
Supplemental Material for
An Analysis of SVD for Deep Rotation Estimation

Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely, Angjoo Kanazawa, Afshin Rostamizadeh, and
Ameesh Makadia

A Complete proof of Proposition 1

In the main paper, we gave the derivative of the orthogonalization operators SVDO(M) and GS(M)
and the resulting error under Gaussian noise, near the identity matrix M = I . We now give
the complete proof and discussion of Proposition 1 and the additional facts about smoothness
of SVDO(M), SVDO+(M).

Note that since SVDO(RM) = R · SVDO(M) and GS(RM) = R · GS(M) for any orthogonal matrix
R, and likewise for SVDO+, GS+ if R is special orthogonal. Therefore the error analyses are the same
for all matrices M :

‖GS(R+ σN)−R‖2F = ‖R(GS(I + σR−1N)− I)‖2F = ‖GS(I + σN)− I‖2F (A.1)

since orthogonal matrices preserve Frobenius norm and R−1N has the same distribution as N since
N was assumed isotropic. (The same applies for the other three functions.)

Proof of Proposition 1. (1) Let M have SVD M = UΣV T for some orthogonal matrices U, V and
diagonal matrix Σ ≥ 0. To first order in σ, we can expand each of U,Σ, V T as

U = U0(I + σU1), (A.2)
Σ = Σ0 + σΣ1, (A.3)
V = V0(I + σV1), (A.4)

with U0, V0 orthogonal, U1, V1 antisymmetric and Σ0,Σ1 ≥ 0 diagonal. This is using the fact that the
antisymmetric matrices give the tangent space to the orthogonal matrices. Similarly, the tangent space
to the diagonal matrices is given again by the diagonal matrices. This gives an overall expression for
M as

M = I + σN = U0(I + σU1)(Σ0 + σΣ1)(I + σV1)TV T0 . (A.5)

Setting σ = 0 we see I = U0Σ0V
T
0 , which implies Σ0 = I and U0 = V0. Next, collecting the

first-order σ terms gives
N = U0(U1 + Σ1 + V T1 )UT0 . (A.6)

If a matrix X is (anti-)symmetric and Q is orthogonal, then QXQT is again (anti-)symmetric. So,
the symmetric and antisymmetric parts of the equation are

S = U0Σ1U
T
0 , A = U0(U1 + V T1 )UT0 . (A.7)

Note that the first equation is an SVD of the symmetric part of N , while the second equation shows
that U1 and V1 satisfy U1 + V T1 = UT0 AU0. Finally, dropping the Σ0 + σΣ1 factor from Eq. (A.5)
and expanding out shows that SVDO(I + σN) = I + σA+O(σ2).

(2) Let M = QR, where Q is orthogonal and R is upper-triangular with positive diagonal. As above,
by expanding to first order in σ we have

I + σN = Q0(I + σQ1)(I + σR1)R0, (A.8)

withQ0 orthogonal,Q1 antisymmetric, andR1, R0 upper triangular. Setting σ = 0, we see I = Q0R0

and so Q0 = R0 = I . For the σ terms, we split N into its upper, lower and diagonal parts to get

U +D + L = Q1 +R1, (A.9)

which by comparing parts givesQ1 = L−LT andR1 = U+D+LT . Then GS(M) = I+σ(L−LT )
by simple algebra.

We now prove Corollary 1.
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Corollary 1 (restated). If N is 3x3 with i.i.d. Gaussian entries nij ∼ N (0, 1), then with error of
order O(σ3),

E[‖SVDO(M)− I‖2F ] = 3σ2, E[‖GS(M)− I‖2F ] = 6σ2 (A.10)

E[‖SVDO(M)−M‖2F ] = 6σ2, E[‖GS(M)−M‖2F ] = 9σ2 (A.11)

Proof. Simplifying the error expressions using the first-order calculations in the Proposition gives
‖SVDO(M)− I‖2F = ‖σA‖2F , (A.12)

‖GS(M)− I‖2F = ‖σ(L− LT )‖2F , (A.13)

‖SVDO(M)−M‖2F = ‖−σS‖2F , (A.14)

‖GS(M)−M‖2F = ‖−σ(U +D + LT )‖2F , (A.15)
with notation for S,A,U,D,L as in the proposition. Thus each expression is σ2 times the Frobenius
norm of the corresponding matrix. Each entry ofA,L−LT , S and U+D+LT is a linear combination
of the entries of N , hence is Gaussian since N has i.i.d. Gaussian entries nij ∼ N (0, 1). The
expectations are the sums of the entrywise expectations of these matrices. For example, A =
1
2 (N−NT ) has six nonzero entries of the form 1

2 (nij−nji), each having variance 1
2 , so E[‖A‖2F ] = 3.

