Faithful Embeddings for Knowledge Base Queries:

Supplementary Material

Haitian Sun Andrew O. Arnold* Tania Bedrax-Weiss

Fernando Pereira William W. Cohen
Google Research

{haitiansun,tbedrax,pereira,wcohen}@google.com

A Notation

AWS Al
anarnld@amazon.com

The notation used in this paper is summarized in Table[I]

W, X, Y
R

r

z,y

z;

A B
U
VA

r(z,y)
E

€, e,
€;

KB

(aXa bX)
CM(i, b)

X follow(R)
X filter(R,Y)

sets of entities

set of relations

a single relation
entities

entity with index ¢

set of anything (entities or relations)
universal set
a k-hot vector for a set A

asserts this triple is in the KB

matrix of entity embeddings

embedding of entity x, relation r

embedding of entity with index i, i.e. e¢; = E[, :]

matrix of triple embeddings, i.e., row for 7(x,y) is [e,; e,; €]

area and sketch that represent set X

score for entity ¢ in the count-min sketch b

soft version of {y | Ir € R,z € X : r(x,y)}

soft versionof {x € X |Ir € R,y € Y : r(z,y)}

Table 1: Notation used in the paper, excluding notation used only in §

B Background on count-min sketches

B.1 Definitions

Count-min sketches [[1]] are a widely used randomized data structure. We include this discussion for
completeness, and our analysis largely follows [2]].

A count-min sketch, as used here, is an approximation of a vector representation of a weighted set.
Assume a universe U which is a set of integer “object ids” from {1,..., N}. Aset A C U can be

*Work done while at Google Research.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

encoded as a vector v4 € IR" such that v4[i] = 0if ¢ € S, and otherwise v 4[i] is a real-numbered
weight for entity ¢ in set S. The purpose of the count-min sketch is to approximate v 4 with limited
storage.

Let h be a hash function mapping {1, ..., N} to a smaller range of integers {1,..., Ny }, where
Nw < N. The primitive sketch of v 4 under h, written s; (v 4), is a vector such that

su(va)lil = > valil

i:h(i)=j

Algorithmically, this vector could be formed by starting with an all-zero’s vector of length Ny, then
looping over every pair (i, w;) where w; = v 4[i] and incrementing each s, [j] by w;. A primitive
sketch s;, contains some information about v 4: to look up the value v 4[i], we could look up sy, [h(7)],
and this will have the correct value if no other set element ' hashed to the same location. We can
improve this by using multiple hash functions.

Specifically, let H = {hq,...,hn, } be a list of Np hash functions mapping {1,..., N} to the
smaller range of integers {1, ..., Ny }. The count-min sketch Sgr (v a) for av o under H is a matrix
such that each row j is the primitive sketch of v 4 under h;. This sketch is an Ny x Np matrix: Ny,
is called the sketch width and Np, is called the sketch depth.

Let S be the count-min sketch for A. To “look up” (approximately recover) the value of v 4[i], we
compute this quantity

Np
CM(i,S) = mi{lS[j, h; ()]
=
In other words, we look up the hashed value associated with ¢ in each of the Np primitive sketches,
and take the minimum value.

B.2 Linearity and implementation nodes

Count-min sketches also have a useful “linearity” property, inherited from primitive sketches. It is
easy to show that for any two sets A and B represented by vectors v4 and vp

Su(va+ve) = Su(va)+Su(vp)
Su(va®vg) = Sg(va)©Su(vgs)

Here, as elsewhere in this paper, ® is Hadamard product.

In general, although it is mathematically convenient to define the behavior of sketches in reference to
k-hot vectors, it is not necessary to construct a vector v 5 to construct a sketch: all that is needed is
the non-zero weights of the elements of A. Alternatively, if one precomputes and stores the sketch for
each singleton set, it is possible to create sketches for an arbitrary set by gathering and sum-pooling
the sketches for each element.

B.3 Probabilistic bounds on accuracy

We assume the hash functions are random mappings from {1,...,N} to {1,..., Ny }. More
precisely, we assume that foralli € {1,...,N},and all j € {1,..., Nw}, Pr(hi(z) = a) = ﬁ
We will also assume that the Np hash functions are are all drawn independently at random. More
precisely, for all ¢ # ¢/, 4,4 € {1,...,N},all 4,5/ € {1,...,Np} and all k, k" € {1,..., Nw},

Pr(hy (i) = k A hje(i') = k') = .
w

Under this assumption, the probability of errors can be easily bounded. Suppose the sketch width is
at least twice the cardinality of A, i.e., |A| < m and Ny, > 2m. Then one can show for all primitive
sketches j:

N =

Pr(S[j, h;(i)] # vali]) <

From this one can show that the probability of any error in a count-min sketch decreases exponentially
in sketch depth. (This result is a slight variant of one in [2].)

