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Abstract

Reinforcement learning (RL) algorithms can fail to generalize due to the gap
between the simulation and the real world. One standard remedy is to use robust
adversarial RL (RARL) that accounts for this gap during the policy training, by
modeling the gap as an adversary against the training agent. In this work, we
reexamine the effectiveness of RARL under a fundamental robust control setting:
the linear quadratic (LQ) case. We first observe that the popular RARL scheme that
greedily alternates agents’ updates can easily destabilize the system. Motivated by
this, we propose several other policy-based RARL algorithms whose convergence
behaviors are then studied both empirically and theoretically. We find: i) the
conventional RARL framework (Pinto et al., 2017) can learn a destabilizing policy
if the initial policy does not enjoy the robust stability property against the adversary;
and ii) with robustly stabilizing initializations, our proposed double-loop RARL
algorithm provably converges to the global optimal cost while maintaining robust
stability on-the-fly. We also examine the stability and convergence issues of other
variants of policy-based RARL algorithms, and then discuss several ways to learn
robustly stabilizing initializations. From a robust control perspective, we aim to
provide some new and critical angles about RARL, by identifying and addressing
the stability issues in this fundamental LQ setting in continuous control. Our results
make an initial attempt toward better theoretical understandings of policy-based
RARL, the core approach in Pinto et al., 2017.

1 Introduction

Reinforcement learning (RL) can fail to generalize due to the gap between the simulation and the real
world. One common remedy for this is to use robust adversarial RL (RARL) that accounts for this
gap during the policy training, by modeling the gap as an adversary against the training agent [1, 2].
To achieve the goal of learning a policy that is robust against a family of possible model uncertainties,
RARL jointly trains a protagonist and an adversary, where the protagonist learns to robustly perform
the control tasks under the possible disturbances generated by its adversary. Despite the recent
development of various robust RL algorithms, especially for continuous control tasks [2, 3, 4, 5, 6],
there is no clean baseline delineating the robustness of the policies learned by such a framework.
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Motivated by the deep connection between RARL and robust control theory, this paper reexamines
the effectiveness of RARL under a fundamental robust control setting: the linear quadratic (LQ) case.
Specifically, we consider a RARL setting where the state transition follows linear dynamics, and the
reward/cost of the protagonist and the adversary is quadratic in the state and the joint control actions.
Such a linear quadratic setting is one of the most fundamental models for robust control [7, 8], and
can be viewed as the robust version of the classic linear quadratic regulator (LQR) model, one of the
most fundamental models in continuous control and RL [9, 10, 11, 12]. Such a model also fits within
the general RARL proposed in the pioneering work [2], with continuous state-action spaces.

The popular RARL scheme with a policy optimization framework [2], though enjoying great empirical
successes, has not yet been put on a solid theoretical footing. Some pressing issues are whether/where
the policy-based RARL scheme converges, what robust performance can be guaranteed, and whether
it preserves certain robustness during learning. None of these issues have been rigorously resolved
in RARL. Nonetheless, these issues are of paramount importance when applying RARL to control
systems, especially safety-critical ones. A non-convergent algorithm and/or a failure to preserve
robustness or even stability during learning, i.e., robust/stable on-the-fly, can cause detrimental
consequences to the system. A destabilized system cannot be used for learning anymore, as the
objective is then not even well-defined. See more discussions in §3. In this work, we make an attempt
toward addressing these questions, by reexamining RARL in the LQ setup. Inspired by the recent
results on policy-based RL for LQR [10, 13, 14, 15, 16, 17, 18] and related variants [19, 20, 21], we
develop new theoretical results on the stability and convergence of LQ RARL.

In this paper, we first observe some negative results by applying the popular policy-based RARL
scheme from [2] onto the LQ setup: the alternating update as in [2] can easily destabilize the system.
We identify that guaranteeing stability during learning is non-trivial, which critically relies on both
the update rule and the controller1 initialization. Some seemingly reasonable initializations, e.g.,
simply a stabilizing controller, can still fail. Motivated by this, we develop an update-initialization
pair that provably guarantees both robust stability and convergence. It seems that both the stability
issues (negative results) and the significance of robust stability (positive results) have been overlooked
in the RARL literature, if they were to be applied in continuous control tasks. We highlight our
contributions as follows:

• We identify several stability issues of the popular RARL scheme in the LQ setup, showing that
guaranteeing robust stability during learning requires a non-trivial intertwinement of update rules
and controller initializations.
• We propose a double-loop natural policy gradient (PG) algorithm which updates the protago-

nist’s policy incrementally. We prove that this algorithm, with some robust-control meaningful
initialization, is guaranteed to maintain robust stability on-the-fly and leads to convergence to
the optimal cost. We also explore the potential stability and convergence issues of several other
algorithm variants.
• We develop new robustification techniques, from anH∞-robust control perspective, to learn such

robustly stabilizing initializations, with empirical validations.