For L − LT , the above diagonal entries are −nji and the below-diagonal entries are nij , and the
diagonal is 0, so the total variance is 6. The other two calculations are similar (the entries do not all
have the same variances).

Remark. The tangent space to the identity matrix along the orthogonal matrices is the space of
antisymmetric matrices. Both of the calculations above can be thought of as giving orthogonal
approximations of the form

I + σN ≈ I + σA′, (A.16)
whereA′ is a choice of antisymmetric matrix that depends on the approximation method. The fact that
SVDO(M) produces the approximation A′ = A = 1

2 (N −NT ) means it corresponds to the natural
projection of N onto the orthogonal tangent space. By contrast, GS(M) produces A′ = L − LT ,
essentially a "greedy" choice with respect to the starting matrix (minimizing the change to the leftmost
columns). For certain matrices GS can have smaller error: for example if N happens to be upper-
triangular, GS(M) = I and the error is zero. For isotropic noise, however, the SVD approximation is
the most efficient in expectation.

Finally, we discuss why the error analysis is identical for SVDO+, GS+.

Proposition 2 The statements in Proposition 1 and Corollary 1 apply also for SVDO+, GS+.

Proof. In Proposition 1, the matrix N is fixed, so for sufficiently small σ, det(M) > 0 and so
SVDO(M) = SVDO+(M) and GS+(M) = GS(M).

For Corollary 1, N is not fixed, so there is in fact a finite (positive) probability that det(M) < 0,
dependent on σ. However, the difference decays rapidly enough as σ → 0 that the error analysis is
unaffected. For any function f(M), we may write E[f(M)] = (A) + (B), where

(A) = Prob(det(M) > 0) · E[f(M) | det(M) > 0]

(B) = Prob(det(M) < 0) · E[f(M) | det(M) < 0].

If f(M) is the difference in error analyses between SVDO and SVDO+,

f(M) = ‖SVDO+(M)− I‖2F − ‖SVDO(M)− I‖2F ,
then the term (A) vanishes and the term (B) is bounded by a constant times Prob(det(M) < 0) since
SO(n) is compact. The same applies for each other comparison. Thus it suffices to show that this
probability decays sufficiently rapidly. In fact, by the standard statement below, it decays faster than
any polynomial, since M is a Gaussian random matrix with mean I and det(I) = 1 > 0.

Proposition 3 Let x ∈ Rn be a Gaussian random vector, x ∼ N(µ, σ · Σ). Let U be any open set
containing µ. Then as σ → 0,

Prob(x /∈ U) = O(exp(−nCσ2 ))

for some constant C > 0. In particular the decay is faster than any polynomial.
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Proof. The statement is invariant under affine change of coordinates, so we may assume µ = 0 and Σ
is the identity matrix. Replacing U by a sufficiently small unit cube around 0, the calculation factors
as a product of one-dimensional Gaussians, reducing to the case n = 1. Rescaling by a constant C, we
are left with calculating Prob(|x| > 1) where x ∼ N(0, σ). By standard concentration inequalities,
this quantity is O(exp(− 1

σ2 )).

A.1 Accuracy of error estimates as σ increases

From Corollary 1 (Sec 3.3) we see special-orthogonalization with Gram-Schmidt (GS+) produces
twice the error in expectation as SVD (SVDO+) for SO(3) reconstruction when inputs are perturbed
by Gaussian noise. We compare these derived errors with numerical simulations. See Figure A1.

Figure A1: Simulations. We plot our derived approximations against numerical simulations of the expected
error in reconstruction under additive noise. For each σ we compute the numerical expectation with 100K trials.
These plots can provide a sanity check of our derivations.

