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A Notation

The notation used in this paper is summarized in Table 1.

W,X, Y sets of entities
R set of relations
r a single relation
x, y entities
xi entity with index i

A,B set of anything (entities or relations)
U universal set
vA a k-hot vector for a set A

r(x, y) asserts this triple is in the KB
E matrix of entity embeddings
ex, er embedding of entity x, relation r
ei embedding of entity with index i, i.e. ei = E[i, :]
KB matrix of triple embeddings, i.e., row for r(x, y) is [er; ex; ey]

(aX ,bX) area and sketch that represent set X
CM(i,b) score for entity i in the count-min sketch b
X.follow(R) soft version of {y | ∃r ∈ R, x ∈ X : r(x, y)}
X.filter(R, Y ) soft version of {x ∈ X | ∃r ∈ R, y ∈ Y : r(x, y)}

Table 1: Notation used in the paper, excluding notation used only in § B

B Background on count-min sketches

B.1 Definitions

Count-min sketches [1] are a widely used randomized data structure. We include this discussion for
completeness, and our analysis largely follows [2].

A count-min sketch, as used here, is an approximation of a vector representation of a weighted set.
Assume a universe U which is a set of integer “object ids” from {1, . . . , N}. A set A ⊆ U can be
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encoded as a vector vA ∈ IRn such that vA[i] = 0 if i 6∈ S, and otherwise vA[i] is a real-numbered
weight for entity i in set S. The purpose of the count-min sketch is to approximate vA with limited
storage.

Let h be a hash function mapping {1, . . . , N} to a smaller range of integers {1, . . . , NW }, where
NW � N . The primitive sketch of vA under h, written sh(vA), is a vector such that

sh(vA)[j] =
∑

i:h(i)=j

vA[i]

Algorithmically, this vector could be formed by starting with an all-zero’s vector of length NW , then
looping over every pair (i, wi) where wi = vA[i] and incrementing each sh[j] by wi. A primitive
sketch sh contains some information about vA: to look up the value vA[i], we could look up sh[h(i)],
and this will have the correct value if no other set element i′ hashed to the same location. We can
improve this by using multiple hash functions.

Specifically, let H = {h1, . . . , hND
} be a list of ND hash functions mapping {1, . . . , N} to the

smaller range of integers {1, . . . , NW }. The count-min sketch SH(vA) for a vA under H is a matrix
such that each row j is the primitive sketch of vA under hj . This sketch is an NW ×ND matrix: NW
is called the sketch width and ND is called the sketch depth.

Let S be the count-min sketch for A. To “look up” (approximately recover) the value of vA[i], we
compute this quantity

CM(i,S) ≡
ND

min
j=1

S[j, hj(i)]

In other words, we look up the hashed value associated with i in each of the ND primitive sketches,
and take the minimum value.

B.2 Linearity and implementation nodes

Count-min sketches also have a useful “linearity” property, inherited from primitive sketches. It is
easy to show that for any two sets A and B represented by vectors vA and vB

SH(vA + vB) = SH(vA) + SH(vB)
SH(vA � vB) = SH(vA)� SH(vB)

Here, as elsewhere in this paper, � is Hadamard product.

In general, although it is mathematically convenient to define the behavior of sketches in reference to
k-hot vectors, it is not necessary to construct a vector vA to construct a sketch: all that is needed is
the non-zero weights of the elements of A. Alternatively, if one precomputes and stores the sketch for
each singleton set, it is possible to create sketches for an arbitrary set by gathering and sum-pooling
the sketches for each element.

B.3 Probabilistic bounds on accuracy

We assume the hash functions are random mappings from {1, . . . , N} to {1, . . . , NW }. More
precisely, we assume that for all i ∈ {1, . . . , N}, and all j ∈ {1, . . . , NW }, Pr(hi(x) = a) = 1

NW
.

We will also assume that the ND hash functions are are all drawn independently at random. More
precisely, for all i 6= i′, i, i′ ∈ {1, . . . , N}, all j, j′ ∈ {1, . . . , ND} and all k, k′ ∈ {1, . . . , NW },
Pr(hj(i) = k ∧ hj′(i′) = k′) = 1

N2
W

.