We expect that both our theoretical and experimental findings will shed new lights on RARL, from a
rigorous robust control perspective. We also note that although our system dynamics are linear, our
model can handle general nonlinear disturbances, which can be viewed as the approximation error of
linearizing nonlinear dynamics.

Related work. Exploiting an adversary to tackle model-uncertainty and improve sim-to-real per-
formance in RL dates back to [1], which, interestingly, stemmed from theH∞-robust control theory.
Actor-critic robust RL algorithms were proposed therein, though without theoretical guarantees for
either convergence or stability. This minimax idea was then carried forward in the popular RARL
scheme [2], with great empirical successes, which has then been followed up and improved in [22, 23].
The policy-based RARL algorithms therein serve as the starting point for our work. Following the
same worst-case modeling idea for uncertainty, robust RL has also been investigated in the realm
of robust Markov decision processes (MDPs) [24, 25, 26]. Our LQ RARL setup can be viewed as a
specification of robust MDP in the continuous control context. Other recent advances on robust RL
for continuous control include [4, 5, 27, 6]. An increasing attention has also been paid to ensuring
robustness and stability in general data-driven control [28, 29, 30].

1Hereafter, we will use policy and controller interchangeably.

2



Our LQ RARL model has a strong connection to LQ zero-sum dynamic games [31], due to the
significant role it plays inH∞-control [32, 7]. Recently, several provably convergent policy-based RL
methods have been developed for this zero-sum setting [33, 34, 35, 36], together with some negative
results for general-sum LQ games [37]. In [33], the first convergence study of direct policy search
for LQ games was established with a projection operation on the iterates, which however can be
restrictive, with only few robust control implications. In [34], the projection was removed through
the lens of robust control, and the results in [33] were improved based on an implicit regularization
argument, showing that certain policy-based algorithms can preserve robustness during iterations
automatically. An independent work [35] then also removed the projection, with a different proof
technique and under different assumptions. In this aspect, our analysis in the present work mainly
relies on our own techniques developed in [34], and our assumptions align with the standard ones in
the robust control literature. More recently, approximate policy iteration algorithms have also been
proposed for LQ zero-sum games with stochastic parameters [36].

2 Preliminaries

2.1 LQ RARL and Robust Control

We first introduce some background on LQ RARL and its close connection to robust control. Consider
a linear dynamical system

xt+1 = Axt +But + Cwt, (2.1)

where the system state is xt ∈ Rd, the control input of the agent at time t is ut ∈ Rm1 , the
disturbance or any unmodeled error at time t is denoted by wt ∈ Rm2 . The matrices satisfy
A ∈ Rd×d, B ∈ Rd×m1 , and C ∈ Rd×m2 . We define the one-stage cost as ct(xt, ut, wt) :=
x>t Qxt + u>t R

uut − w>t Rwwt with some positive definite matrices Q ∈ Rd×d, Ru ∈ Rm1×m1 ,
and Rw ∈ Rm2×m2 . Then, the objective of the learning agent is to find {ut}t≥0 to minimize an
accumulative cost subject to the worst-case disturbance:

min
{ut}t≥0

sup
{wt}t≥0

C({ut}t≥0, {wt}t≥0) := E
[ ∞∑
t=0

ct(xt, ut, wt)

]
, (2.2)

where the expectation is taken over the trajectory {xt}t≥0. For simplicity, we assume that the only
randomness stems from the initial state x0 ∼ D, with some distribution D and E[x0x

>
0 ] = Σ0 > 0.

Remark 2.1 (LQ RARL Model). The model introduced above has been widely used in the robust
control literature [7, 8] to handle adversary/uncertainty in continuous control. It mirrors the standard
(finite) robust MDP setting for robust RL [38, 24, 25], where both the reward and the transition
model have some uncertainty, and a minimax formulation was also developed. In the LQ model, such
uncertainty also enters both the cost and the dynamics, through the disturbance wt. As such, this
LQ dynamic game can be viewed as a robust MDP substantiated in the continuous control context.
Such a minimax formulation has also been adopted in the RARL work [2], by treating {ut}t≥0 and
{wt}t≥0 as the protagonist’s actions and adversary’s attacks, respectively. Finally, since wt is allowed
to be a nonlinear feedback function of xt, we can also view (2.1) as a linear approximation of some
nonlinear model, with Cwt capturing the model approximation error. A desired controller should be
robust to this modeling error.