Theorem 1 Assuming hash functions are random and independent as defined above, then if S is a
count-min sketch for A of depth Np, and Ny > 2|A|, then

Pr(CM(S,0) #valil) < 557

This bound applies to a single CM operation. However, by using a union bound it is easy to assess
the probability of making an error in any of a series of CM operations. In particular, we consider the
case that there is some set of candidates C' including all entities in A, i.e., A C C' C U, and consider

recovering the set A by performing a CM lookup for every i’ € C. Specifically, we say that A can be
recovered from S using C' if A C C and

Vi' € C,CM(i,8) = v ali']

Note that this implies the sketch must correctly score every i/ € C — A as zero. Applying the union
bound to Theorem [I]leads to this result.

Theorem 2 Let S be a count-min sketch for A of depth Np and with Ny, > 2|A|, and let C O A. If
|C
o

Np > log, L then with probability at least 1-0, A can be recovered from S using C.

Many other bounds are known for count-min sketches: perhaps the best-known result is that for
Nw > 2 and Np > log %, the probability that CM(i,S) > v 4[i] + € is no more than & [1]. Because
there are many reasonable formal bounds that might or might not apply in an experimental setting,
typically the sketch shape is treated as a hyperparameter to be optimized in experimental settings.

C Set difference

Another operation we use is set difference: e.g. “movie directors but not writers” requires one to
compute a set difference Agirectors — Bwriters- 1N computing a set difference, the soft-type of the output
A — B is the same as that of A, and we exclude the necessary elements from the count-min sketch to
produce (as_p,ba_p), where

Ap-_B = Aay
bap=ba® (b#0)

This is exact when B is unweighted (the case we consider here), but only approximates set difference
for general weighted sets.

D More experiment details

D.1 Learn to reason over a KB

The statistics of the Query2Box datasets are shown in Table 2}
We also measure the MRR on the Query2Box datasets. The results are presented in Table [3|and 4]

D.2 Question answering
D.2.1 Datasets

The statistics of MetaQA and WebQuestionsSP datasets are listed in Table[5} For WebQuestionsSP,
we used a subset of Freebase obtained by gathering triples that are within 2-hops of the topic entities
in Freebase. We exclude a few extremely common entities and restrict our KB subset so there are at
most 100 tail entities for each subject/relation pair (reflecting the limitation of our model to sets of
cardinality less than 100).

D.2.2 MetaQA

MetaQA makes use of the set difference operation. For example, to answer the question “What
are other movies that have the same director as Inception?”, we need to first find the director of
Inception, Christopher Nolan, and all movies directed by him. Since the question above asks about

Entities Relations Training Triples Test Triples Total Triples
FB15k 14,951 1,345 533,142 59,071 592,213
FB15k-237 | 14,505 237 289,641 20,438 310,079
NELL995 | 63,361 200 128,537 14,267 142,804
(a) Size of splits into train and test for all the Query2Box KBs.
Train Test
task Basic sets Follow (1p) Intersection | Follow (1p) Others
FB15k 11,611 96,750 355,966 67,016 8,000
FB15k-237 11,243 50,711 191,934 22,812 5,000
NELL995 19,112 36,469 108,958 17,034 4,000

(b) Number of training and testing examples of the Query2Box datasets. Training data for EmQL are derived
from the same training KB as Query2Box. EmQL is directly evaluated on the same test data without further
fine-tuning.

Table 2: Statistics for the Query2Box datasets.