B Proof of smoothness and discussion

Proposition 4 The symmetric orthogonalization SVDO(M) is a smooth function ofM if det(M) 6= 0.

Proof. We use the Implicit Function Theorem and the least-squares characterization of SVDO(M) as

SVDO(M) = arg min
Q∈O(n)

‖M −Q‖2F . (B.1)

We calculate the derivative with respect to Q ∈ O(n): for A an antisymmetric matrix,

lim
ε→0

1
ε (‖M −Q(I + εA)‖2F − ‖M −Q‖2F ) = −2 Tr(MTQA). (B.2)

If this vanishes for every A, then MTQ is symmetric, that is, (M,Q) is a root of the function
g(M,Q) = MTQ − QTM . Let M0 be a fixed matrix. As discussed above, the optimal solution
to this equation is given by an SVD, M0 = U0S0V

T
0 , yielding Q0 = U0V

T
0 . To show that Q is a

smooth function of M , it suffices by the Implicit Function Theorem to show that the Jacobian matrix
∂g
∂Q is full-rank at (M0, Q0). To see this, we differentiate it again:

∂g

∂Q
(A) = lim

ε→0

1

ε
(g(M0, Q0(I + εA))− g(M0, Q0)) = MT

0 Q0A−ATQT0M0, (B.3)

where A is antisymmetric. Some algebra shows that this is, equivalently,

∂g

∂Q
(A) = V0(S0V

T
0 AV0 + V T0 AV0S0)V T0 . (B.4)

To see that this is an invertible transformation of A, note that conjugating by V0 is invertible since V0
is orthogonal. So it is equivalent to show that the function

A 7→ S0A+AS0 (B.5)

is invertible. This function just rescales the entry aij to (si + sj)aij . Since the singular values are
positive this is invertible as desired.
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Proposition 5 The special symmetric orthogonalization is a smooth function of M if either of the
following is true:

• det(M) > 0,

• det(M) < 0 and the smallest singular value of M has multiplicity one.

Proof sketch. The analysis is identical to the main proof, except that if det(M) < 0, S0 is effectively
altered so that the last entry is changed from sn to −sn. Thus the function A 7→ S0A + AS0

now sends the entry aij to (±si ± sj)aij , with negative signs at i = n and/or j = n. If sn
occurred with multiplicity one, the result is still invertible since si − sn 6= 0 for i 6= n and for
i = j = n the coefficient is −2sn. Otherwise, however, sn−1 = sn and the operation sends
an−1,n to (sn−1 − sn)an−1,n = 0; likewise for an,n−1. In this case there are many optimal special
orthogonalizations of M0, and the operation is not even continuous in a neighborhood of M0.

C Gradients

Here we provide the details for the derivation sketched out in Sec 3.2, which analyzes the behaviour of
the gradients of a network with an SVDO+ layer. Specifically, we consider ∂L

∂M for some loss function
L(M,R) = ‖SVDO+(M)−R‖2F .

We will first analyze ∂L
∂M for SVDO(M). With ◦ denoting the Hadamard product, from [18, 48] we

have

∂L

∂M
= U [(FT ◦ (UT

∂L

∂U
− ∂L

∂U

T

U))Σ + Σ(FT ◦ (V T
∂L

∂V
− ∂L

∂V

T

V ))]V T , (C.1)

Fi,j =

{
1

s2i−s2j
, if i 6= j

0, if i = j
, si = Σii. (C.2)

Let X = UT ∂L∂U −
∂L
∂U

T
U , and Y = V T ∂L

∂V −
∂L
∂V

T
V . Since ‖SVDO(M) − R‖2F = 2 Tr(In) −

2 Tr(UV TRT ), then ∂L
∂U = −2RV , and ∂L

∂V = −2RTU . This leads directly to X = Y T = −Y
(X,Y are antisymmetric). We can simplify Eq. C.1 as

∂L

∂M
= U((FT ◦X)Σ− Σ(FT ◦X))V T . (C.3)

Inspecting the individual elements of (FT ◦X)Σ and Σ(FT ◦X)) we have(
(FT ◦X)Σ

)
ij

=
Xijsj
s2j − s2i

,
(
Σ(FT ◦X)

)
ij

=
Xijsi
s2j − s2i

. (C.4)

Letting Z = (FT ◦X)Σ−Σ(FT ◦X), we can simplify ∂L
∂M = UZV T where the elements of Z are

Zij =

{
Xij
si+sj

, if i 6= j

0, if i = j.
(C.5)

For SVDO(M) Eq. C.5 tells us ∂L
∂M is undefined whenever two singular values are both zero and large

when their sum is very near zero.