The formulation in (2.2) naturally leads to a zero-sum dynamic game, where the disturbance is viewed
as another player of the game besides the learning agent. At the Nash equilibrium (NE), the solution
concept of the game, a pair of control-disturbance sequences {u∗t }t≥0 and {w∗t }t≥0 satisfies

C({u∗t }t≥0, {wt}t≥0) ≤ C({u∗t }t≥0, {w∗t }t≥0) ≤ C({ut}t≥0, {w∗t }t≥0) (2.3)
for any {ut}t≥0 and {wt}t≥0. The NE control sequence {u∗t }t≥0 is robust, in that it minimizes the
cost against any causal worst-case disturbance. This minimax robustness argument is also used in
robust RL in the model of robust MDPs [24, 25] and RARL [2, 22, 23].

As such, it suffices to find the NE of the game, in order to obtain a robust controller. It is known that
the NE of the LQ game (2.2) can be attained by state-feedback controllers under standard assumptions
[7] (see Assumption A.1, which is made throughout this paper), i.e., there exists a pair of matrices
(K∗, L∗) ∈ Rm1×d×Rm2×d, such that u∗t = −K∗xt and w∗t = −L∗xt. Hence, it suffices to search
over the stabilizing control gain matrices (K,L) (policy parameters), for such NE. This naturally
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motivates the use of policy-based RARL schemes. Finally, we would like to point out that although
one NE disturbance w∗t = −L∗xt is in linear state-feedback form, the NE controller {u∗t }t≥0 can
tolerate even nonlinear disturbances [7]. Due to space limitation, more intuition on the robustness of
{u∗t }t≥0, and more background on the solution to (2.2), are deferred to §A.

2.2 Policy-Based LQ RARL Scheme

As mentioned above, policy-based RARL on the parameter pair (K,L) ∈ Rm1×d×Rm2×d can solve
(2.2). Indeed, such policy-based approaches have been the core of the popular RARL scheme in [2].
Thus, (2.2) can be equivalently re-written as

min
K

max
L
C(K,L) (2.4)

where the solution NE (K∗, L∗) satisfies C(K∗, L) ≤ C(K∗, L∗) ≤ C(K,L∗), and the cost
C(K,L) = Ex0∼D

(
x>0 PK,Lx0

)
, for any stablilizing policy pair (K,L) with ρ(A−BK −CL) < 1

[33, 35], when ut = −Kxt and wt = −Lxt are substituted in. PK,L here is the unique solution to
the Lyapunov equation

PK,L = Q+K>RuK − L>RwL+ (A−BK − CL)>PK,L(A−BK − CL). (2.5)

The policy gradient of C(K,L) with respect to K and L can be obtained using PK,L [33, 35].
More significantly, under standard conditions, the objective C(K,L), though nonconvex in K and
nonconcave in L, has a nice property that all stationary-points are NE. This justifies the use of
policy-based RARL in this setup, as finding first-order stationary-point is sufficient. We summarize
the PG formulas and landscape results in Lemmas A.3 and A.5 in §A.3.

Now it is tempting to follow the original RARL scheme in [2]. Specifically, it alternates between
the two players: the adversary improves its disturbing policy L with the agent’s policy K fixed; the
agent then learns its policy K with a fixed L. This sequence is repeated until convergence (if they do).
We summarize such a RARL scheme in Algorithm 1 in §A for completeness. We abstract out the
update rule for Kn and Ln as PolicyOptimizer functions, which can be policy gradient, or natural PG
updates that have been widely used in the LQ setup [10, 15, 33, 35]. Specifically, one can substantiate
the PolicyOptimizer as

L′ =

{
L+ η∇LC(K,L)Σ−1

K,L if NPG
L+ η∇LC(K,L) if PG

; K ′ =

{
K − η∇KC(K,L)Σ−1

K,L if NPG
K − η∇KC(K,L) if PG

,

where η > 0 is the stepsize and ΣK,L := Ex0∼D
∑∞
t=0 xtx

>
t is the state correlation matrix.