Under this assumption, the probability of errors can be easily bounded. Suppose the sketch width is
at least twice the cardinality of A, i.e., |A| < m and NW > 2m. Then one can show for all primitive
sketches j:

Pr(S[j, hj(i)] 6= vA[i]) ≤
1

2

From this one can show that the probability of any error in a count-min sketch decreases exponentially
in sketch depth. (This result is a slight variant of one in [2].)
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Theorem 1 Assuming hash functions are random and independent as defined above, then if S is a
count-min sketch for A of depth ND, and NW > 2|A|, then

Pr(CM(S, i) 6= vA[i]) ≤
1

2ND

This bound applies to a single CM operation. However, by using a union bound it is easy to assess
the probability of making an error in any of a series of CM operations. In particular, we consider the
case that there is some set of candidates C including all entities in A, i.e., A ⊆ C ⊆ U , and consider
recovering the set A by performing a CM lookup for every i′ ∈ C. Specifically, we say that A can be
recovered from S using C if A ⊆ C and

∀i′ ∈ C,CM(i′,S) = vA[i′]

Note that this implies the sketch must correctly score every i′ ∈ C −A as zero. Applying the union
bound to Theorem 1 leads to this result.

Theorem 2 Let S be a count-min sketch for A of depth ND and with NW > 2|A|, and let C ⊇ A. If
ND > log2

|C|
δ then with probability at least 1-δ, A can be recovered from S using C.

Many other bounds are known for count-min sketches: perhaps the best-known result is that for
NW > 2

ε and ND > log 1
δ , the probability that CM(i,S) > vA[i] + ε is no more than δ [1]. Because

there are many reasonable formal bounds that might or might not apply in an experimental setting,
typically the sketch shape is treated as a hyperparameter to be optimized in experimental settings.

C Set difference

Another operation we use is set difference: e.g. “movie directors but not writers” requires one to
compute a set difference Adirectors −Bwriters. In computing a set difference, the soft-type of the output
A−B is the same as that of A, and we exclude the necessary elements from the count-min sketch to
produce (aA−B ,bA−B), where

aA−B = aA
bA−B = bA � (b 6= 0)

This is exact when B is unweighted (the case we consider here), but only approximates set difference
for general weighted sets.

D More experiment details

D.1 Learn to reason over a KB

The statistics of the Query2Box datasets are shown in Table 2.

We also measure the MRR on the Query2Box datasets. The results are presented in Table 3 and 4.

D.2 Question answering

D.2.1 Datasets

The statistics of MetaQA and WebQuestionsSP datasets are listed in Table 5. For WebQuestionsSP,
we used a subset of Freebase obtained by gathering triples that are within 2-hops of the topic entities
in Freebase. We exclude a few extremely common entities and restrict our KB subset so there are at
most 100 tail entities for each subject/relation pair (reflecting the limitation of our model to sets of
cardinality less than 100).

D.2.2 MetaQA

MetaQA makes use of the set difference operation. For example, to answer the question “What
are other movies that have the same director as Inception?”, we need to first find the director of
Inception, Christopher Nolan, and all movies directed by him. Since the question above asks about
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Entities Relations Training Triples Test Triples Total Triples
FB15k 14,951 1,345 533,142 59,071 592,213

FB15k-237 14,505 237 289,641 20,438 310,079
NELL995 63,361 200 128,537 14,267 142,804

(a) Size of splits into train and test for all the Query2Box KBs.

Train Test
task Basic sets Follow (1p) Intersection Follow (1p) Others

FB15k 11,611 96,750 355,966 67,016 8,000
FB15k-237 11,243 50,711 191,934 22,812 5,000
NELL995 19,112 36,469 108,958 17,034 4,000

(b) Number of training and testing examples of the Query2Box datasets. Training data for EmQL are derived
from the same training KB as Query2Box. EmQL is directly evaluated on the same test data without further
fine-tuning.

Table 2: Statistics for the Query2Box datasets.

generalization 1p 2p 3p 2i 3i ip pi 2u up Avg
FB15k GQE 63.6 34.6 25.0 51.5 62.4 15.1 31.0 37.6 27.3 38.7

Q2B 78.6 41.3 30.3 59.3 71.2 21.1 39.7 60.8 33.0 48.4
+d=2000 54.3 32.0 27.0 35.5 50.7 13.7 27.0 44.1 26.3 34.5

EmQL(ours) 42.4 50.2 45.9 63.7 70.0 60.7 61.4 9.0 42.6 49.5
- sketch 50.6 46.7 41.6 61.8 67.3 54.2 53.5 21.6 40.0 48.6

