is no network structure change. Moreover, since the normalization
statistics (e.g., the running mean and variance of Batch Normalization) of the passport-aware branch
are designed to be computed independently, less performance influence will be introduced to the
target model.

When we suspect one model is illegally derived from the target model, we can add the private passport-
aware branch back for ownership verification. More specifically, the target model performance will
remain intact only when the correct passport is given, or seriously degrade for the forged passport.
The effectiveness of our method is verified on both image and 3D point recognition models via
comprehensive experiments, which demonstrate our method is not only robust to common removal
attack techniques like fine-tuning and model compression but also to ambiguity attacks. By further
combining it with trigger-set based watermarking schemes, we can achieve initial verification without
the need of detailed model structure and weight access, which is known as the black-box verification.

To summarize, our main contributions are two-fold: 1) We propose a new and general passport-aware
normalization formulation for deep model IP protection, which is compatible with most popular
normalization layers. To the best of our knowledge, this is also the first passport-based method without
the need of network structure change while achieving much less model performance degradation.
2) We have conducted extensive experiments on both image and 3D point recognition tasks with
different network structures and normalization layers, which well demonstrate the effectiveness and
robustness of our method against both removal attacks and ambiguity attacks.

2 Related Work

Model IP protection. Because of the underlying commercial value, IP protection for deep models
has drawn increasing interests from both academia and industry. Inspired by traditional media IP
protection techniques, many works [9, 14, 10, 15, 11, 16] have been proposed in the past several years.
For example, [9] is possibly the first watermarking algorithm for DNNs, which attempts to embed
bit watermark into the weights by adding an additional regularization term into the objective loss
function. A similar weight watermarking idea is also adopted in [14] from the fingerprint perspective.
Though these two methods are resilient to attacks such as fine-tuning and pruning, they need to access
the target model structure and weights in a white-box way for forensics. To enable remote ownership
verification in a black-box way, Adi et al. [10] add a special set of data into training and force the
network to classify these data into pre-define labels. Following this idea, [15, 11] propose to utilize
adversarial examples or watermarked images as triggers.
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However, as shown in the latest work [17], all the above methods are shown to be fragile to ambiguity
attacks. To address this limitation, Fan et al. [17] propose to add a passport layer into the target
network and build the connection between the network performance and the passport correctness to
resist ambiguity attacks. However, this method only works for some special normalization layers
(e.g., group normalization[18]), thus the target network structure often needs to be changed to have
the protection. For many tasks, this will incur significant performance drops. Our work is motivated
by [17], but the newly proposed passport-aware normalization formulation is general to most existing
normalization layers and decouples the passport-aware learning and passport-free learning. The
following parts will show [17] can be seen as one special case of our general formulation and our
method has better generalization ability and performance.

Normalization Layers. In the deep learning era, normalization layers play a crucial role, which
can significantly ease the network training and boost the performance. For different tasks and
training consideration, different types of normalization layers have been designed, such as Batch
Normalization (BN) [19], Group Normalization (GN) [18], Instance Normalization (IN) [20] and
Layer Normalization (LN) [21]. Generally, all these normalization layers follow a similar formulation,
i.e., first normalize the input feature then denormalize back with an affine transformation:

x̂ = γ
x− µ(x)
σ(x)

+ β, (1)

where µ, σ are the functions to calculate the mean and standard deviation (std) of x respectively.
They are also the key differences among different normalization layers. As the most widely used
normalization layer, BN also differentiates from other normalization layers in the statistics usage.
In details, GN,IN,LN calculate the mean/std statistics on-the-fly during inference but BN uses the
training-stage moving averaged mean/std statistics. Therefore, accurate moving average mean/std
statistics are especially important in BN to achieve good performance. In this paper, we only consider
target models with normalization layers and propose a general normalization formulation tailored for
IP protection so that it can generalize to different types of normalization.