∇LC(K,L),∇KC(K,L), and ΣK,L can be estimated via sample trajectories, as in LQR [10, 39].

3 Stability Issues in Policy-Based LQ RARL

We first identify several stability issues of the RARL scheme in [2] in this LQ setup.
Remark 3.1 (Significance of Stability in Learning). Stability is a crucial property required for
learning-based control algorithms. Particularly, if the algorithm destabilizes the system during
learning, some catastrophic and irreversible consequences will be caused to the system. Moreover, the
cost to be minimized (cf. (2.2)) is not even well-defined, and thus the learning process cannot proceed.
Such an issue, if it exits, would only be worsened in sample-based learning, as the stochasticity in the
data brings in more instability. To better illustrate the issues, we focus here on an ideal case, where
the exact policy gradient is available. We show that even this ideal case will cause stability issues.

3.1 Stability Issue due to Bad Initialization

At a first glance, any policy pair (K0, L0) that stabilizes the system (2.1) can be a reasonable
initialization for Algorithm 1. However, such a naive initialization can cause severe instability.

Thought Experiment. It is reasonable to start with some K0 that stabilizes the system (2.1) when
there is no disturbance. Then (K, 0) stabilizes the system (2.1), and one can try to obtain L1 by
applying L′ = PolicyOptimizer(K0, L) with an initialization L = 0. Suppose the policy optimizer
works well and eventually leads to an exact solution L(K0) ∈ argmaxL C(K0, L) (if it exists). A
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(a) Stabilizing regions and landscape (b) Robustification effect

Figure 1: (a) Different stabilizing regions of the policy pair (K,L) for Examples 3.2 and 3.6. The
blue, cyan, and green regions represent the stabilizing region of the pair (K,L), the stabilizing region
of K, and the robustly stabilizing region of K, respectively. (b) Effectiveness of our robustification
technique. For the fixed initialization K0 that is not robustly stabilizing (but stabilizing), updating L
will destabilize the system (see also in Example 3.2). After robustifying it to the green region, even
the simultaneous-descent-ascent updates of K and L in §4.4 converge to the NE successfully.

key question is whether (K0, L(K0)) still stabilizes the system (2.1). Unfortunately, if we only know
ρ(A − BK0) < 1, we cannot guarantee ρ(A − BK0 − CL(K0)) < 1. The fundamental issue
here is that for LQ games, the cost C(K,L) may be finite even for some non-stabilizing (K,L) (i.e.
ρ(A−BK − CL) ≥ 1). Hence the existence of L(K) does not mean ρ(A−BK − CL(K)) < 1.
See Section 3.1 in [35] for more discussions. We thus may need some extra condition on K, besides
being stabilizing, in order to guarantee that (K,L(K)) is also stabilizing. Now we present a simple
example to demonstrate this stability issue due to a bad choice of K0.
Example 3.2. Consider A = 2.7, B = −0.45, C = −0.15, Ru = 1, Rw = 2.0736, Q = 1. The
NE (K∗, L∗) = (−5.4957, 0.8834). As shown in Figure 1 (a), the blue region is the one where
the pair (K,L) is stabilizing, i.e., ρ(A − BK − CL) < 1; the cyan one is the stabilizing region
of K, i.e., ρ(A − BK) < 1, that intersects with the blue one, which is smaller and contains the
NE control gain K∗. As shown in Figure 1 (a), if we start the conventional RARL algorithm from
(K0, L0) = (−4.6, 0), which stabilizes the system, and improve L0 with K0 fixed, the trajectory still
goes up straight to the destabilizing region. The update of L follows NPG with stepsize η = 10−10.
In fact, for fixed K0, the inner-loop problem L1 = argmaxL C(K0, L) does not even have a solution,
as the induced Riccati equation cannot be solved (Matlab also returns a solvability issue).

To impose an additional condition on K, we first introduce the following Riccati equation

P ∗K = Q+K>RuK + (A−BK)>P̃ ∗K(A−BK), (3.1)

where P ∗K = PK,L(K), and P̃ ∗K = P ∗K + P ∗KC(Rw − C>P ∗KC)−1C>P ∗K if Rw − C>P ∗KC > 0.
Then, we introduce the following condition on K.
Definition 3.3 (Robust Stability Condition for K). First, K is stabilizing, i.e., ρ(A − BK) < 1.
Also, the Riccati equation (3.1) admits a minimal positive semidefinite solution P ∗K ≥ 0 such that
Rw − C>P ∗KC > 0.

