
Supplementary Material:
Robust Persistence Diagrams using Reproducing Kernels

A Proofs for Section 4

In what follows, given a metric space (X, %), Lp(X, µ) is the Banach space of functions of pth-power
µ-integrable functions with norm ‖ · ‖p, where µ is a Borel measure defined on X. For a fixed loss ρ,
we will use the notation `g(·) = `(·, g) = ρ

(
‖Φ(·)− g‖Hσ

)
in order to emphasize the dependency

of the loss on the choice of g ∈ G. Borrowing some notation from empirical process theory, we define
the empirical risk-functional in Eq. (1) as

Jn(g) =· Pn`g =

n∑
i=1

ρ
(
‖Φσ(Xi)− g‖Hσ

)
,

and, similarly, the population risk functional J (g) is given by

J (g) =· P`g =

∫
Rd
ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x).

A.1 Proof of Theorem 4.2

For ε > 0, define the risk functional associated with Pεx to be

Jε,x(g) = Pεx`g = (1− ε)J (g) + ερ
(
‖Φσ(x)− g‖Hσ

)
,

and let f ε,xρ,σ = arg infg∈G Jε,x(g) be its minimizer. From the stability result of Proposition 2.2 we
have that

Ψ (fρ,σ;x) = lim
ε→0

1

ε
W∞

(
Dgm

(
f ε,xρ,σ

)
,Dgm (fρ,σ)

)
≤ lim
ε→0

1

ε

∥∥f ε,xρ,σ − fρ,σ∥∥∞ .

Using Propositions B.3 and B.5, we know that the sequence {Jε,x} is equi-coercive, and
Jε,x Γ–converges to J as ε→ 0. From the fundamental theorem of Γ–convergence [17, Theorem
7.8] we have that

∥∥f ε,xρ,σ − fρ,σ∥∥Hσ
→ 0, and, consequently, from Lemma B.6,

∥∥f ε,xρ,σ − fρ,σ∥∥∞ → 0

as ε→ 0. Thus,

lim
ε→0

1

ε

∥∥f ε,xρ,σ − fρ,σ∥∥∞ =

∥∥∥∥lim
ε→0

f ε,xρ,σ − fρ,σ
ε

∥∥∥∥
∞
. (A.1)

Let the limit in the right hand side of Eq. (A.1) be denoted by ḟρ,σ. Although ḟρ,σ does not admit a
closed-form solution, from [27, Theorem 8] we have that ḟρ,σ satisfies V = aḟρ,σ +B, where

V = ϕ
(
‖Φσ(x)− fρ,σ‖Hσ

)
· (Φσ(x)− fρ,σ) ,

a =

∫
Rd
ϕ
(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y), and

B =

∫
Rd

ϕ′
(
‖Φσ(y)− fρ,σ‖Hσ

)
‖Φσ(y)− fρ,σ‖Hσ

〈
ḟρ,σ,Φσ(y)− fρ,σ

〉
Hσ

· (Φσ(y)− fρ,σ)

 dP(y).

For brevity, we adopt the notation z(y) = ‖Φσ(y)− fρ,σ‖Hσ
and u(·,y) =

Φσ(y)−fρ,σ
‖Φσ(y)−fρ,σ‖Hσ

∈ Hσ .
Then note that a ∈ R and B ∈ Hσ are given by

a =

∫
Rd
ϕ (z(y)) dP(y), and

B =

∫
Rd
z(y)ϕ′ (z(y))

〈
ḟρ,σ, u(·,y)

〉
Hσ

u(·,y) dP(y).
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Using the reverse triangle inequality we have

‖V ‖Hσ
≥ a

∥∥∥ḟρ,σ∥∥∥
Hσ

− ‖B‖Hσ
. (A.2)

We now look for an upper bound on ‖B‖Hσ
. By noting that〈

ḟρ,σ, u(·,x)
〉
Hσ

〈
ḟρ,σ, u(·,y)

〉
Hσ

〈
u(·,x), u(·,y)

〉
Hσ

≤
∥∥∥ḟρ,σ∥∥∥2

Hσ

,

we have

‖B‖2Hσ
=
〈
B,B

〉
Hσ

≤
∫∫

z(x)ϕ′(z(x))z(y)ϕ′(z(y))
∥∥∥ḟρ,σ∥∥∥2

Hσ

dP(x) dP(y)

=
∥∥∥ḟρ,σ∥∥∥2

Hσ

(∫
Rd
z(y)ϕ′(z(y)) dP(y)

)2

.

Plugging this back into Eq. (A.2) we get

‖V ‖Hσ
≥
∥∥∥ḟρ,σ∥∥∥

Hσ

∫
Rd
ϕ(z(y))− z(y)ϕ′(z(y)) dP(y)

=
∥∥∥ḟρ,σ∥∥∥

Hσ

∫
Rd
ζ(z(y)) dP(y), (A.3)

where ζ(z) = ϕ(z)− zϕ′(z). Similarly, by using the definition of ϕ, it follows that

‖V ‖Hσ
= ϕ

(
‖Φσ(x)− fρ,σ‖Hσ

)
· ‖Φσ(x)− fρ,σ‖Hσ

= ρ′
(
‖Φσ(x)− fρ,σ‖Hσ

)
.

Combining this with Eq. (A.3) we get

∥∥∥ḟρ,σ∥∥∥
Hσ

≤
ρ′
(
‖Φσ(x)− fρ,σ‖Hσ

)
∫
Rd ζ

(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y)

.

By noting that
∥∥∥ḟρ,σ∥∥∥

∞
≤ ‖Kσ‖

1
2
∞

∥∥∥ḟρ,σ∥∥∥
Hσ

and Ψ(fρ,σ;x) ≤
∥∥∥ḟρ,σ∥∥∥

∞
, the result follows. �

A.2 Proof for Theorem 4.4

Using the triangle inequality we can break our problem down as follows∥∥fnρ,σ − f∥∥∞ ≤ ‖fσ − f‖∞︸ ︷︷ ︸
a

+ ‖fρ,σ − fσ‖∞︸ ︷︷ ︸
b

,

where, fσ =
∫
Rd Kσ(·,x)dP(x) is the population level KDE. For term a , for P ∈ M(Rd), it is

well known [15] that the approximation error for the KDE vanishes, i.e.,

‖fσ − f‖∞ → 0,

as σ → 0. So, it remains to verify that b vanishes, i.e., ‖fρ,σ − fσ‖∞ → 0. With this in mind,
consider the map Tσ : G → G given by

Tσ(g) =

∫
Rd

ϕ
(
‖Φσ (x)− g‖Hσ

)∫
Rd
ϕ
(
‖Φσ (x)− g‖Hσ

)
dP(x)

Φσ(x)dP(x).

