
A Detailed Algorithm for Continual Learning

Algorithm 2 summarizes the pipeline of applying firefly descent on growing neural architectures for
continual learning problems.

Algorithm 2 Firefly Steepest Descent for Continual Learning
Input : A stream of datasets {D1,D2, . . . ,DT };
for task t = 1 : T do

if t = 1 then

Train f1 on D1 for several epochs until convergence.
Set mask m1 to all 1 vector over f1.

else

Denote ft f1:t�1 and lock its weights.
Train a binary mask mt over ft on Dt for several epochs until convergence.

end if

ft = ft[mt] // ft is re-initialized as the selected old neurons from f1:t�1 with their weights fixed.
while ft can not solve task t sufficiently well do

if t = 1 then

Grow ft by splitting existing neurons and growing new neurons.
else

Grow ft by unlocking existing neurons and growing new neurons.
end if

Train ft on Dt

end while

Update mt as the binary mask over ft.
Record the network mask mt, f1:t = f1:1�t [ft.

end for

B Experiment Detail

B.1 Toy RBF Network

We construct a following one-dimensional two-layer radial-basis function (RBF) neural network with
one-dimensional inputs,

f(x) =
mX

i=1

wi�(✓i1x+ ✓i2), where �(t) = exp

✓
�
t
2

2

◆
, x 2 R, (6)

where wi 2 R and ✓i = [✓1i, ✓2i] are the input and output weights of the i-th neuron, respectively. We
generate our true function by drawing m = 15 neurons with wi and ✓i i.i.d. from N (0, 3). For dataset
{x

(`)
, y

(`)
}
1000
`=1 , we generate them with x

(`) drawing from Uniform([�5, 5]) and let y(`) = f(x(`)).
We apply various growing methods to grow the network from one single neuron all the way up to 12
neurons.

For the new initialized neurons introduce during the growing in RandSearch and Firefly, we draw
the neruons from N(0, 0.1). For RandSearch, we finetune all the randomly grow networks for 100
iterations. For Firefly, we also train the expanded network for 100 iterations before calculating
the score and picking the neurons. Further, We update 10,000 iterations between two consecutive
growing.

B.2 Growing Wider and Deeper Networks

Setting for Growing Wider Networks For all the experiment including Net2Net, splitting steepest
descent, NASH and our firefly descent, we grow 30% more neurons each time. Between two
consecutive grows, we finetune the network for 160 epochs.

For splitting steepest descent, we follow exactly the same setting as in Liu et al. (2019).

12

For NASH, we only apply “Network morphism Type II” operation described in Elsken et al. (2017),
which is equivalent to growing the network width by randomly splitting the existing neurons.. During
the search phase, we follow the original paper’s setting, sample 8 neighbour networks, train each of
them for 17 epochs and choose the best one as the grow result.

For firefly descent, we grow a network by both splitting existing neurons and adding brand new
neurons for widening the network; When growing, we split all the existing neurons and add m

0 = 50
brand new neurons draw from N(0, 0.1). We will also train the expanded network for 1 epoch before
calculating the score and picking the neurons.

Growing Wider MobileNet V1 We also compare firefly with other growing method on MobileNet
V1 using CIFAR-100 dataset. Same as Wu et al. (2020), we start from a thinner MobilNet V1 with
32 channels in each layer. We grow 35% more neurons each time, the other settings are same as the
previous growing wider networks’ setting.

4% 8% 12% 16% 20%

62

66

70

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
1Ht21Ht
6plitting
1A6H
FirHfly
BasHlinH

1Ht21Ht SSlitting 1ASH FirHfly

1000

2000

3000 1Ht21Ht
SSlitting
1ASH
FirHflyTi

m
e

(s
)

A
cc

ur
ac

y

(a) (b)

1Ht21Ht SSlitting 1ASH FirHfly

500

1000

1500

2000

721

1681

203

Figure 6: Results and time consumption of growing increasingly wider networks on CIFAR-100
using MobileNet V1 backbone

Figure 6 again shows that firefly splitting can out perform various of growing baseline on the same
backbone network. Meanwhile, its time cost is much smaller than splitting and NASH algorithm.

Growing Deeper Networks We test firefly descent for growing network depth. We build a network
with 4 blocks. Each block contains numbers of convolution layers with kernel size 3. The first
convolution layer in each block is stride two. For a simple and clear explanation, we mark the number
of layers in these 4 blocks as 12-12-12-12, for example, which means each block contains 12 layers.
Begin from 1-1-1-1, we grow the network using firefly descent on MNIST, FashionMNIST, SVHN,
and compare it with AutoGrow Wen et al. (2019) and NASH Elsken et al. (2017).

For our method, we start from a 1-1-1-1 network with 16 channels in each layer. We also insert 11
identity layers in each block, which roughly match the final number of layers in AutoGrow. We apply
our growing layer strategy described in Section 2.3 for growing new layers and apply both splitting
existing neurons and adding brand new neurons for widening the existing layers. When growing
new layers, we introduce m

0 = 20 new neurons in each Identity map layers, when increasing the
width of the existing layers, we split all the existing neurons and add m

0 = 20 new neurons. After
expanding the network, we train the network for 1 epoch before calculating the score. If the Identity
layer remains 2 or more new neurons after selection, we add this Identity layers in the network and
train with the existing network together. Otherwise, we will remove all the new neurons and keep this
layer as an Identity map. For the existing neurons, we grow 25% of the total width.