One key consequence of K’s robust stability is the following lemma, whose proof is given in §A.4.1.
Lemma 3.4. For any K satisfying the robust stability condition, the inner-loop problem
maxL C(K,L) is well-defined (admits a finite optimal value) and admits a unique stabilizing solution
among all stabilizing L, given by L(K) = (−Rw + C>P ∗KC)−1C>P ∗K(A−BK).

The robust stability condition is in fact not only sufficient for the inner-loop problem to be well-
defined, but also almost necessary, see [7, Lemma 3.6] for more discussions. Moreover, it also
has many important robust control implications. One can roughly think of that the robust stability
condition enforces the controller K to robustly stabilize the system subject to the worst case attack
L(K). More formal explanations on how this condition induces robustness to the control design are
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provided in §A.4. This abstract condition can be equivalently transformed into a more checkable form
using the Bounded Real Lemma [7, 8, 40]. We review this result here. Given (A,B,C,Q,Ru, Rw),
we define a matrix function

M(P,K) :=

[
Q+K>RuK 0

0 −Rw
]

+

[
(A−BK)>P (A−BK)− P (A−BK)>PC

C>P (A−BK) C>PC

]
,

where P and K are matrices with compatible dimensions.
Lemma 3.5 (Bounded Real Lemma [41, 8]). The robust stability condition (Definition 3.3) holds if
and only if there exists some P > 0, such that M(P,K) < 0.

Based on the above result, we can check the robust stability condition for any given K by testing a
semidefinite program M(P,K) < 0. This will be useful in the ensuing analysis.

3.2 Stability Issue due to Bad Choices of (NK , NL)

A less careful choice of NK , NL may also destabilize the system. Suppose that both NK and NL
are large such that L(K) and K(L) are accurately computed at each iteration. Algorithm 1 thus
iterates as L′ = L(K) and K ′ = K(L′). Then the LQ RARL algorithm becomes the best-response
algorithm [42], known to be not always convergent in game theory. We show next that this can easily
happen in LQ RARL, even if the initialization K0 is robustly stabilizing.
Example 3.6. Consider the same system as in Example 3.2. Let the green region denote the robustly
stabilizing region of K. We start with a robustly stabilizing K0 = −6.6, and let L0 = 0. We then
use RARL with NPG update with stepsize η = 0.005. We choose NK = NL = 100. First, for
fixed K0, the NPG update for L easily converges to the solution L(K0) = −2.5606 (the red square
in Figure 1 (a)) within NL iterations. Recall that the existence and stability of such an L(K0) are
guaranteed by the robust stability of K0. However, if we then continue to fix L1 = L(K0), and
improve K, even with stepsize 10−10 (infinitesimal), it will still go right straight to the destabilizing
region, if it updates long enough. This phenomenon is essentially due to that for fixed L1 = L(K0),
the inner-loop problem minK C(K,L1) may not in turn necessarily be well-defined (admit a finite
optimal value). Hence, even with a robustly stabilizing initialization K0, the RARL update can still
destabilize the system easily if NK and NL are not set properly.

The stability issues above demonstrate the significance of both the initialization (a robustly stabilizing
K0) and the update rule (properly chosen (NK , NL)), in developing policy-based LQ RARL algo-
rithms. Next, we introduce such an update-initialization pair that is provably stable and convergent.

4 Algorithms and Theory

4.1 A Double-Loop Algorithm

In this section, we present a specific double-loop algorithm with both stability and convergence
guarantees. This algorithm uses an outer-loop NPG update to improve the agent’s policy K by

Kn+1 = Kn − η∇KC(Kn, L(Kn))Σ−1
Kn,L(Kn) (4.1)

where L(Kn) := argmaxL C(Kn, L) is solved within an inner loop with fixed Kn. For each inner
loop, the policy for L is always initialized so that (Kn, L) is stabilizing (L = 0 will suffice), and
the method used in the inner loop is NPG. Ideally, this algorithm can be viewed as a special case of
Algorithm 1 with NK = 1 and NL →∞. In this section, we show that this algorithm can guarantee
both the stability of the policy pair (K,L) and the robust stability of K, along the optimization
process, and provably converges to (K∗, L∗) if initialized at a robustly stabilizing policy K0. We
also provide simulations to support our theory, mostly deferred to §C due to space limitation.