Our approach to verifying that b vanishes is similar to Vandermeulen and Scott [39, Lemma 9],
where we show that the map Tσ is a contraction map when restricted to the subspace

Qσ =· BHσ (0, δνσ) ∩Dσ.

A key difference is that we work with ‖·‖∞–norm, requiring us to obtain a sharper bound for the
Lipschitz constant associated with the contraction.
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For brevity, we adopt the notation m(x, g) = ϕ
(
‖Φσ (x)− g‖Hσ

)
. The authors in [27] show that

fρ,σ is a fixed point of the map Tσ , i.e., Tσ(fρ,σ) = fρ,σ , and that fσ is the image of 0 under Tσ , i.e.,
Tσ(0) = fσ. Additionally, from Lemma B.7, we know that ‖fσ‖Hσ

≤ δνσ, for some 0 < δ < 1.
Thus, we can rewrite fρ,σ − fσ = Tσ(fρ,σ)− Tσ(0).

Let g, h ∈ Qσ . Then we have that

Tσ(g)− Tσ(h) =

∫
Rd

m(x, g)∫
Rd
m(y, g)dP(y)

Φσ(x)dP(x)−
∫
Rd

m(u, h)∫
Rd
m(v, h)dP(v)

Φσ(u)dP(u)

=
1

αβ
·

β ∫
Rd

m(x, g)Φσ(x)dP(x)− α
∫
Rd

m(u, h)Φσ(u)dP(x)


=

1

αβ
· ξ, (A.4)

where α =·
∫
Rd m(y, g)dP(y) ∈ R, β =·

∫
Rd m(v, h)dP(v) ∈ R and the numerator ξ ∈ Hσ .

By Tonelli’s theorem

ξ = β

∫
Rd

m(x, g)Φσ(x)dP(x)− α
∫
Rd

m(u, h)Φσ(u)dP(x)

=

∫
Rd

m(x, g)Φσ(x)

∫
Rd

m(v, h)dP(v)

 dP(x)

−
∫
Rd

m(u, h)Φσ(u)

∫
Rd

m(y, g)dP(y)

 dP(x)

=

∫∫
Rd×Rd

m(x, g)m(v, h)Φσ(x)dP(v)dP(x)−
∫∫

Rd×Rd

m(u, h)m(y, g)Φσ(u)dP(y)dP(u)

=

∫∫
Rd×Rd

Φσ(x) [m(x, g)m(y, h)−m(x, h)m(y, g)] dP(x)dP(y). (A.5)

Then by adding and subtracting m(x, h)m(y, h) to the term inside, we get

m(x, g)m(y, h)−m(x, h)m(y, g) = m(y, h) {m(x, g)−m(x, h)}
+m(x, h) {m(y, h)−m(y, g)} .

Plugging this back into Eq. (A.5), we get ξ = ξ1 + ξ2 where

ξ1 =

∫∫
Rd×Rd

Φσ(x) {m(x, g)−m(x, h)}m(y, h)dP(y)dP(x)

=

∫
Rd

m(y, h)dP(y)

∫
Rd

Φσ(x) {m(x, g)−m(x, h)} dP(x)

= β

∫
Rd

Kσ(·,x) {m(x, g)−m(x, h)} dP(x)

(i)
= β · [ψσ ∗ ((m(·, g)−m(·, h)) f(·))] ,

where (i) follows from the fact that the kernel Kσ(x,y) = ψσ(x − y) =· σ−dψ(‖x − y‖2/σ) is
translation invariant and f is the density associated with P.
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Similarly,

ξ2 =

∫∫
Rd×Rd

Φσ(x)m(x, h) {m(y, h)−m(y, g)} dP(x)dP(y)

=

∫
Rd

[m(y, h)−m(y, g)] dP(y)

∫
Rd

Φσ(x)m(x, h)dP(x)

≤ ‖m(·, h)−m(·, g)‖∞ · [ψσ ∗ (m(·, h)f(·))] .

The upper bound for ‖ξ1‖∞ is as follows

‖ξ1‖∞ = β ‖ψσ ∗ ((m(·, g)−m(·, h)) f(·))‖∞
(i)

≤ β ‖ψσ‖1 ‖(m(·, g)−m(·, h)) f(·)‖∞
(ii)

≤ β ‖m(·, g)−m(·, h)‖∞ ‖f‖∞ , (A.6)

where (i) follows from Young’s inequality [25, Theorem 20.18] and (ii) follows from the fact that
‖fg‖∞ ≤ ‖f‖∞ ‖g‖∞. Similarly, for ξ2 we have

‖ξ2‖∞ ≤ ‖m(·, h)−m(·, g)‖∞ ‖ψσ ∗ (m(·, h)f(·))‖∞
(i)

≤ ‖m(·, h)−m(·, g)‖∞ ‖ψσ‖1 ‖m(·, h)f(·)‖∞
(ii)

≤ ‖m(·, h)−m(·, g)‖∞ ‖m(·, h)‖∞ ‖f‖∞ . (A.7)

From the proof of [39, Lemma 9, Page 20–22], for g, h ∈ Qσ for fixed constants c1, c2 > 0 we have
the following two bounds:

α, β ≥ 1

c1νσ
, (A.8)

and

‖m(·, h)−m(·, g)‖∞ ≤ ‖g − h‖Hσ
c2ν
−2
σ , (A.9)

where the last inequality follows from the Lipschitz property of ϕ and fact that ρ is strictly convex.
Additionally, for c3 = ‖ρ′‖∞ <∞ we have

m(x, g) = ϕ
(
‖Φσ (x)− g‖Hσ

)
=
ρ′
(
‖Φσ (x)− g‖Hσ

)
‖Φσ (x)− g‖Hσ

≤ c3
‖Φσ (x)− g‖Hσ

(iii)

≤ c3∣∣∣‖Φσ(x)‖Hσ
− ‖g‖Hσ

∣∣∣
=

c3
(1− δ)νσ

, (A.10)

where (iii) follows from reverse triangle inequality. Plugging the bounds in equations (A.8), (A.9)
and (A.10) back into equations (A.6) and (A.7) we get,

‖ξ1‖∞ + ‖ξ2‖∞ ≤ ‖f‖∞

(
βc2ν

−2
σ ‖g − h‖Hσ

+
c2c3

(1− δ)
ν−3
σ ‖g − h‖Hσ

)
.