For SVDO+(M), if det(M) > 0 then the analysis is the same as above. If det(M) < 0, the extra
factor D = diag(1, 1, . . . ,−1) effectively changes the smallest singular value sn to −sn. The
derivation is otherwise unchanged. In particular the denominator in equation (C.5) is now sj − sn or
sn − si if either i or j is n.

C.1 Gradients observed during training

In Figure A2 (left) we see the gradient norms observed while training for point cloud alignment
(Section 4.1). SVD-Train has the same profile as for 6D (GS+). SVD-Train converges quickly (relative
to all other methods) in all of our experiments, indicating no instabilities due to large gradients.
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On the right of Figure A2 we profile the gradients for the scenario where we begin training with
the SVD-Inference loss and switch to SVD-Train after 100K steps (after roughly 4% of training
iterations). SVD-Inf trains the network to produce outputs that are close to SO(3), which eliminates
some conditions of instability in Eq. C.5. This is confirmed by seeing much smaller gradient norms
after switching to SVD-Train at 100K steps. Note, this approach was never used (or needed) in our
experiments.
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Figure A2: Gradients. Left are the gradient norms ‖ ∂L
∂M
‖2F for the point cloud alignment experiment. SVD-

Train and 6D have similar profiles. On the right the network is trained with SVD-Inf for the first 100K steps, then
SVD-Train. During the first 100K steps the network learns to output matrices close to SO(3) and this eliminates
sources of high gradient norms in Eq. C.5.

D Experiments

D.1 Additional baseline details

• Spherical Regression (S2-Reg) regresses to n-spheres. Following [25], we use regression
to S1 for Pascal3D+ and S3 regression (quaternions) for their ModelNet experiments
(section 4.2). The method combines abs. value regression with sign classification. Our
implementation of the final regression layers follows the provided code. We select the
hyperparameter that balances the classification and regression losses by a simple line search
in the neighborhood of the default provided in [25].

S2-Reg uses both classification and regression losses, not surprisingly we were unable to
train successfully on any of the unsupervised rotation experiments. The closest we came
was on unsupervised point cloud alignment (Sec 4.4). With careful hyperparameter tuning
the model completed training with mean test errors near 90◦.

• 3D-RCNN [23] combines likelihood estimation and regression (via expectation) for predict-
ing Euler angles. This representation also requires both classification and regression losses
for training, and we were unable to make the model train successfully on the unsupervised
rotation experiments.

• Geodesic-Bin-and-Delta (MG [28]) combines classification over quantized pose space
(axis-angle representation) with regression of offsets. For our experiments with where
observed rotations are uniformly distributed over SO(3) (Sec. 4.1, 4.2),K-means clustering
is ineffective. Instead we quantize SO(3) by uniformly sampling a large number (1000) of
rotations (larger values did not improve results). We found this version of Geodesic-Bin-
and-Delta outperformed the One-delta-network-per-pose-bin variation in these experiments.
For Pascal3D+ we follow the reference and use K-means with K = 200. This method also
requires both classification and regression losses and we were unable to train successfully in
the unsupervised setting.

• Quaternion, Euler angles (XYZ), and axis-angle are the classic parameterizations. In each
case they are converted to matrix form before the loss is applied. In our experiments we did
not filter any outputs from the network representing angles (e.g. clipping values or applying
activations such as tanh). We found this gave the best results overall.
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D.2 Learning rate decay

An observation from the point cloud registration results is that the curves for mean test errors as
training progresses do not decay smoothly as one might expect for any method (Table 1, middle, in
the main paper). This is in part due to the training code from [57] does not utilize a learning rate
decay for this experiment. It is reasonable to observe the variance in evaluation when a decay is
introduced as would be common in practice. Table A1 (left) shows the curves when the learning
rate is exponentially decayed (decay rate of 0.95, decay steps of 35K). The evaluation over time is
smoother but the results are consistent with those presented in the main paper. Table A1 (right) shows
SVD-Train performance with three different initial learning rates with decay. The higher learning
rate of 1e−4 improves performance (Mean/Med errors of 1.32◦/0.60◦), indicating the benchmark
performance could be improved with hyperparmeter tuning (likely for all methods).