generalization 1p 2p 3p 2i 3i ip pi 2u up Avg
FB15k GQE 63.6 346 250 515 624|151 31.0 376 273 | 387
Q2B 78.6 413 303 593 712 | 21.1 397 608 330 | 484
+d=2000 543 320 270 355 507|137 27.0 441 263 | 345
EmQL(ours) | 424 502 459 63.7 70.0 | 60.7 614 9.0 42.6 | 49.5
- sketch 506 467 416 61.8 673 | 542 535 21.6 40.0 | 48.6
FB15k-237 | GQE 40.5 213 155 298 411 | 85 182 169 163 | 23.1
Q2B 46.7 24 186 324 453 | 108 205 239 193 | 2638
+d=2000 372 207 194 226 371 | 97 168 200 178 | 224
EmQL(ours) | 37.7 349 343 443 494 | 40.8 423 87 282 | 358
- sketch 43.1 346 337 41.0 455|367 372 153 325 | 355
NELL995 | GQE 41.8 231 205 31.8 454 | 81 188 200 139 | 248
Q2B 555 266 233 343 480 | 132 212 369 163 | 30.6
+d=2000 49.1 221 175 214 399 | 89 172 264 81 | 234
EmQL(ours) | 41.5 404 386 629 745 | 498 648 12.6 358 | 46.8
- sketch 483 395 352 572 69.0 | 480 599 259 38.2 | 46.8
entailment
FB15k Q2B 68.0 394 3277 485 653 | 162 329 614 289 | 43.7
+d=2000 590 368 302 404 57.1 | 148 289 492 287 | 383
EmQL(ours) | 98.5 963 91.1 914 88.1 | 87.8 892 88.7 913 | 914
- sketch 851 508 424 644 66.1 | 504 53.8 432 427 | 555
FB15k-237 | Q2B 585 343 281 447 621 | 11.7 239 405 220 | 362
+d=2000 507 30.1 26.1 348 552|114 206 328 215 | 315
EmQL(ours) | 100.0 99.5 947 922 88.8 | 91.5 93.0 94.7 93.7 | 94.2
- sketch 89.3 557 399 629 639 | 519 547 538 447 | 574
NELL995 | Q2B 839 577 478 499 663 | 199 296 737 31.0 | 51.1
+d=2000 7577 499 369 405 60.1 | 17.1 256 635 244 | 43.7
EmQL(ours) | 99.0 99.0 97.1 99.7 99.6 | 98.7 989 988 98.5 | 98.8
- sketch 945 774 529 974 975|881 908 704 735 | 825

Table 3: Detailed Hits @3 results for all the Query2Box datasets.

other movies, the model should also remove the movie Inception from this set to obtain the final
answer set Y. Thus in the first line of our model, we write

Y = X,.follow(Ry).follow(Rs) — X,

For MetaQA, the entity embedding is just a learned lookup table. The question representation
encode(q) is computed with a bag-of-word approach, i.e., an average pooling on the word embeddings
of question ¢q. The embedding size is 64, and scaling parameter for relation A is 1.0. Our count-min
sketch has depth Np = 20 and width Ny = 500. We set k£ = 100 to be the number of entities we
retrieve at each step, and we pre-train KB embeddings and fix the embeddings when training our QA
model.

generalization Ip 2p 3p 2i 3i ip pi 2u up Avg
FB15k GQE 0.505 0320 0.222 0439 0.536 | 0.142 0.280 0.300 0.242 | 0.332
Q2B 0.654 0373 0274 04838 0.602 | 0.194 0339 0.468 0.301 | 0.410
+d=2000 0461 0.280 0.242 0.292 0421 | 0.130 0.236 0.342 0.235 | 0.294
EmQL(ours) | 0.368 0.452 0.409 0.574 0.609 | 0.556 0.538 0.074 0.375 | 0.439

- sketch 0453 0418 0362 0.556 0.592 | 0.503 0482 0.182 0.351 | 0.433

FB15k-237 | GQE 0.346 0.193 0.145 0.250 0.355 | 0.086 0.156 0.145 0.151 | 0.203
Q2B 0400 0.225 0.173 0.275 0378 | 0.105 0.18 0.198 0.178 | 0.235
+d=2000 0322 0.196 0.185 0.193 0318 | 0.095 0.149 0.174 0.166 | 0.200
EmQL(ours) | 0.334 0.305 0.304 0.378 0.436 | 0.351 0.358 0.075 0.241 | 0.309
- sketch 0370 0.297 0306 0.345 0.400 | 0.311 0306 0.129 0.272 | 0.304

NELL995 | GQE 0311 0.193 0.175 0.275 0.408 | 0.080 0.170 0.159 0.130 | 0.211
Q2B 0413 0.227 0.208 0.288 0.414 | 0.125 0.193 0.266 0.155 | 0.254
+d=2000 0.308 0.174 0.151 0.171 0.350 | 0.083 0.150 0.183 0.087 | 0.184
EmQL(ours) | 0.372 0.351 0.349 0.539 0.654 | 0.441 0.561 0.105 0311 | 0.409
- sketch 0.431 0349 0300 0493 0.588 | 0423 0527 022 0.324 | 0.406
entailment