4



Using this upper bound in Eq. (A.4) we get

‖Tσ(g)− Tσ(h)‖∞ =

∥∥∥∥ ξ

αβ

∥∥∥∥
∞

≤
‖ξ1‖∞ + ‖ξ2‖∞

αβ
(iv)

≤ ‖f‖∞

(
c1c2
c1

ν−1
σ ‖g − h‖Hσ

+
c2c3

c21(1− δ)
ν−1
σ ‖g − h‖Hσ

)
(v)
= Cν−1

σ ‖g − h‖Hσ

(vi)

≤ Cν−1
σ ‖g − h‖

1
2
∞ ,

where in (iv) we use Eq. (A.8), in (v) we use the fact that whenever P ∈M(Rd), we have ‖f‖∞ <∞
and C > 0 is a constant depending only on c1, c2, c3 and ‖f‖∞. Additionally, (vi) holds through an
application of Lemma B.6 to g− h ∈ Qσ ⊂ Dσ . This confirms that Tσ is a contraction mapping. We
use this to show that b vanishes as σ → 0. Since fρ,σ,0 ∈ Qσ and fρ,σ − 0 ∈ Dσ , we have that

‖fρ,σ − fσ‖∞ = ‖Tσ(fρ,σ)− Tσ(0)‖∞
≤ Cν−1

σ ‖fρ,σ − 0‖
1
2
∞

= Cν−1
σ ‖fρ,σ‖

1
2
∞ .

Using the triangle inequality ‖fρ,σ‖
1
2
∞ ≤ ‖fρ,σ − fσ‖

1
2
∞ + ‖fσ‖

1
2
∞ we get

‖fρ,σ − fσ‖∞ ≤ Cν
−1
σ

(
‖fρ,σ − fσ‖

1
2
∞ + ‖fσ‖

1
2
∞

)
= Cν−1

σ

(
‖Tσ (fρ,σ)− Tσ(0)‖

1
2
∞ + ‖fσ‖

1
2
∞

)
≤ Cν−1

σ

((
Cν−1

σ ‖fρ,σ − 0‖
1
2
∞

) 1
2

+ ‖fσ‖
1
2
∞

)
= C

3
2 ν
− 3

2
σ ‖fρ,σ‖

1
4
∞ + Cν−1

σ ‖fσ‖
1
2
∞ , (A.11)

by using the contraction mapping twice. Observe that

‖fρ,σ‖∞ ≤ νσ ‖fρ,σ‖Hσ
≤ δν2

σ,

where the first inequality follows from Lemma B.6 and the second inequality follows from the fact
that ‖fρ,σ‖Hσ

≤ δνσ since fρ,σ ∈ Qσ. Furthermore, ‖fσ‖∞ = ‖ψσ ∗ f‖∞ ≤ ‖ψσ‖∞ ‖f‖1 ≤ νσ
from Young’s inequality. By noting that νσ = ψσ(0) = σ−dψ(0), collecting these bounds back into
Eq. (A.11) we get

‖fρ,σ − fσ‖∞ ≤ C
3
2 δ

1
4 ν−1
σ + Cν

− 1
2

σ

√
ψ(0).

yielding that ‖fρ,σ − fσ‖∞ → 0 as σ → 0, thereby verifying that b vanishes as σ → 0. �

A.3 Proof of Theorem 4.5

The proof proceeds in two steps: We first establish the uniform consistency for the ro-
bust KDE and then use the bottleneck stability to show consistency of the robust persis-
tence diagrams in W∞. From the stability theorem for persistence diagrams [12, 16], we
have that W∞

(
Dgm

(
fnρ,σ

)
,Dgm (fρ,σ)

)
≤
∥∥fnρ,σ − fρ,σ∥∥∞. Thus, it suffices to show that∥∥fnρ,σ − fρ,σ∥∥∞ p→ 0 as n → ∞. In order to prove the latter, we adapt the argmax consistency

theorem [38, Theorem 5.7] for minimizers of a risk function.
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Lemma A.1 (Theorem 5.7, [38]). Given a metric space (G, d), let Jn be random functions and J
be a fixed function of g ∈ G such that for every ε > 0,

(1) inf
g:d(g,g0)≥ε

J (g) > J (g0), and

(2) sup
g∈G
|Jn(g)− J (g)| p→ 0.

Then any sequence gn satisfying Jn(gn) < Jn(g0) +Op(1) satisfies d(gn, g0)
p→ 0.

For G = Hσ ∩Dσ, and d(fnρ,σ, fρ,σ) =
∥∥fnρ,σ − fρ,σ∥∥∞, in order to establish uniform consistency

of the robust KDE, as per Lemma A.1, we need to verify that conditions (1) and (2) are satisfied.

Condition (1) follows from the strict convexity of J (g) in Proposition B.1. Specifically, [27] establish
that assumptions (A1)− (A3) guarantee the existence and uniqueness of fρ,σ = arg infg∈G J (g).
Then, for any g ∈ G such that ‖g − fρ,σ‖Hσ

> δ, we have that J (g) > J (fρ,σ).

We now turn to verifying condition (2). Observe that supg∈G |Jn(g)− J (g)| can be rewritten as the
supremum of an empirical process, i.e.,

sup
g∈G
|Jn(g)− J (g)| = sup

`g∈F̃
|Pn`g − P`g| =· ‖Pn − P‖F̃ ,

where F̃ = {`g : g ∈ G}, and `g(x) = ρ
(
‖Φσ(x)− g‖Hσ

)
. Verifying condition (2) reduces to

showing that F̃ is a Glivenko-Cantelli class. Define η(·) = ‖Φσ(·)− g‖2Hσ
and letF = {ηg : g ∈ G}.

For the continuous map ξ : [0,∞)→ [0,∞) given by ξ(t) = ρ(
√
t), we have that

ξ ◦ F = {ξ(f) : f ∈ F} = {ξ ◦ ηg(·) : g ∈ G} =
{
ρ(‖Φσ(·)− g‖Hσ

) : g ∈ G
}

= F̃ .