3 Method

3.1 Problem Definition

To protect the IP of a target model M , we use a passport based ownership verification scheme to resist
both removal attacks (e.g., fine-tuning, model compression) and ambiguity attacks. In detail, the target
model performance is normal only when a correct passport is given, but deteriorates significantly for a
forged passport, making the passport uniqueness a valid evidence for forensics. Moreover, we believe
a good IP protection technique should satisfy two criteria: 1) It should be as general as possible and
does not require any network structure change; 2) It should affect the original model performance as
little as possible, otherwise it will hurt the original model competitiveness.

3.2 Passport-aware Normalization

To meet the above requirements, we give the key design motivations of our method here. First, to
build the relationship between the model performance and the passport correctness, we leverage
the denormalization step in Equation (1) and change the affine transformation parameters γ, β to
be the function of passport. In this way, if an incorrect passport is fed into the target model, the
generated affine transform parameters will also be incorrect and make the model work abnormally.
Besides, since the target model should not be changed when delivered to end-users, we also learn
another set of affine transformation parameters γ0, β0 for the original model. Second, as described
above, accurate moving average mean/std statistics are very crucial to BN’s performance. However,
we find the feature statistics learned by passport related (γ, β) will be significantly different from
that learned by passport-free (γ0, β0), thus calculating the statistics together will seriously affect the
original model performance. In view of that, we propose to calculate the statistics independently
when introducing passport into the network training. Taking the above two motivations together, a
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Figure 1: Illustration of the proposed passport-aware normalization. We add one independent
passport-aware branch into existing popular normalization layers for IP protection, whose affine
transform parameters γ1, β1 are designed to be relevant to both the precedent convolution weight Wc

and pre-defined passport pγ , pβ .

new passport-aware normalization layer is proposed as shown in Figure 1. And its mathematical
formulation is as follows:

x̂ =


γ0

x−µ0(x)
σ0(x)

+ β0 passport-free;

γ1(pγ)
x−µ1(x)
σ1(x)

+ β1(pβ) passport pγ , pβ .
(2)

Comparing Equation (2) with Equation (1), it can be seen that the proposed passport-aware normal-
ization only adds an extra passport-aware branch. For normalization after fully connected layers, this
branch will calculate its own normalization statistics µ1, σ1 and learn the affine transform parameters
γ, β based on the passport pγ , pβ respectively. For stronger ownership claim, we design the learnable
γ1, β1 to be also relevant to the original model weight, i.e.,

γ1(pγ) = wT2 g(w
T
1 (wpγ)),

β1(pγ) = wT2 g(w
T
1 (wpβ)),

where wpx = GAP (Wc ⊗ px)
(3)

where ⊗ denotes the convolution operator and Wc is the kernel weights of the precedent convolution
layer. For the normalization layer after fully connected layers, Wc ⊗ px will be replaced by WT

c px.
GAP is the global average pooling operator that converts the convoluted passport into a vector whose
size is same as γ1, β1. w1, w2 are the weights of two fully connected layers (without bias term) to be
learned, and g is the non-linear activation function (Leakly ReLU used by default).

Need to note that, for some normalization layers like GN and IN, since their normalization statistics
are calculated on-the-fly during the inference stage, µ0, σ0 are exactly the same as µ1, σ1. But for
BN, µ0, σ0 and µ1, σ1 used in the inference stage are the moving average statistics calculated in the
training stage from two branches, so their values are significantly different.

In order to train the target model with the proposed passport-aware normalization, we adopt a simple
but effective alternating training strategy. Specifically, we will first pre-define the passport pγ , pβ
for each normalization layer, then train the passport-free branch and passport-aware branch in an
alternating way. Though the passport-aware and passport-free branch are trained alternately by default,
experimental results show that they can also be trained simultaneously with similar performance.