FB15k Q2B 0.559 0.347 0.288 0.389 0.553 | 0.145 0280 0.444 0.257 | 0.362
+d=2000 0.498 0.327 0.274 0.336 0492 | 0.139 0251 0.386 0.257 | 0.329
EmQL(ours) | 0.983 0.961 0.908 0.908 0.872 | 0.881 0.883 0.887 0.910 | 0.910
- sketch 0.819 0.448 0368 0.564 0.580 | 0.420 0.466 0.385 0.383 | 0.492
FB15k-237 | Q2B 0476 0301 0249 0364 0.638 | 0.113 0207 0.311 0.203 | 0.318
+d=2000 0432 0.262 0233 0.292 0466 | 0.109 0.183 0.255 0.198 | 0.270
EmQL(ours) | 0.998 0.988 0949 0.902 0.867 | 0.892 0.909 0.947 0.934 | 0.932
- sketch 0.861 0.504 0352 0.554 0.581 | 0451 0475 0.499 0.400 | 0.520
NELL995 | Q2B 0.652 0465 0412 0420 0.562 | 0.186 0.257 0.516 0.269 | 0.415
+d=2000 0.545 0409 0331 0357 0.526 | 0.155 0.217 0399 0.253 | 0.355
EmQL(ours) | 0.990 0990 0971 0996 0.996 | 0.987 0.987 0.988 0.985 | 0.988
- sketch 0939 0.750 0.462 0.952 0954 | 0.851 0.871 0.653 0.702 | 0.793

Table 4: MRR results on the Query2Box datasets.

Train Dev Test
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274
WebQuestionsSP 2,848 250 1,639

(a) Number of train/dev/test data

Triples Entities Relations
MetaQA 392,906 43,230 18
WebQuestionsSP 1,352,735 904,938 695
(b) Size of KB

Table 5: Statistics for the MetaQA and WebQuestionsSP datasets.

D.2.3 WebQuestionsSP

We use pre-trained BERT to encode our question g, i.e., encode(q) is the BERT embedding of the
[CLS] token. The relation sets Ry, Ro, R are linear projections of the question embedding encode(q)
paired with a vacuous all-ones sketch by. Relation centroids are stacked with one extra dimension
that encodes the hard-type of entities: here the hard-type is a binary value that indicates if the entity
is a cvt node or not.

For this dataset, to make the entities and relations easier to predict from language, the embedding
of each entity was adapted to include a transformation of the BERT encoding of the surface form
of the entity names. Let eg be the embedding of the [CLS] token from a BERT [3] encoding of the
canonical name for entity , and let el be a vector unique to z. Our pre-trained embedding for z is
then e, = [WTeg; e;] p, where W is a learned projection matrix. The embedding of relation 7 is
set to the BERT encoding ([CLS] token) of the canonical name of relation r. In this experiments
the BERT embeddings are transformed to 128 dimensions and the entity-specific portion el has a
dimension of 32. The scaling parameter for relation A is 0.1.

The KB embedding is fixed after pre-training. We use a count-min sketch with depth Np = 20 and
width Ny = 2000, and we retrieve k£ = 1000 intermediate results at each step.

In the ablation study, we did two more experiments on the WebQuestionsSP dataset. First, we
remove the BERT pre-trained embedding, and instead randomly initialize the KB entity and relation
embeddings, and train the set operations. The performance of EmQL (no-bert) on the downstream
QA task is 1.3% lower than our full model. Second, we replace the exact MIPS with a fast maximal
inner-product search [4]. This fast MIPS is an approximation of MIPS that eventually causes 2.1%
drop in performance (Table [6).

WebQuestionsSP
EmQL 75.5
EmQL (no-sketch) 53.2
EmQL (no-filter) 65.2
EmQL (approx. MIPS) 73.4
EmQL (no-bert) 74.2

Table 6: Ablation study on WebQuestionsSP

References

[1] Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58-75, 2005.

[2] Amit Daniely, Nevena Lazic, Yoram Singer, and Kunal Talwar. Sketching and neural networks.
arXiv preprint arXiv:1604.05753, 2016.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[4] Stephen Mussmann and Stefano Ermon. Learning and inference via maximum inner product
search. In International Conference on Machine Learning, pages 25872596, 2016.

	Notation
	Background on count-min sketches
	Definitions
	Linearity and implementation nodes
	Probabilistic bounds on accuracy

	Set difference
	More experiment details
	Learn to reason over a KB
	Question answering
	Datasets
	MetaQA
	WebQuestionsSP