FB15k-237 GQE 40.5 21.3 15.5 29.8 41.1 8.5 18.2 16.9 16.3 23.1
Q2B 46.7 24 18.6 32.4 45.3 10.8 20.5 23.9 19.3 26.8
+d=2000 37.2 20.7 19.4 22.6 37.1 9.7 16.8 20.0 17.8 22.4

EmQL(ours) 37.7 34.9 34.3 44.3 49.4 40.8 42.3 8.7 28.2 35.8
- sketch 43.1 34.6 33.7 41.0 45.5 36.7 37.2 15.3 32.5 35.5

NELL995 GQE 41.8 23.1 20.5 31.8 45.4 8.1 18.8 20.0 13.9 24.8
Q2B 55.5 26.6 23.3 34.3 48.0 13.2 21.2 36.9 16.3 30.6
+d=2000 49.1 22.1 17.5 21.4 39.9 8.9 17.2 26.4 8.1 23.4

EmQL(ours) 41.5 40.4 38.6 62.9 74.5 49.8 64.8 12.6 35.8 46.8
- sketch 48.3 39.5 35.2 57.2 69.0 48.0 59.9 25.9 38.2 46.8

entailment
FB15k Q2B 68.0 39.4 32.7 48.5 65.3 16.2 32.9 61.4 28.9 43.7

+d=2000 59.0 36.8 30.2 40.4 57.1 14.8 28.9 49.2 28.7 38.3
EmQL(ours) 98.5 96.3 91.1 91.4 88.1 87.8 89.2 88.7 91.3 91.4

- sketch 85.1 50.8 42.4 64.4 66.1 50.4 53.8 43.2 42.7 55.5
FB15k-237 Q2B 58.5 34.3 28.1 44.7 62.1 11.7 23.9 40.5 22.0 36.2

+d=2000 50.7 30.1 26.1 34.8 55.2 11.4 20.6 32.8 21.5 31.5
EmQL(ours) 100.0 99.5 94.7 92.2 88.8 91.5 93.0 94.7 93.7 94.2

- sketch 89.3 55.7 39.9 62.9 63.9 51.9 54.7 53.8 44.7 57.4
NELL995 Q2B 83.9 57.7 47.8 49.9 66.3 19.9 29.6 73.7 31.0 51.1

+d=2000 75.7 49.9 36.9 40.5 60.1 17.1 25.6 63.5 24.4 43.7
EmQL(ours) 99.0 99.0 97.1 99.7 99.6 98.7 98.9 98.8 98.5 98.8

- sketch 94.5 77.4 52.9 97.4 97.5 88.1 90.8 70.4 73.5 82.5
Table 3: Detailed Hits@3 results for all the Query2Box datasets.

other movies, the model should also remove the movie Inception from this set to obtain the final
answer set Y . Thus in the first line of our model, we write

Ŷ = Xq.follow(R1).follow(R2)−Xq

For MetaQA, the entity embedding is just a learned lookup table. The question representation
encode(q) is computed with a bag-of-word approach, i.e., an average pooling on the word embeddings
of question q. The embedding size is 64, and scaling parameter for relation λ is 1.0. Our count-min
sketch has depth ND = 20 and width NW = 500. We set k = 100 to be the number of entities we
retrieve at each step, and we pre-train KB embeddings and fix the embeddings when training our QA
model.
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generalization 1p 2p 3p 2i 3i ip pi 2u up Avg
FB15k GQE 0.505 0.320 0.222 0.439 0.536 0.142 0.280 0.300 0.242 0.332

Q2B 0.654 0.373 0.274 0.488 0.602 0.194 0.339 0.468 0.301 0.410
+d=2000 0.461 0.289 0.242 0.292 0.421 0.130 0.236 0.342 0.235 0.294

EmQL(ours) 0.368 0.452 0.409 0.574 0.609 0.556 0.538 0.074 0.375 0.439
- sketch 0.453 0.418 0.362 0.556 0.592 0.503 0.482 0.182 0.351 0.433

FB15k-237 GQE 0.346 0.193 0.145 0.250 0.355 0.086 0.156 0.145 0.151 0.203
Q2B 0.400 0.225 0.173 0.275 0.378 0.105 0.18 0.198 0.178 0.235
+d=2000 0.322 0.196 0.185 0.193 0.318 0.095 0.149 0.174 0.166 0.200

EmQL(ours) 0.334 0.305 0.304 0.378 0.436 0.351 0.358 0.075 0.241 0.309
- sketch 0.370 0.297 0.306 0.345 0.400 0.311 0.306 0.129 0.272 0.304