4.2 Outer Loop Analysis

We first show that the outer-loop iterate Kn of our algorithm is guaranteed to satisfy the robust
stability condition, if K0 is robustly stabilizing.
Lemma 4.1 (Preserving Robust Stability). For any Kn satisfying the robust stability condition
(Definition 3.3), suppose that the stepsize η satisfies η ≤ 1/(2‖Ru +B>P̃ ∗KnB‖). Then, Kn+1

obtained from (4.1) also satisfies the robust stability condition.
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Now we can prove the main convergence result, showing that the outer-loop update (4.1) is guaranteed
to find the Nash equilibrium control gain K∗ with a sublinear rate.
Theorem 4.2. Suppose that K0 satisfies the robust stability condition (Definition 3.3). With the
stepsize η ≤ 1/(2‖Ru +B>P̃ ∗K0

B‖), the update (4.1) converges to K∗ at a sublinear rate O(1/N) .
Remark 4.3 (Local Results with Faster Rates). In addition to the global sublinear convergence,
one can further obtain local faster rates for (4.1) using the so-called gradient dominance property
[43, 44] that has been proved to hold locally for zero-sum LQ games [33, 34]. It is even possible to
prove a local superlinear rate if we replace the NPG update in (4.1) with the so-called Gauss-Newton
update and set learning rate as η = 1/2. Due to space limitation, we defer more discussions on the
Gauss-Newton update to the appendix.

4.3 Inner Loop Analysis

For each robustly stabilizing Kn, our algorithm solves an inner-loop problem to obtain L(Kn) :=
argmaxL C(Kn, L). The inner-loop algorithm is initialized at some stabilizing L (L = 0 suffices)
and applies the NPG update as follows

L′ = L+ ηL∇LC(Kn, L)Σ−1
Kn,L

. (4.2)

The inner-loop problem is essentially a non-standard LQR problem with indefinite cost weighting
matrix −Q−K>RuK [33, 35]. The coercivity property used in [10] does not hold and a separate
stability analysis for the iterate L during optimization is needed. Motivated by a recent novel
contradiction argument in [35], we show in the following lemma that the NPG update (4.2) for L can
guarantee both stability and convergence.
Lemma 4.4. Suppose Kn satisfies the robust stability condition (Definition 3.3). Initialize the inner-
loop optimization at a stabilizing L. With stepsize ηL ≤ 1/(2‖Rw − C>PKn,LC‖), the inner-loop
NPG update (4.2) is guaranteed to be stabilizing and converges to L(Kn) at a linear rate.

The above lemma is similar to the results in [35], but the adopted assumptions are quite different.
Our assumption aligns with the standard ones in the robust control theory literature. Specifically, our
condition on K, i.e., the robust stability condition, which has some robust control implications and
eventually leads to theH∞-based initialization technique presented in the next section, is different
from the condition required in [35]. The proof of Lemma 4.4 is included in §B.3 for completeness.
Finally, we note that using a similar but more involving argument, the PG update of L can also be
shown to converge at a linear rate. We refer interested readers to [35, Theorem 7.4] for more details.
We also provide simulations in §C.2 to validate our theory. As expected, the double-loop algorithm
converges to the NE control gain K∗ successfully.

4.4 Other Variants with Possible Stability & Convergence Issues

Intuitively, one does not need to solve the inner-loop optimization exactly. We have implemented
the algorithm with different values of NL. The numerical results indicate that the algorithms even
with NL = 1 work well if the initial policy K0 satisfies the robust stability condition. We have
also identified examples where these algorithms fail to converge when the initial policy does not
satisfy the robust stability condition. However, there are also cases with a finite NL > 1, when
a robustly stabilizing K0 fails to lead to convergence and/or leads the iterates to remain robustly
stabilizing. These interesting findings reaffirm the complicated intertwinement between update rule
and initialization, in order to guarantee the stability and convergence of LQ RARL in general. This in
turn reflects the significance of our results in §4.1-§4.3, as we have provided an update-initialization
pair that provably works.

Besides the case with NK = NL = 1, we further test the performance of the NPG descent-ascent
algorithm that updates (K,L) simultaneously, with even an identical stepsize. The update rule is

K ′ = K − η∇KC(K,L)Σ−1
K,L, L′ = L+ η∇LC(K,L)Σ−1

K,L,

which is easier to implement than the double-loop/two-timescale update in practice. Surprisingly,
this algorithm also works well under our robustly stabilizing initialization. Due to space limitation,
we briefly summarize our key findings here and defer the detailed simulation studies to §C. Based
on our observations, the descent-ascent updates with properly chosen NK and NL are effective,
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i.e., converge to the NE successfully. Most of the successful cases require the initialization K0 to
satisfy the robust stability condition. On the other hand, if the initialization is not robustly stabilizing,
descent-ascent updates do not always work (but may work in some cases). These observations
reinforce the significance of a robustly stabilizing initialization. It remains unclear as to exactly what
type of initial conditions would be needed for the descent-ascent methods.