Relationship to [17]. To resist ambiguity attacks, Fan et al. added a passport layer into the target
network, which follows the below formulation:

x̂ = wpγ ∗ xp + wpβ , (4)

where xp is the input of the passport layer. In their detailed implementation, they have to replace
all the BN layers in the target model with GN layers and use a single µ, σ (µ0 = µ1, σ0 = σ1) to
normalize xp without affine transformation before feeding into the passport layer. That is to say, they
do not use the two-branch decoupled way for mean/std statistics calculation as our method. This
makes their method not work for target networks with BN layers. Besides, the affine transformation
parameters in their formulation are not learnable. This will also make the transformed features
incompatible with the normal features without the passport and incur training interference and
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performance drops. Mathematically, our proposed formulation is more general and Equation (4)
can be seen as a special case of Equation (2) with one branch learning (µ0 = µ1, σ0 = σ1) and
non-learnable γ1, β1.

Ownership Verification. As described above, the passport-aware branch along with the pre-defined
passports will be both kept by the model owner as secrets, and only the passport-free branch will be
delivered to end-users. Therefore, there is no structure change in the target model for end-users. When
we suspect one model is illegally derived from the target model, we can start the official forensics
procedure by law enforcement. In detail, we add the corresponding passport-aware branches and
pre-defined passports back to the illegal model. If this illegal model has exactly the same functionality
as the original target model, we can use the relationship between the model performance and the
passport correctness as the forensics evidence. Because only if the correct passport is given, the target
model can keep its original performance, otherwise it suffers from a significant performance drop,
which is called “fidelity verification". Even if this illegal model is fine-tuned from the target model
and has different functionality, we can leverage the passport signature as the forensics evidence,
which is defined as:

bpγ = sign(wpγ), bpβ = sign(wpβ), (5)
where sign(x) is the sign function whose value is 1 when x > 0 else 0. As Equation (5) is not that
sensitive to the absolute value of Wc, even though the illegal model has some weights change or
functionality change, the passport signature is still relatively robust.

Though the above verification scheme works well in official legal forensics, it requires access to the
detailed model weights and cannot support block-box (remote) verification. For some application
cases where the illegal model can be remotely tested (e.g., cloud API service), it would be great if
some initial verification can be achieved before the legal process. To support it, we combine our
passport based method with existing trigger-set-based IP protection methods. Specifically, besides
the original training dataset {Xs, Ys}, we add a special set of data Xt with self-defined labels Yt into
the network training. In this way, we can remotely call the service by feeding Xt into the suspect
model and utilize the prediction accuracy with respect to Yt for initial verification.

Loss Function. The objective loss function of our method mainly consists of three different parts:
the task-related loss for the original target model, optional trigger-set based IP protection loss and
passport signature regularization loss.

Ltotal =
∑
{Xs,Ys}

L(M(x), y)+λ1
∑
{Xt,Yt}

L(M(x), y)+λ2

n∑
l=1

Cl∑
i=1

∑
x∈γ,β

max(α0−bgt,lpx,i
∗wplx,i, 0),

(6)
where L is the task-related loss function like the cross-entropy loss used in classification. bgt,lpx,i

∈
{−1, 1} is ith bit of the pre-defined ground truth passport signature at layer l and α0 is a small
positive constant that encourages wplx,i to be larger than α0. n is the total number of passport-aware
normalization layers and Cl is the corresponding feature channel number.

4 Experiments

To demonstrate the effectiveness and superiority of our method, we apply the proposed passport-aware
normalization on two representative tasks: image classification on the CIFAR10 and CIFAR100
[22] dataset, and 3D point recognition on the ModelNet [23] and ShapeNet [24] dataset. For image
classification, we follow the typical setting and use the well-known AlexNet and ResNet-18 structure,
while for 3D point recognition, the popular point recognition network PointNet [25] is adopted. As
for trigger-set, we adopt a similar setting mentioned in [10]. That is, we use about 100 images/points
not belonging to the target dataset as the trigger set for all tasks. In this section, we first explain why
the target network should not be changed and provide a comparison of the performance influence on
the target model. Then we demonstrate the robustness to both removal attacks and ambiguity attacks.
Finally, ablation analysis is given to justify the importance of our design. Since we aim at resisting
both removal attack and fine-tune attack, we only consider the passport-based method [17] as the
baseline and report their results by running the code they publicly released. We shall point out that
we utilize passport-aware normalization on all layers of adopted networks and trigger appended into
training by default.
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Table 1: The performance comparison by using different normalization layers on three different
networks, which shows replacing BN with GN will incur substantial performance drops.