For NASH, we apply “Network morphism Type I” and “Network morphism Type II” together, which
represent growing depth by randomly insert identity layer and growing width by randomly splitting
the existing neurons. During the search phase, we follow the original paper’s setting, sample 8
neighbor networks, train each of them for 17 epochs and choose the best one as the growing result.
Each time when sampling the neighbour networks, we grow the total width of the existing layers by
25% and then randomly insert one layer in each blocks.

For both our method and NASH, we grow 11 steps and finetune 40 epochs after each grow step. We
also retrain the searched network for 200 epochs after the last grow to get the final performance on
each dataset.

For AutoGrow, we use the result report in the original paper.

Table B.2 shows the result. We can see our method can grow a smaller network to achieve the
AutoGrow’s performance and outperform the network searched with NASH.

13

Dataset Method Structure Param (M) Accuracy

MNIST
AutoGrow Wen et al. (2019) 13-12-12-12 2.3 99.57
NASH Elsken et al. (2017) 12-12-12-12 2.0 99.50

Firefly 12-12-12-12 1.9 99.59

FashionMNIST
AutoGrow Wen et al. (2019) 13-13-13-13 2.3 94.47
NASH Elsken et al. (2017) 12-12-12-12 2.2 94.34

Firefly 12-12-12-12 2.1 94.48

SVHN
AutoGrow Wen et al. (2019) 12-12-12-11 2.2 97.08
NASH Elsken et al. (2017) 12-12-12-12 2.0 96.90

Firefly 12-12-12-12 1.9 97.08
Table 3: Result on growing Depth comparing with two baselines

B.3 Application on Neural Architecture Search

Following the setting in DARTS (Liu et al., 2018b), we separate half of the CIFAR-10 training set as
the validation set for growing. We start with a stacked 5 cell network for searching, the second and
the fourth cell are reduction cells, which means all the operations next to the input of the cells are set
to stride two. In each cell, we build the SepConv and DilConv operation blocks following DARTS
(Liu et al., 2018b). To apply our firefly descent, we grow the last convolution layer in each block and
add a linear transform layer with the same output channels to ensure all the operations on the same
edge can sum up in the same size as the output. The number of channels of the operations in each cell
is set to 4-8-8-16-16, which is 0.25⇥ of that in the original Darts. The last linear transform layer in
each cell has channels 16-32-32-64-64. We grow the network by both splitting existing neurons and
adding brand new neurons, and each time we sequentially select one cell to grow. We repeat growing
the whole 5 cells twice, which means we apply our firefly descent for 10 times in total. Each time, we
split all the existing neurons in the chosen cell and add 4, 8, 8, 16, 16 brand new neurons differently
for the 5 cells. We then train the expanded network for 5 epochs and select 25% neurons to grow. As
a result, we search the network structure for 100 epochs in total. All other training hyperparameters
are set to the same values as in DARTS (Liu et al., 2018b).

After searching, we select the operation with the largest width in each edge as the final operation.
Besides, if all operations on the same edge grow less than 20% comparing to the initial width, we
assign this edge as Identity map in the final structure. We only keep the type of operations in the cell
as our final search result because we need to increase the channel width to match the model size with
the baselines.

For the final evaluation, we sequentially stack a 20 cell network and mark those cells as 1-20. We
apply the search result of the first, second, third, fourth, and the fifth cell in the 5 stacked search
network to cell 1-6, cell 7, cell 8-13, cell 14, and cell 15-20 of the final evaluation network accordingly.
We increase the initial channel to 40 to match the model size with other baselines. The other training
settings are kept the same as in DARTS (Liu et al., 2018b). Our result is averaged over 5 runs from
our final evaluation model.

B.4 Continual Learning

For both 10-way split CIFAR-100 and 20-way split CIFAR-100, we repeat the experiment 3 times
with 3 different task splits. We apply both the copy-exist-neuron and grow-new-neuron strategies to
tackle the CL problem. During each growing iteration, we add 15 brand new neurons for each layer
as candidates for growing. After expanding the network, we finetune the network for 50 epochs on
the new task. During the selection phase, for 20-way split CIFAR-100, we select out the top 256
neurons among all the copied neurons and new neurons. For 10-way split CIFAR-100, we select the
top 32, 128, 196, 256, 320, 384, 448, 512 neurons each time to test our performance under different
model size. After selecting the neurons, we finetune the expanded network on the new task for 100
epochs.

14

	Introduction
	Firefly Neural Architecture Descent
	The General Framework
	Growing Network Width
	Growing New Layers
	Growing Networks in Continual Learning

	Empirical Results
	Related Works
	Conclusion
	Detailed Algorithm for Continual Learning
	Experiment Detail
	Toy RBF Network
	Growing Wider and Deeper Networks
	Application on Neural Architecture Search
	Continual Learning