5 Robustify Initializations viaH∞-Approach

As shown earlier, if one only requires the initial policy K to be stabilizing, i.e., stabilize the system
for L = 0, the policy-based LQ RARL algorithms can fail. On the other hand, the robust stability
condition on K is provably significant for the double-loop algorithm, and empirically also useful for
other variants such as alternating or multi-step update rules. Hence, it is imperative to initialize K to
be robustly stabilizing. To this end, we propose a robustification technique, which aims to robustify
any stabilizing control gain to be a robustly stabilizing one, from an H∞-control perspective. We

first introduce some notations from control theory. Let G :=

[
A B
C 0

]
denote the state-space

realization of the model xt+1 = Axt +Bwt, and zt = Cxt. Then, theH∞-norm of G is defined as

‖G‖∞ = sup
θ∈[0,2π)

λ1/2
max[B>(e−jθI −A)−>C>C(ejθI −A)−1B].

Given (A,B,C), theH∞-norm can be efficiently calculated using the Hamiltonian bisection method
[45]. The Matlab function hinfnorm can be directly called for this calculation. When (A,B,C) are
unavailable, theH∞-norm can also be efficiently estimated using data [46, 47, 48, 49, 50, 51, 52, 53].
Thus, we make the following assumption for robustification.
Assumption 5.1 (Oracle forH∞-Norm). An oracle to evaluate ‖G‖∞ for any stable G is accessible.

Now we are ready to present our robustification approach. For any K satisfying ρ(A−BK) < 1,
we define the following state-space representation:

T (K) :=

[
A−BK C(Rw)−1/2

(Q+K>RK)1/2 0

]
. (5.1)

Properties of theH∞-norm are well documented [54, 8, 41]. Now we state a few facts.
Lemma 5.2. The robust stability condition (Definition 3.3) on K is equivalent to the frequency
domain condition ‖T (K)‖∞ < 1. Also, for any robustly stabilizing K and K̂, there exists a
continuous path connecting the two, such that every K ′ on this path satisfies ρ(A−BK ′) < 1.
Fact 5.3. Denote the set of stabilizing K as K := {K | ρ(A − BK) < 1}. Then, ‖T (K)‖∞ is
finite and is Clarke subdifferentiable at any K ∈ K. Moreover, ‖T (K)‖∞ is an almost everywhere
differentiable function of K.

The first half of Lemma 5.2 gives an alternative statement for the Bounded Real Lemma2 [8, 41]. This
connection makes the robust stability condition in Definition 3.3 more concrete and easier to verify,
with a clearer robust control meaning: ‖T (K)‖∞ < 1 means that the control gain K attenuates
the disturbance in the sense that the `2-norm of the output {zt}t≥0 is smaller than the Rw-weighted
`2-norm of the disturbance {wt}t≥0. See more formal explanations in [7, 8]. The second half of
Lemma 5.2 is a consequence of Lemma 4.6 in [55], and the fact that any robustly stabilizing K must
first be stabilizing.

Fact 5.3 restates the well-known fact [45, 56] that ‖T (K)‖∞ is possibly non-smooth but Clarke
subdifferentiable [57]. These facts justify the applicability of a subgradient-descent-based optimiza-
tion approach for decreasing the H∞-norm, thus hopefully, can robustify the initialization to be
‖T (K)‖∞ < 1. Specifically, if we have a stabilizing K with a finite ‖T (K)‖∞ and ‖T (K)‖∞ > 1,
then the Clarke subgradient method can be used to decrease itsH∞-norm, until ‖T (K)‖∞ < 1. It
has been reported that this simple method is effective for minimizingH∞-norms on most practical
problems [58, 56]. Note that these Clarke subgradient methods require the model knowledge. When
the model knowledge is unavailable, but only a (possibly noisy)H∞-norm computation oracle exists,
one can update K following some derivative-free/zeroth-order approaches.