NELL995 GQE 0.311 0.193 0.175 0.275 0.408 0.080 0.170 0.159 0.130 0.211
Q2B 0.413 0.227 0.208 0.288 0.414 0.125 0.193 0.266 0.155 0.254
+d=2000 0.308 0.174 0.151 0.171 0.350 0.083 0.150 0.183 0.087 0.184

EmQL(ours) 0.372 0.351 0.349 0.539 0.654 0.441 0.561 0.105 0.311 0.409
- sketch 0.431 0.349 0.300 0.493 0.588 0.423 0.527 0.22 0.324 0.406

entailment
FB15k Q2B 0.559 0.347 0.288 0.389 0.553 0.145 0.280 0.444 0.257 0.362

+d=2000 0.498 0.327 0.274 0.336 0.492 0.139 0.251 0.386 0.257 0.329
EmQL(ours) 0.983 0.961 0.908 0.908 0.872 0.881 0.883 0.887 0.910 0.910

- sketch 0.819 0.448 0.368 0.564 0.580 0.420 0.466 0.385 0.383 0.492
FB15k-237 Q2B 0.476 0.301 0.249 0.364 0.638 0.113 0.207 0.311 0.203 0.318

+d=2000 0.432 0.262 0.233 0.292 0.466 0.109 0.183 0.255 0.198 0.270
EmQL(ours) 0.998 0.988 0.949 0.902 0.867 0.892 0.909 0.947 0.934 0.932

- sketch 0.861 0.504 0.352 0.554 0.581 0.451 0.475 0.499 0.400 0.520
NELL995 Q2B 0.652 0.465 0.412 0.420 0.562 0.186 0.257 0.516 0.269 0.415

+d=2000 0.545 0.409 0.331 0.357 0.526 0.155 0.217 0.399 0.253 0.355
EmQL(ours) 0.990 0.990 0.971 0.996 0.996 0.987 0.987 0.988 0.985 0.988

- sketch 0.939 0.750 0.462 0.952 0.954 0.851 0.871 0.653 0.702 0.793
Table 4: MRR results on the Query2Box datasets.

Train Dev Test
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274
WebQuestionsSP 2,848 250 1,639

(a) Number of train/dev/test data
Triples Entities Relations

MetaQA 392,906 43,230 18
WebQuestionsSP 1,352,735 904,938 695

(b) Size of KB
Table 5: Statistics for the MetaQA and WebQuestionsSP datasets.

D.2.3 WebQuestionsSP

We use pre-trained BERT to encode our question q, i.e., encode(q) is the BERT embedding of the
[CLS] token. The relation setsR1,R2,R3 are linear projections of the question embedding encode(q)
paired with a vacuous all-ones sketch bI. Relation centroids are stacked with one extra dimension
that encodes the hard-type of entities: here the hard-type is a binary value that indicates if the entity
is a cvt node or not.

For this dataset, to make the entities and relations easier to predict from language, the embedding
of each entity was adapted to include a transformation of the BERT encoding of the surface form
of the entity names. Let e0x be the embedding of the [CLS] token from a BERT [3] encoding of the
canonical name for entity x, and let e1x be a vector unique to x. Our pre-trained embedding for x is
then ex =

[
WT e0x; e1x

]
p, where W is a learned projection matrix. The embedding of relation r is

set to the BERT encoding ([CLS] token) of the canonical name of relation r. In this experiments
the BERT embeddings are transformed to 128 dimensions and the entity-specific portion e1x has a
dimension of 32. The scaling parameter for relation λ is 0.1.
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The KB embedding is fixed after pre-training. We use a count-min sketch with depth ND = 20 and
width NW = 2000, and we retrieve k = 1000 intermediate results at each step.

In the ablation study, we did two more experiments on the WebQuestionsSP dataset. First, we
remove the BERT pre-trained embedding, and instead randomly initialize the KB entity and relation
embeddings, and train the set operations. The performance of EmQL (no-bert) on the downstream
QA task is 1.3% lower than our full model. Second, we replace the exact MIPS with a fast maximal
inner-product search [4]. This fast MIPS is an approximation of MIPS that eventually causes 2.1%
drop in performance (Table 6).

WebQuestionsSP
EmQL 75.5
EmQL (no-sketch) 53.2
EmQL (no-filter) 65.2
EmQL (approx. MIPS) 73.4
EmQL (no-bert) 74.2
Table 6: Ablation study on WebQuestionsSP
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