Normalization AlexNet ResNet-18 PointNet
CIFAR10 CIFAR100 CIFAR10 CIFAR100 ModelNet ShapeNet

BN 91.20 68.57 95.15 76.60 90.20 99.57
GN 90.43 65.10 93.67 72.43 88.87 99.41

Table 2: Model performance comparison for deployment/verification. Obviously, our method can
achieve much better accuracy than the baseline [17] for both deployment and verification no matter
BN or GN is used.

Accuracy Baseline [17](BN) Baseline[17] (GN) Ours(BN) Ours(GN)

AlexNet CIFAR10 71.57 / 76.12 87.73 / 86.31 90.00 / 89.97 89.01 / 88.37
CIFAR100 32.01 / 17.99 61.08 / 59.80 66.47 / 63.95 63.01 / 60.43

ResNet-18 CIFAR10 21.99 / 10.60 92.46 / 91.46 94.25 / 93.66 92.82 / 91.60
CIFAR100 1.90 / 3.10 67.19 / 64.51 74.40 / 73.54 69.99 / 66.48

PointNet ModelNet 81.00 / 4.03 86.94 / 86.77 90.20 / 89.35 88.19 / 87.82
ShapeNet 96.05 / 53.21 99.03 / 98.97 99.31 / 99.47 99.14 / 98.93

4.1 Generalization ability and performance comparison

BN is very important and widely used in modern image and 3D recognition networks, including
AlexNet, ResNet-18 and PointNet. As an alternative of BN, GN is designed to address the learning
problem caused by a small batch size. On the other hand, since GN computes the mean/std statistics
on-the-fly during inference, it does not need training-stage moving average statistics. However, GN
still cannot match BN’s performance in many recognition tasks. As shown in Table 1, replacing BN
with GN in AlexNet, ResNet-18 and PointNet will all incur substantial performance drops. Especially
for ResNet18 on the CIFAR100 dataset, there is even 4.2 points drop. However, in the baseline
method [17], the network structure must be changed by replacing all BN layers with GN, otherwise,
the target model will not work when the passport is involved in the training.

In Table 2, we provide a detailed comparison for the model performance when removing the passport-
related parts for end-users deployment and adding them back for ownership verification (correct
passport is given). It can be seen that when using BN in [17], both the deployment and verification
accuracy will significantly drop. Taking ResNet-18 as example, the deployment top-1 accuracy
degrades from 95.15% to 21.99% on CIFAR10 and from 76.6% to 1.90% on CIFAR100. In contrast,
with the newly proposed passport-aware normalization, our method works well for BN with 94.25%
and 74.40% top-1 accuracy respectively. Even with GN, our method is still better than [17] with
less performance drop when involving the passport into training for IP protection. To summarize,
compared to [17], our method not only has stronger generalization ability without the need of network
structure change but also maintains the original model performance better. Compared to the original
model performance without IP protection in Table 1, we observe that a slight performance drop still
exists after involving passport into training. The following analysis will show this can be rescued by
only adding passport-aware branches to some but not all the normalization layers.

To further compare with transformation based normalization method, we tried the famous conditional
normalization layer SPADE in [26]. Considering the conditional input in our task is the one-dimension
transformed passport wpγ , wpβ , we replace the convolution layer used in SPADE with FC layer.
Then it can be viewed as a special case (i.e., only the nonlinear transform in Equation (3)) of our
method without the decoupled design in Equation (2).

4.2 Robustness Comparison

To demonstrate the robustness of our method, we follow a similar setting as [17] and consider both
removal attacks (cross-dataset fine-tuning, model compression) and ambiguity attacks.