By the preservation theorem for Glivenko-Cantelli classes [37, Theorem 3], it holds that if F is
a Glivenko-Cantelli class, then F̃ is also a Glivenko-Cantelli class. So verifying condition (2)
reduces to verifying that F is a Glivenko-Cantelli class. To this end, we first show that F (x1:n) =
F (x1,x2, . . . ,xn) = supg∈G |Pnηg − Pηg| = ‖Pn − P‖F satisfies the self-bounded property for
McDiarmid’s inequality, i.e.,

sup
xi 6=x′i

|F (x1:n)− F (x′1:n)| ≤ 1

n
sup
xi,x′i

sup
g∈G

(
‖Φσ(xi)‖2Hσ

+ ‖Φσ(x′i)‖
2
Hσ

+ 2 |g(xi)|+ 2 |g(x′i)|
)
.

Observe that ‖Φσ(x)‖2Hσ
= Kσ(x,x) ≤ ‖Kσ‖∞ and |g(x)| ≤ ‖g‖∞ < ‖Kσ‖∞ by Lemma B.6.

Thus, we have that

sup
xi 6=x′i

|F (x1:n)− F (x′1:n)| ≤
6 ‖Kσ‖∞

n
.

From [3, Theorem 9], we have that with probability greater than 1− e−δ ,

‖Pn − P‖F ≤ 2Rn(F) +

√
3δ ‖Kσ‖∞

n
, (A.12)

where Rn(F) is the Rademacher complexity of F given by,

Rn(F) = Eε

(
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εi ‖Φσ(xi)− g‖2Hσ

∣∣∣∣∣
)

≤ Eε

(
sup
g∈G

{∣∣∣∣∣ 1n
n∑
i=1

εi ‖Φσ(xi)‖2Hσ

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

εi ‖g‖2Hσ

∣∣∣∣∣+ 2

∣∣∣∣∣ 1n
n∑
i=1

εig(xi)

∣∣∣∣∣
})

= 1 + 2 + 3 .
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Note that Eε (f(ε1:n,x1:n)) =· E (f(ε1:n,x1:n)|x1:n) is the conditional expectation of the
Rademacher random variables ε1, ε2, . . . , εn, keeping x1,x2, . . . ,xn fixed. First, we have that,

1 = Eε

(
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εi ‖Φσ(xi)‖2Hσ

∣∣∣∣∣
)

(i)
= Eε

∣∣∣∣∣ 1n
n∑
i=1

εiKσ(xi,xi)

∣∣∣∣∣
(ii)

≤

√√√√Eε

∣∣∣∣∣ 1n
n∑
i=1

εiKσ(xi,xi)

∣∣∣∣∣
2

≤

√√√√√Eε

 1

n2

∑
i,j

εiεjKσ(xi,xi)Kσ(xj ,xj)


(iii)
=

1√
n
‖Kσ‖∞ ,

where (i) follows from the absence of g inside the expectation, (ii) follows from Jensen’s inequality
and (iii) follows from the fact that εi ⊥⊥ εj for i 6= j. For the second term, we have

2 = Eε

(
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εi ‖g‖2Hσ

∣∣∣∣∣
)

= Eε

(
sup
g∈G
‖g‖2Hσ

∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
)

≤ sup
g∈G
‖g‖2Hσ

√√√√Eε

∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
2

,

(iv)

≤ 1√
n
‖Kσ‖∞ ,

where (iv) follows from the fact that ‖g‖2Hσ
≤ ‖Kσ‖∞. Lastly, we have

3 = 2Eε

(
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εig(xi)

∣∣∣∣∣
)

(v)
= 2Eε

(
sup
g∈G

∣∣∣∣∣〈g, 1

n

n∑
i=1

εiKσ(·,xi)
〉
Hσ

∣∣∣∣∣
)

(vi)

≤ 2Eε

sup
g∈G
‖g‖Hσ

∥∥∥∥∥ 1

n

n∑
i=1

εiKσ(·,xi)

∥∥∥∥∥
Hσ


= 2 sup

g∈G
‖g‖Hσ

Eε

√ 1

n2

∑
i,j

εiεjKσ(xi,xj)


(vii)

≤ 2
‖Kσ‖

1
2
∞

n

√√√√√Eε

∑
i,j

εiεjKσ(xi,xj)


(viii)

≤ 2√
n
‖Kσ‖∞ ,

where (v) follows from the reproducing property, (vi) is obtained from Cauchy-Schwarz inequality,
(vii) follows from Jensen’s inequality, and (viii) follows from the fact that εi ⊥⊥ εj for i 6= j.
Collecting these three inequalities, we have

Rn(F) = 1 + 2 + 3 ≤ 4√
n
‖Kσ‖∞ .

Plugging this into Eq. (A.12), we have with probability greater than 1− e−δ ,

‖Pn − P‖F ≤
8 ‖Kσ‖∞√

n
+

√
3δ ‖Kσ‖∞

n
,

which implies that ‖Pn − P‖F → 0 as n→∞, implying that F is a Glivenko-Cantelli class. The
result, therefore, follows from Lemma A.1. �
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A.4 Proof of Theorem 4.7

For g ∈ G define the random fluctuation w.r.t. fρ,σ as

∆ (X, g) =
(
`g(X)− `fρ,σ (X)

)
− (J (g)− J (fρ,σ)) .

The fluctuation process is an empirical process defined as

∆n(g) = Pn∆(X, g) = (Jn(g)− Jn(fρ,σ))− (J (g)− J (fρ,σ)) ,

= Pn
(
`g − `fρ,σ

)
− P

(
`g − `fρ,σ

)
.

We first show that the behaviour of
∥∥fnρ,σ − fρ,σ∥∥Hσ

is controlled by the tail behaviour of the
supremum of the fluctuation process. To this end, for δ > 0, let

Gδ =
{
g ∈ G : ‖g − fρ,σ‖Hσ

≤ δ
}

= BHσ (fρ,σ, δ) ∩Dσ.