Table A1: Left: Point cloud alignment with learning rate decay. Evaluation is smoother over time but the
comparative analysis does not change. Right: Different learning rates for SVD-Train.
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D.3 Geodesic loss

In [57] it was shown that geodesic loss for training did not significantly alter the results, and we
confirm this observation in Table A2 (left).

D.4 2D Pose

In Table A2 (right), we replicate the point cloud alignment experiment while restricting the rotations
to a 2D subspace of SO(3) that can be identified with the 2-sphere.

Table A2: Left: Training with geodesic loss for point cloud alignment. Relative performances are consistent
with squared Frobenius loss (Table 1 in main paper). Right: point cloud alignment when training and test
rotations are restricted to a 2D subspace of SO(3).

Geodesic loss
Mean (◦) Med Std

5D 3.88 2.08 9.19
6D 2.29 1.30 7.52
SVD-Train 2.05 1.28 7.15

2D Pose
Mean (◦) Med Std

6D 0.89 0.44 4.60
SVD-Train 0.64 0.31 4.88

D.5 Pascal3D+ full results.

Here in Table A3 we show the results for all 12 categories in the Pascal3D+.
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Table A3: Pascal 3D+. Results for all 12 categories.

aeroplane bottle chair sofa

Accuracy@ Med◦ Accuracy@ Med◦ Accuracy@ Med◦ Accuracy@ Med◦

10◦ 15◦ 20◦ Err 10◦ 15◦ 20◦ Err 10◦ 15◦ 20◦ Err 10◦ 15◦ 20◦ Err

3D-RCNN 32.8 52.5 77.9 13.5 61.3 74.2 90.3 7.2 29.7 45.1 69.8 17.2 37.1 54.3 80.0 14.2
MG 22.1 45.1 82.4 16.0 48.4 62.9 87.1 11.0 23.1 45.6 75.8 15.9 31.4 51.4 74.3 14.4
Euler 15.2 35.3 70.1 19.8 58.1 69.4 91.9 9.0 9.3 28.6 58.8 25.3 22.9 45.7 77.1 16.3
Axis-Angle 16.7 34.8 74.5 20.0 50.0 67.7 91.9 10.4 11.5 27.5 69.8 21.7 11.4 40.0 80.0 16.3
Quaternion 28.9 46.6 77.5 16.0 53.2 71.0 91.9 8.3 19.8 37.4 73.1 18.6 34.3 62.9 77.1 11.7
S2-Reg 46.6 67.6 87.3 10.6 56.5 69.4 91.9 8.8 37.4 61.5 84.6 12.7 37.1 65.7 85.7 11.2
5D 21.6 38.7 75.5 17.3 54.8 66.1 93.5 9.2 17.6 34.6 72.0 19.1 17.1 54.3 77.1 14.2
6D 24.0 42.6 75.5 17.3 54.8 71.0 95.2 9.3 20.9 39.6 78.6 17.2 34.3 54.3 88.6 13.3
QCQP 17.2 37.7 74.5 19.1 56.5 71.0 95.2 8.7 16.5 39.6 73.6 18.6 42.9 54.3 82.9 13.7
SVD-Inf 26.0 57.4 86.3 13.3 56.5 75.8 95.2 8.9 20.3 43.4 77.5 16.8 45.7 60.0 88.6 11.0
SVD-Train 22.1 43.6 77.0 17.4 53.2 75.8 93.5 7.7 24.2 39.0 71.4 17.6 40.0 57.1 85.7 12.7