Fine-tuning. For fine-tuning attacks, we first train the target model with the passport-aware branch
on one dataset then fine-tune the trained model on a new dataset without it. As shown in Table 3,
two different settings are tried, i.e., CIFAR10→CIFAR100 and CIFAR10→Caltech-101. Since the
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Table 3: The performance (in-bracket) and signature detection accuracy (out-bracket) after fine-tuning.
Both the original model and baseline method are displayed for comparison.

Method CIFAR10→ CIFAR100 CIFAR10→ Caltech-101
Original AlexNet (66.16) ResNet-18 (75.71) AlexNet (74.25) ResNet-18 (79.66)

Baseline [17] 98.70 (61.79) 98.57 (71.06) 99.92 (72.43) 99.98 (72.88)
Ours 98.88 (63.74) 98.26 (73.92) 100.00 (74.75) 99.97 (77.91)

(a) AlexNet (top: CIFAR10; bot-
tom: CIFAR100)

(b) ResNet18 (top: CIFAR10; bot-
tom: CIFAR100)

(c) PointNet (top: ModelNet; bot-
tom: ShapeNet)

Figure 2: The performance of model for verification and signature detection rate after model pruning.
The signature maintains the robustness (more than 90% detection rate) even with a fierce pruning rate
(90%) in all cases.

fine-tuned model is on a new task, we leverage the passport signature defined in Equation (5) for
verification. For one specific signature bit sequence, it will be seen successfully detected only if all
the binary bits are exactly matched. Obviously, the signature can be detected with more than 98%
accuracy in all cases like the baseline method [17]. As explained before, this is mainly because using
the sign function makes the verification insensitive to the detailed network weight value change.

Model pruning. For model compression attacks, we adopt the same class-blind pruning scheme [13]
used in [17], which is designed to reduce the redundant parameters within a model without affecting
its performance too much. In Figure 2, we show comparison results between our method and the
baseline method [17] on the accuracy of the verification model with correct passport and the accuracy
of the signature detection. It can be seen that even at 90% pruning rate, more than 90% signature can
be detected in all cases.

4.3 Robustness against Ambiguity attacks

As for ambiguity attacks, we consider two type of adversarial settings from the perspective of
attackers. For ambiguity attacks I, the attacker only has access to the model and utilizes reverse
engineering to forge a fake passport from random values to achieve comparable model performance
by gradient descent. In Table 4, we provide both the model performance of the initial random passport
and the optimized passport. It shows that this type of attack cannot succeed for either our method or
the baseline method with bad model performance. Besides, because of our two-branch and learnable
design, the reverse-engineered performance of our method is even worse. In the case of ambiguity
attacks II, we assume the attacker illegally obtained the original passport (pγ and pβ) and try to
generate fake signatures by both guaranteeing the accuracy and increasing the dissimilarity between
the fake signatures and original signatures by flipping the sign of wpγ and wpβ . Compared with
the baseline in [17], since we also leverage non-trivial learnable γ1, β1 mentioned in Equation (3)
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Table 4: The performance of passport model with fake passport ( Ambiguity Attack I ). All results
are the average accuracy calculated from 10 fake passports (random initial / the optimized).

I AlexNet ResNet-18 PointNet
CIFAR10 CIFAR100 CIFAR10 CIFAR100 ModelNet ShapeNet

Baseline 9.99/62.88 1.01/9.27 10.08/54.37 1.00/11.50 4.03/19.90 31.46/77.20
Ours 10.07/44.00 1.00/4.88 9.83/41.23 1.00/7.46 4.03/6.63 31.46/37.46

Table 5: The performance of passport model with fake passport ( Ambiguity Attack II ) under different
percentage of flipped sign. We take the results of ResNet-18 on CIFAR100 as example.

II 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Baseline [17] 55.73 47.73 14.51 5.82 6.93 8.78 6.82 8.04 5.58 5.28

Ours 6.21 6.10 4.76 5.08 5.49 5.45 5.18 6.21 5.94 5.18

as an additional protective barrier against attack, our method is much harder to be attacked. As
shown in Table 5, the proposed method is more robust than the baseline method [17]. Specifically,
the adversary just obtains 6.21% accuracy even when only 10% of signatures are modified, which is
beneficial for forensics.