Suppose fnρ,σ is such that
∥∥fnρ,σ − fρ,σ∥∥Hσ

> δ, then, for sufficiently small λ ∈ (0, 1) such that
g = λfnρ,σ + (1− λ)fρ,σ ∈ Gδ , we have that

Jn(g)− Jn(fρ,σ)
(i)
< λJn(fnρ,σ) + (1− λ)Jn(fρ,σ)− Jn(fρ,σ)

= λ ·
(
Jn(fnρ,σ)− Jn(fρ,σ)

) (ii)

≤ 0, (A.13)

where (i) follows from the strict convexity of Jn (Proposition B.1), and (ii) follows from the fact that
fnρ,σ = arg infg∈G Jn(g). From Proposition B.1, we also know that J is strongly convex such that

J (g)− J (fρ,σ) ≥ µ

2
‖g − fρ,σ‖2Hσ

. (A.14)

Combining equations (A.13) and (A.14) we have
µ

2
‖g − fρ,σ‖2Hσ

≤ J (g)− J (fρ,σ),

=−
{

(Jn(g)− Jn(fρ,σ))− (J (g)− J (fρ,σ))
}

+ (Jn(g)− Jn(fρ,σ))

≤ −∆n(g) ≤ sup
g∈Gδ
|∆n(g)| .

By taking the supremum of the left hand side in the above inequality over all g ∈ Gδ we have

sup
g∈Gδ
|∆n(g)| ≥ µ

2
δ2 (A.15)

This implies that whenever
∥∥fnρ,σ − fρ,σ∥∥Hσ

> δ holds, then the condition in Eq. (A.15) holds.
Therefore,

P⊗n
{
X1:n :

∥∥fnρ,σ − fρ,σ∥∥Hσ
> δ
}
≤ P⊗n

{
X1:n : sup

g∈Gδ
|∆n(g)| ≥ µ

2
δ2

}
. (A.16)

We now study the behaviour of the r.h.s. in Eq. (A.16) using tools from empirical process theory. First,
we show that F (x1:n) = F (x1,x2, . . . ,xn) = sup

g∈Gδ
|∆n(g)| satisfies the self-bounding property.

sup
xi 6=x′i

|F (x1:n)− F (x′1:n)| = sup
xi 6=x′i

∣∣∣ sup
g∈Gδ
|∆n(g)| − sup

g∈Gδ
|∆n(g)|

∣∣∣,
≤ sup

xi 6=x′i

sup
g∈Gδ

∣∣∣∆n(g)−∆′n(g)
∣∣∣,

=
1

n
sup

xi 6=x′i

sup
g∈Gδ

∣∣∣(`g(xi)− `fρ,σ (xi)
)
−
(
`g(x

′
i)− `fρ,σ (x′i)

)∣∣∣,
≤ 1

n
sup

xi 6=x′i

sup
g∈Gδ

∣∣∣(`g(xi)− `fρ,σ (xi)
)∣∣∣+

∣∣∣(`g(x′i)− `fρ,σ (x′i)
)∣∣∣,

(i)

≤ 1

n
sup
g∈Gδ

2M ‖g − fρ,σ‖Hσ
=

2Mδ

n
,
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where (i) follows from Proposition B.1 that `g is M -Lipschitz w.r.t. ‖·‖Hσ
. Therefore, from

McDiarmid’s inequality [40, Theorem 2.9.1] we have

P⊗n
{
X1:n : sup

g∈Gδ
|∆n(g)| > E sup

g∈Gδ
|∆n(g)|+ ε

}
≤ exp

(
− nε2

2M2δ2

)
. (A.17)

Next, we find an upper bound for the expected supremum of the fluctuation process. In order to
do so, we first show that ∆n(g) has sub-Gaussian increments. For fixed g, h ∈ G we have that
E (∆(X, g)−∆(X, h)) = 0 and∣∣∣∆(X, g)−∆(X, h)

∣∣∣ ≤ ∣∣∣`g(X)− `h(X)
∣∣∣− ∣∣∣J (g)− J (h)

∣∣∣ ≤ 2M ‖g − h‖Hσ
.

Since
∣∣∣∆(X, g) − ∆(X, h)

∣∣∣ is bounded, it is, therefore, sub-Gaussian and from Vershynin [40,
Example 2.5.8], we have that the sub-Gaussian norm ‖∆(X, g)−∆(X, h)‖ψ2

≤ 2cM ‖g − h‖Hσ

for c > 1/
√

log 2. Consequently, the fluctuation process has sub-Gaussian increments with respect to
the metric ‖g − h‖Hσ

, i.e.,

‖∆n(g)−∆n(h)‖ψ2
≤ 1

n

√√√√ n∑
i=1

‖∆(Xi, g)−∆(Xi, h)‖2ψ2
≤ M√

n
‖g − h‖Hσ

.

From the generalized entropy integral [33, Lemma A.3], for a fixed constant γ > 12/
√

log 2 we have

E sup
g∈Gδ
|∆n(g)| ≤ inf

α>0

{
2α+

γM√
n

∫ δ

α

√
logN

(
Gδ, ‖·‖Hσ

, ε
)
dε

}
, (A.18)

where N (Gδ, d, ε) is the ε-covering number of the class Gδ with respect to metric d.

We now turn our attention to finding an upper bound for N (Gδ, d, ε). Note that if BHσ
is a unit ball

in the RKHS, then

logN
(
Gδ, ‖·‖Hσ

, ε
)

= logN
(
BHσ

∩Dσ, ‖·‖Hσ
,
ε

δ

)
(i)

≤ logN
(
BHσ

∩Dσ, ‖·‖∞ ,
( ε
δ

)2
)

≤ logN
(
BHσ , ‖·‖∞ ,

( ε
δ

)2
)
,

where (i) follows from Lemma B.6 that ‖g − h‖2Hσ
≤ ‖g − h‖∞. When the entropy numbers

en (id : Hσ → L∞(X)) satisfy the assumption, from [35, Lemma 6.21] we have

logN
(
BHσ

, ‖·‖∞ ,
( ε
δ

)2
)
≤
(
aσδ

2

ε2

)2p

.

Plugging this into Eq. (A.18), we have that

E sup
g∈Gδ
|∆n(g)| ≤ inf

α>0

{
2α+

γMaσδ
2p

√
n

∫ δ

α

ε−2pdε

}
= inf
α>0

T (α),

where T (α) is given by

T (α) =


2α+ γMδ

√
aσ
n log

(
δ
α

)
if p = 1

2 ,

2α+ γM
(1−2p)

√
n

(
δ − δ2pα1−2p

)
if 0 < p 6= 1

2 < 1.