bicycle bus diningtable train

Accuracy@ Med◦ Accuracy@ Med◦ Accuracy@ Med◦ Accuracy@ Med◦

10◦ 15◦ 20◦ Err 10◦ 15◦ 20◦ Err 10◦ 15◦ 20◦ Err 10◦ 15◦ 20◦ Err

3D-RCNN 17.8 38.6 72.3 16.9 88.7 91.5 93.7 4.4 46.7 60.0 66.7 12.2 65.7 74.7 82.8 6.4
MG 11.9 31.7 66.3 20.9 76.1 88.0 95.1 7.6 26.7 53.3 60.0 12.8 48.5 66.7 82.8 10.1
Euler 9.9 20.8 68.3 23.4 47.2 66.9 87.3 10.5 26.7 40.0 73.3 16.6 42.4 63.6 80.8 11.1
Axis-Angle 13.9 31.7 70.3 21.3 38.7 69.7 93.7 12.0 26.7 53.3 80.0 14.4 40.4 64.6 82.8 11.6
Quaternion 15.8 30.7 67.3 22.4 69.7 83.8 92.3 7.4 33.3 46.7 73.3 17.3 56.6 68.7 81.8 8.7
S2-Reg 21.8 45.5 75.2 16.1 93.7 98.6 99.3 3.8 33.3 46.7 66.7 15.3 66.7 76.8 84.8 6.2
5D 10.9 26.7 68.3 21.1 52.1 72.5 93.0 9.6 33.3 60.0 66.7 11.4 35.4 49.5 78.8 15.5
6D 14.9 27.7 71.3 22.0 66.9 83.8 94.4 7.9 13.3 46.7 73.3 15.3 63.6 73.7 80.8 7.7
QCQP 5.0 18.8 66.3 21.8 64.8 88.0 95.8 8.1 26.7 60.0 80.0 14.3 57.6 73.7 81.8 8.9
SVD-Inf 10.9 33.7 84.2 19.0 80.3 92.3 95.8 6.1 53.3 60.0 73.3 10.0 58.6 73.7 82.8 8.5
SVD-Train 9.9 26.7 80.2 20.9 67.6 85.2 96.5 7.9 33.3 53.3 73.3 13.0 63.6 72.7 81.8 8.4

boat car motorbike tvmonitor

Accuracy@ Med◦ Accuracy@ Med◦ Accuracy@ Med◦ Accuracy@ Med◦

10◦ 15◦ 20◦ Err 10◦ 15◦ 20◦ Err 10◦ 15◦ 20◦ Err 10◦ 15◦ 20◦ Err

3D-RCNN 12.6 23.2 52.6 27.0 65.5 76.8 86.3 6.7 24.6 46.5 81.6 15.6 35.5 53.9 82.9 13.2
MG 16.8 27.4 56.8 25.2 51.2 70.2 86.9 9.8 15.8 40.4 79.8 17.1 23.0 46.1 77.0 15.9
Euler 1.1 5.3 28.4 46.4 25.0 50.6 79.8 14.5 13.2 30.7 67.5 21.3 23.0 46.7 79.6 15.7
Axis-Angle 4.2 13.7 42.1 35.0 21.4 53.6 82.1 14.0 15.8 32.5 73.7 19.6 25.7 42.8 81.6 16.6
Quaternion 9.5 23.2 54.7 27.1 45.2 64.9 86.9 10.5 18.4 32.5 78.9 18.9 25.7 51.3 81.6 14.3
S2-Reg 18.9 42.1 66.3 16.7 70.2 85.7 98.2 7.7 28.9 56.1 86.8 13.6 38.8 56.6 78.9 13.3
5D 4.2 10.5 48.4 32.1 23.2 46.4 84.5 16.1 9.6 30.7 79.8 20.3 22.4 36.8 69.1 18.8
6D 12.6 18.9 52.6 29.0 44.0 67.3 89.3 11.4 11.4 36.8 88.6 17.2 30.9 50.7 85.5 14.7
QCQP 9.5 24.2 56.8 26.6 38.1 62.5 87.5 11.7 18.4 37.7 81.6 17.7 28.9 52.0 84.2 14.2
SVD-Inf 17.9 31.6 56.8 23.3 56.5 76.2 91.1 8.9 21.9 47.4 86.8 15.6 30.3 52.6 86.2 14.3
SVD-Train 13.7 25.3 52.6 25.4 42.3 63.1 85.7 11.4 18.4 40.4 81.6 18.3 32.9 50.0 86.2 14.6

7