4.4 Ablation Analysis

Design importance. In our method, we append one independent branch for passport-aware normal-
ization (i.e., µ0 6= µ1, σ0 6= σ1 for BN) and design a learnable affine transform γ1, β1 to guarantee
the performance of the passport model while preserving the original network structures. In this
experiment, we conduct ablation analysis with three combinations. (A): No independent branch
for passport-aware normalization and non-learnable γ1, β1 as [17]; (B) Independent branch for
passport-aware normalization but with non-learnable γ1, β1; (C) Independent branch for passport-
aware normalization with learnable γ1, β1. From Table 6, we observe that adding an extra branch for
passport-aware normalization is very important and learnable affine transformation γ1, β1 can also
bring extra performance gain. The train-val convergence curve of these three configurations are also
shown in Figure 3. The independent branch for passport-aware normalization significantly reduces
the gap between training and inference performance while the learnable affine transformation makes
the original task more compatible with the passport related training.

Influence of passport layer number. In our default setting, we use the passport-aware normal-
ization formulation in all the normalization layers. In other words, we can verify the ownership on
all these layers. However, as shown in Table 2, involving passport into the training will affect the
original model performance. In this experiment, we take the ResNet-18 on CIFAR100 as an example
and conduct an experiment by only applying the passport-aware normalization into the last-three
normalizaiton layers. It is shown that the original deployment accuracy will increase from 74.40% to
76.22%, which is very close to the original model performance 76.60% without passport training.
Therefore, in real application systems, we can adapt the passport layer number to achieve a better
balance between robustness and performance.

4.5 Training cost

Though the passport-aware and passport-free branch are trained alternatively by default, experimental
results show that they can also be trained simultaneously with similar performance. For the training
cost, it indeed depends on the ratio of the passport-aware branch activated in every training epoch.
We further replace the default ratio 50% by a lower ratio 10%. Under this setting, take PointNet
on ShapeNet dataset for example, the verification accuracy is almost unchanged (from 99.47% to
99.31%) while the model deployment performance is even slightly better (from 99.31% to 99.36%).
More importantly, this will not introduce any extra cost for deployment.

5 Conclusion

With the huge success of deep learning, IP protection for deep models becomes more and more
important and necessary. Though many works have been proposed along this direction, we find
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Table 6: The deployment/verification performance of three different configurations about whether
using independent branch for normalization (C1) and learnable affine transformation parameters(C2).
A: C1-No, C2-No, B: C1-Yes, C2-No, C: C1-Yes, C2-Yes.

AlexNet ResNet-18 PointNet
CIFAR10 CIFAR100 CIFAR10 CIFAR100 ModelNet ShapeNet

A 70.07/13.34 30.94/1.01 17.46/13.74 2.05/2.30 81.00/4.03 96.05/31.46
B 89.54/88.77 65.69/63.82 94.04/93.56 73.84/72.49 89.72/89.11 99.30/99.30
C 90.00/89.97 66.47/63.95 94.25/93.66 74.40/73.54 90.20/89.35 99.31/99.47

Figure 3: The train-val convergence curve for the A,B,C configuration shown in Table 6

they either are vulnerable to ambiguity attacks, or require changes in the target model structure and
incur significant performance drops. To address these limitations, we propose a new passport-aware
normalization formulation. It is general to most existing deep networks equipped with normalization
layers and only needs to add an extra passport-aware branch into the normalization layers. Extensive
experiments have been conducted on image and 3D point recognition models, which show the strong
robustness of our method with less performance influence on the target model.

Broader Impact

Though deep learning evolves very fast in these years, IP protection for deep models is seriously
under-researched. In this work, we mainly aim to propose a general technique for deep model IP
protection. It will help both academia and industry to protect their interests from illegal distribution
or usage. We hope it can inspire more works along this important direction.
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