At the value α0 where T (α0) = infα>0 T (α), we have

T (α0) =


γCa

1
2
σ · Mδ log(n)√

n
if p = 1

2 ,

γapσ
(1−2p) ·

Mδ√
n
− Kpa

1
2
σ

(1−2p) ·
Mδ
n1/4p if 0 < p 6= 1

2 < 1,

(A.19)
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for some fixed constant C > 3− log(9a). Observe that when 0 < p < 1
2 , the last term of Eq. (A.19)

is negative, and similarly when 1
2 < p < 1, the first term is negative. From this, we have that

T (α0) ≤Mδξ(n, p) where

ξ(n, p) =



γapσ
(1−2p) ·

1√
n

if 0 < p < 1
2 ,

γCa
1
2
σ · log(n)√

n
if p = 1

2 ,

γpa
1
2
σ

2p−1 ·
1

n1/4p if 1
2 < p < 1.

Plugging this into Eq. (A.17), we have that with probability greater than 1− e−t,

sup
g∈Gδ
|∆n(g)| < Mδξ(n, p) +Mδ

√
2t

n
. (A.20)

From Eq. (A.16), this implies that

P⊗n
{
X1:n :

∥∥fnρ,σ − fρ,σ∥∥Hσ
> δ
}
≤ P⊗n

{
X1:n : sup

g∈Gδ
∆n(g) ≥ µδ2

2

}
.

Thus, in Eq. (A.20), by letting

µδ2

2
=

(
Mδξ(n, p) +Mδ

√
2t

n

)
,

we have that with probability greater than 1− e−t,∥∥fnρ,σ − fρ,σ∥∥Hσ
≤ 2M

µ

(
ξ(n, p) +

√
2t

n

)
.

Observe that
∥∥fnρ,σ − fρ,σ∥∥∞ ≤ ‖Kσ‖

1
2
∞
∥∥fnρ,σ − fρ,σ∥∥Hσ

. For 0 < α < 1, by choosing δn as

δn =
2M ‖Kσ‖

1
2
∞

µ

(
ξ(n, p) +

√
2 log(1/α)

n

)
,

we have that

P⊗n
{
X1:n :

∥∥fnρ,σ − fρ,σ∥∥∞ ≤ δn} > 1− α.

From the stability of persistence diagrams in Proposition 2.2, this implies that

P⊗n
{
X1:n : W∞

(
Dgm

(
fnρ,σ

)
,Dgm (fρ,σ)

)
> δn

}
≤ α,

yielding the desired result. �

B Supplementary Results

In this section, we establish some results which play a key role in the proofs presented in Section A.

B.1 Properties of the Risk Functional J (g)

We establish some important properties of the risk functional, given by

J (g) =

∫
Rd
`g(x) dP(x) =

∫
Rd
ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x).

The following result establishes that some important properties of the robust loss ρ carry forward to
J (g). (i) The Lipschitz property of ρ is inherited by J (g), (ii) the convexity of ρ is strengthened
to guarantee that J (g) is strictly convex, and (iii) J (g) is strongly convex with respect to the
‖·‖Hσ

–norm around its minimizer.
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Proposition B.1 (Convexity and Lipchitz properties of J ). Under assumptions (A1)− (A3),

(i) The risk functionals J (g) and Jn(g) are M -Lipschitz w.r.t. ‖·‖Hσ
.

(ii) Furthermore, if ρ is convex, J (g) and Jn(g) are strictly convex.

(iii) Additionally, under assumption (A4), for fρ,σ = arg infg∈G J (g), the risk functional
satisfies the strong convexity condition

J (g)− J (fρ,σ) ≥ µ

2
‖fρ,σ − g‖2Hσ

,

for µ = 2 min
{
ϕ
(

2 ‖Kσ‖
1
2
∞

)
, ρ′′

(
2 ‖Kσ‖

1
2
∞

)}
.

Proof. Lipschitz property. Observe that,

|`g1(x)− `g2(x)| =
∣∣ρ (‖Φσ(x)− g1‖Hσ

)
− ρ

(
‖Φσ(x)− g2‖Hσ

)∣∣
≤M

∣∣‖Φσ(x)− g1‖Hσ
− ‖Φσ(x)− g2‖Hσ

∣∣
≤M ‖g1 − g2‖Hσ

,

where the first inequality follows from the fact that ρ is M -Lipschitz and the last inequality follows
from reverse triangle inequality. This shows that the loss functions `g(·) are M -Lipschitz with respect
to g. For the risk functionals, we have that,

|J (g1)− J (g2)| =

∣∣∣∣∣∣
∫
Rd

(`g1(x)− `g2(x)) dP(x)

∣∣∣∣∣∣
≤
∫
Rd

∣∣∣`g1(x)− `g2(x)
∣∣∣dP(x)

≤M ‖g1 − g2‖Hσ
,

where the first inequality follows from Jensen’s inequality. This verifies that J (g) is M -Lipchitz.
The proof for Jn(g) is identical.

Strict Convexity. We begin by establishing that for translation invariant kernels ‖Φσ(x)− ·‖Hσ
is

strictly convex. Suppose g1, g2 ∈ Hσ ∩Dσ and λ ∈ (0, 1), and let g = (1− λ)g1 + λg2. Then

‖Φσ(x)− g‖2Hσ
= ‖(1− λ)(Φσ(x)− g1) + λ(Φσ(x)− g2)‖2Hσ

= (1− λ)2 ‖Φσ(x)− g1‖2Hσ

+ λ2 ‖Φσ(x)− g2‖2Hσ
+ 2λ(1− λ)

〈
Φσ(x)− g1,Φσ(x)− g2

〉
Hσ

. (B.1)

From Cauchy-Schwarz inequality, we know that〈
Φσ(x)− g1,Φσ(x)− g2

〉
Hσ

≤ ‖Φσ(x)− g1‖Hσ
‖Φσ(x)− g2‖Hσ

.