2There are a few equivalent forms of the Bounded Real Lemma, and this is another form with a frequency
domain statement, as compared to Lemma 3.5.
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Figure 2: Illustrating the effectiveness of theH∞-based robustification using the two-point stochastic
zeroth-order method, on the non-convergent case in §C.1.1. (a) shows the convergence of the update
rule (5.2), when (C.2) is used for subgradient estimation. (b) and (c) show the convergence of all
proposed RARL schemes after the robustification. The iterations denote the ones for updating K.

Initialization Robustification. Without model knowledge and under Assumption 5.1, one updates

K ′ = K − αg, (5.2)

where g is some estimate for the subgradient of ‖T (K)‖∞ at K, and α > 0 is the stepsize. One way
is to estimate the (i, j)-th entry of the subgradient using the finite-difference method:

gij =
‖T (K + εdij)‖∞ − ‖T (K − εdij)‖∞

2ε
(5.3)

where ε is a small positive number and dij is a matrix whose (i, j)-th entry is 1 and all other entries are
0. In general, to minimize ‖T (K)‖∞ over K, we need to consider the non-smoothness of ‖T (K)‖∞
and calculate the Clarke subgradients accurately. However, as ‖T (K)‖∞ is almost everywhere
differentiable [45], the non-smoothness does not affect the optimization process in most iterates. We
verify via simulations that this finite-difference method works well. We first show its effectiveness in
the following example that has stability issues in §3.
Example 5.4. Consider the same one-dimensional system as in Example 3.2. As shown in Figure
1 (b), we first start with the same initialization as in Example 3.2, (K0, L0) = (−4.6, 0), and then
robustify K0 using the update (5.2) with stepsize α = 0.007, using finite-difference method (5.3)
with ε = 10−8. The H∞-norm indeed decreases. When ‖T (K)‖∞ < 1, we use the updated K as
the robustified initialization. We then perform the descent-ascent update with NK = NL = 1, which
is shown to converge to the NE very fast, with stepsize η = 0.005. This shows that our robustification
technique indeed improves the original initialization, and guides the convergence of LQ RARL, even
for the less stable case with NK = NL = 1.

When a noisy H∞-norm oracle is used, a stochastic version of (5.3) can be calculated based on
the stochastic zeroth-order methods [59, 60, 61]. Both one-point [59, 61] and two-point [62, 61]
methods can be developed. See more details on the update rule and the simulation settings in C.4.2.
As shown in Figure 2, the two-point approach efficiently robustifies the non-convergent case in §C.1.1
(developed for §3). With the robustified initialization, all three update rules converge successfully to
the NE control gain K∗. More discussions and simulations on robustification are deferred to §C.4.

6 Concluding Remarks

In this paper, we have investigated the stability and convergence of policy-based robust adversarial
RL, on the fundamental linear quadratic setup in continuous control. Several stability issues of LQ
RARL have been identified, illustrating the intertwinement of both the initialization and update rule in
developing provably convergent RARL algorithms. Through the lens of robust control, we have then
proposed a provably stable and convergent initialization-update pair, and also developedH∞-based
approaches to robustify the initializations. Both our theoretical and empirical results have provided
new and critical angles about RARL, from a rigorous robust control perspective. Interesting future
directions include developing robustly stable RARL methods against some structured uncertainty,
extending the robust control view to RARL in nonlinear systems, investigating the global convergence
of descent-ascent methods, and studying the theoretical guarantees of our robustification approach.
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Broader Impact

We believe that researchers of reinforcement learning (RL), especially those who are interested in the
theoretical foundations of robust RL, would benefit from this work, through the new insights and
angles we have provided regarding robust adversarial RL (RARL) in linear quadratic (LQ) setups,
from a rigorous robust control perspective. In particular, considering the impact of RARL [2] in
RL with prominent empirical performance, and the ubiquity and fundamentality of LQ setups in
continuous control, our results help pave the way for applying the RARL idea in control tasks.

More importantly, building upon the concepts from robust control, we have laid emphasis on the
robust stability of RARL algorithms when applied to control systems, which has been overlooked
in the RL literature, and is significant in continuous control, as a destabilized system can lead to
catastrophic consequences. Such emphasis may encourage the development of more robust, and
more importantly, safe on-the-fly, RARL algorithms, and push forward the development of RL for
safety-critical systems as a whole. It also opens up the possibility to integrate more tools from the
classic (robust) control theory, to improve the stability and robustness of popular RL algorithms
practically used.

We do not believe that our research will cause any ethical issue, or put anyone at any disadvantage.
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