In the following, we argue that for translation invariant kernels,〈
Φσ(x)− g1,Φσ(x)− g2

〉
Hσ

< ‖Φσ(x)− g1‖Hσ
‖Φσ(x)− g2‖Hσ

, (B.2)

for g1 6= g2. On the contrary, suppose〈
Φσ(x)− g1,Φσ(x)− g2

〉
Hσ

= ‖Φσ(x)− g1‖Hσ
‖Φσ(x)− g2‖Hσ

holds. Then this implies that there is a function a(x), depending only on g1 and g2, such that
a(x) 6= 0 for x ∈ Rd and

Φσ(x)− g1 = a(x) (Φσ(x)− g2) .
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Rearranging the terms this implies that

Φσ(x) =
g1 − a(x)g2

1− a(x)
= (1 + b(x))g1 + b(x)g2,

where b(x) = −a(x)/(1 − a(x)) also does not vanish on x ∈ Rd. For x,y ∈ Rd, from the
reproducing property we have

Kσ(x,y) =
〈

Φσ(x),Φσ(y)
〉
Hσ

=
〈
g1 + b(x)(g1 + g2), g1 + b(y)(g1 + g2)

〉
Hσ

= b(x)b(y) ‖g1 + g2‖2Hσ
+ (b(x) + b(y)) 〈g1, g1 + g2〉Hσ + ‖g1‖2Hσ

.

Note that because the kernel is translation invariant, i.e., Kσ(x,x) = Kσ(y,y) = σ−dψ(0), this
must imply that

0 =
(
b(x)2 − b(y)2

)
‖g1 + g2‖2Hσ

+ 2(b(x)− b(y))〈g1, g1 + g2〉Hσ

= (b(x)− b(y))
(

(b(x) + b(y)) ‖g1 + g2‖2Hσ
+ 2〈g1, g1 + g2〉Hσ

)
.

Since b(x) and b(y) are nonvanishing, the above equation is satisfied only when b(x) = b(y). This
implies that Kσ(x,y) is constant for all y, giving us a contradiction. Thus, we have that Eq. (B.2)
holds. Plugging this back in Eq. (B.1) we get that for λ ∈ (0, 1) and g = (1− λ)g1 + λg2,

‖Φσ(x)− g‖Hσ
< (1− λ) ‖Φσ(x)− g1‖Hσ

+ λ ‖Φσ(x)− g2‖Hσ
.

Since, ρ is strictly increasing and convex, this implies that

`g(x) < (1− λ)`g1(x) + λ`g2(x).

The map `g(·) 7→ P`g is a linear operator, and `g is strictly convex in g, this implies that J (g) is also
strictly convex in g. The same holds for Jn(g).

Strong Convexity around the minimizer. We now turn our attention to the strong convexity property.
For this, we first show that J (g) is twice Gâteaux differentiable. Let g, h ∈ G, then the second
Gâteaux derivative of the loss `g(x) = ρ

(
‖Φσ(x)− g‖Hσ

)
at g in the direction h is given by,

δ2`(x, g;h) =
d2

dα2
`(x, g + αh)

∣∣∣
α=0

=
d2

dα2
ρ
(
‖Φσ(x)− g − αh‖Hσ

) ∣∣∣
α=0

=
d

dα

[
ϕ
(
‖Φσ(x)− g − αh‖Hσ

) (
−〈Φσ(x)− g, h〉Hσ + α ‖h‖2Hσ

)] ∣∣∣
α=0

= ϕ
(
‖Φσ(x)− g‖Hσ

)
‖h‖2Hσ

+ 〈Φσ(x)− g, h〉2Hσ

ϕ′
(
‖Φσ(x)− g‖Hσ

)
‖Φσ(x)− g‖Hσ

= ϕ (z(x, g)) ‖h‖2Hσ
+ ‖h‖2Hσ

λ(x, g, h)z(x, g)ϕ′ (z(x, g)) , (B.3)

where for a fixed g ∈ G, in the interest of brevity, we define z(x, g) = ‖Φσ(x)− g‖Hσ
and

λ(x, g, h) =
〈 Φσ(x)− g
‖Φσ(x)− g‖Hσ

,
h

‖h‖Hσ

〉2

Hσ

∈ [0, 1].

Observe that zϕ′(z) = ρ′′(z)− ϕ(z), thus Eq. (B.3) becomes

δ2`(x, g;h) = ‖h‖2Hσ
((1− λ(x, g, h))ϕ (z(x, g)) + λ(x, g, h)ρ′′ (z(x, g))) .

From assumption (A4) we have that ρ′′ and ϕ are nonincreasing, and

z(x, g) = ‖Φσ(x)− g‖Hσ
≤ 2 ‖Kσ‖

1
2
∞ .
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Thus, we have that

δ2`(x, g;h) ≥ c ‖h‖2Hσ
, (B.4)

where

c = min
{
ϕ
(

2 ‖Kσ‖
1
2
∞

)
, ρ′′

(
2 ‖Kσ‖

1
2
∞

)}
.

We also note that δ2`(x, g;h) is bounded above. To see this, note that from assumption (A4), ρ′′ and
ϕ are bounded and nonincreasing. Consequently, for λ(x, g, h) ∈ (0, 1) and

C = max {ρ′′(0), ϕ(0)} <∞,
from Eq. (B.3) we have that

δ2`(x, g;h) ≤ C ‖h‖2Hσ
<∞.

The Gâteaux derivative of J (g) is, then, given by

δ2J (g;h) =
d2

dα2
J (g + αh)

∣∣∣
α=0

=
d2

dα2

∫
Rd

`(x, g + αh) dP(x)
∣∣∣
α=0

=

∫
Rd

d2

dα2
`(x, g + αh) dP(x)

∣∣∣
α=0

=

∫
Rd

δ2`(x, g;h) dP(x).

The exchange of the derivative and integral in the second line follows from the dominated convergence
theorem since

∣∣δ2`(x, g;h)
∣∣ is bounded. This confirms the Gâteaux differentiability of J (g). From

Eq. (B.4) we have

δ2J (g;h) =

∫
Rd

δ2`(x, g;h) dP(x) ≥ c ‖h‖2Hσ
. (B.5)

For fρ,σ = arg infg∈G J (g) and g ∈ G, we proceed to show the strong-convexity guarantee. Let
h = g − fρ,σ . From the first-order Taylor approximation for J (g) we have,

J (g) = J (fρ,σ) + δJ (fρ,σ, h) +R2(fρ,σ, h),

where the first Gâteaux derivative, δJ (fρ,σ, h) = 0 for all h since fρ,σ is the unique minimizer of
J (g) and the remainder term R2(fρ,σ, h) is given by

R2(fρ,σ, h) =
1

2

∫ 1

0

(1− t)δ2J (fρ,σ + th;h) dt

≥ c

2
‖h‖2Hσ

∫ 1

0

(1− t)dt =
c

4
‖h‖2Hσ

,

where the inequality follows from Eq. (B.5). As a result, for any g ∈ G and µ = c
2 we have that

J (g)− J (fρ,σ) ≥ µ

2
‖g − fρ,σ‖2Hσ

,

yielding the desired result. �

We now turn to examining the behaviour of the risk functional J (g) w.r.t. the underlying probability
measure P. For 0 ≤ ε ≤ 1 and x ∈ Rd, let Pεx = (1− ε)P + εδx be a perturbation curve, as defined
in Theorem 4.2. The risk functional associated with Pεx is given by

Jε,x(g) = Pεx`g = (1− ε)J (g) + ερ
(
‖Φσ(x)− g‖Hσ

)
,

and f ε,xρ,σ = infg∈G Jε,x(g) is the minimizer. The convergence of f ε,xρ,σ to fρ,σ can be studied by
examining the convergence of Jε,x to J . Specifically, under conditions on J and Jε,x, it can
be shown that

∥∥f ε,xρ,σ − fρ,σ∥∥Hσ
→ 0 as ε → 0. The machinery we use here uses the notion of

Γ–convergence, which is defined as follows.
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Definition B.2 (Γ convergence). Given a functional F : X → R ∪ {±∞} and a sequence of

functionals {Fn}n∈N, Fn
Γ→ F as n→∞ when

(i) F (x) ≤ lim inf
n→∞

Fn(xn) for all x ∈ X and every {xn}n∈N such that d(xn,x)→ 0;

(ii) For every x ∈ X, there exists {xn}n∈N, d(xn,x)→ 0 such that F (x) ≥ lim sup
n→∞

Fn(xn).

The following result shows that the sequence of functionals {Jε,x} Γ–converges to J .
Proposition B.3 (Γ–convergence of Jε,x to J ). Under assumptions (A1)–(A3),

Jε,x(g)
Γ→ J (g) as ε→ 0.

Proof. Let g ∈ G and {gε}ε>0 be a sequence in G such that ‖gε − g‖Hσ
→ 0 as ε→ 0. In order to

verify Γ–convergence we first show that the following holds

lim
ε→0

∣∣∣Jε,x(gε)− J (g)
∣∣∣ = 0.

For ε > 0, using the triangle inequality we have that∣∣∣Jε,x(gε)− J (g)
∣∣∣ ≤ ∣∣∣J (gε)− J(g)

∣∣∣+
∣∣∣Jε,x(gε)− J (gε)

∣∣∣
(i)

≤ M ‖gε − g‖Hσ
+
∣∣∣Jε,x(gε)− J (gε)

∣∣∣
(ii)

≤ M ‖gε − g‖Hσ
+ ε ·

∣∣∣J (g)− ρ
(
‖Φσ(x)− g‖Hσ

)∣∣∣,
where (i) uses the fact that J (g) is M–Lipschitz from Proposition B.1, and (ii) uses the fact that

Jε,x(g) = (1− ε)J (g) + ερ
(
‖Φσ(x)− g‖Hσ

)
.

Since ‖gε − g‖Hσ
→ 0 as ε→ 0 we have

lim
ε→0

∣∣∣Jε,x(gε)− J (g)
∣∣∣ ≤M lim

ε→0
‖gε − g‖Hσ

+ lim
ε→0

ε ·
∣∣∣J (g)− ρ

(
‖Φσ(x)− g‖Hσ

)∣∣∣ = 0.

Since Jε,x and J are continuous, using [17, Remark 4.8] it follows that Jε,x(g)
Γ→ J (g). �

Now, we examine the coercivity of the sequence {Jε,x}.
Definition B.4 (Equi-coercivity). A sequence of functionals {Fn}n∈N : X→ R∪{±∞} is said to be
equi-coercive if for every t ∈ R, there exists a compact setKt ⊆ X such that {x ∈ X : Fn ≤ t} ⊆ Kt

for every n ∈ N.

The following result shows that the sequence {Jε,x} is equi-coercive.
Proposition B.5 (Equi-coercivity of Jε,x). Under assumptions (A1)–(A3), the sequence of
functionals {Jε,x} is equi-coercive.

Proof. For 0 < ε < 1, x ∈ Rd and g ∈ G, we have that

Jε,x(g) = (1− ε)J (g) + ερ
(
‖Φσ(x)− g‖Hσ

)
.

From [17, Proposition 7.7] in order to show that the sequence of functionals {Jε,x} is equi-coercive,
it suffices to show that there exists a lower semicontinuous, coercive functional F : Hσ → R∪{±∞}
such that F ≤ Jε,x for every ε ≥ 0. To this end consider the functional

F (g) = min
{
J (g), ρ

(
‖Φσ(x)− g‖Hσ

)}
.

As Jε,x is a convex combination of J (·) and ρ
(
‖Φσ(x)− ·‖Hσ

)
, it implies that F ≤ Jε,x for every

ε ≥ 0. Additionally, because J (·) and ρ
(
‖Φσ(x)− ·‖Hσ

)
are both continuous, it follows that F is

also continuous, and, therefore, lower semicontinuous.
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We now verify that F is coercive. Since ρ is strictly increasing we have that

ρ
(
‖Φσ(x)− g‖Hσ

)
→∞ as ‖g‖Hσ

→∞,

verifying that ρ
(
‖Φσ(x)− ·‖Hσ

)
is coercive. Next, from the reverse triangle inequality we have that

‖Φσ(x)− g‖Hσ
≥
∣∣∣‖Φσ(x)‖Hσ

− ‖g‖Hσ

∣∣∣ =
∣∣∣√Kσ(x,x)− ‖g‖Hσ

∣∣∣.
Observe that Kσ(x,x) = ‖Kσ‖∞, and because ρ is strictly increasing we have

ρ
(∣∣∣‖Kσ‖

1
2
∞ − ‖g‖Hσ

∣∣∣) ≤ ρ (‖Φσ(x)− g‖Hσ

)
.

Taking expectations on both sides w.r.t. P,

ρ
(∣∣∣‖Kσ‖

1
2
∞ − ‖g‖Hσ

∣∣∣) ≤ ∫
Rd
ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x) = J (g).

Since

ρ
(∣∣∣‖Kσ‖

1
2
∞ − ‖g‖Hσ

∣∣∣)→∞ as ‖g‖Hσ
→∞,

it implies that J (g) is coercive as well. It follows from this that F is coercive, and the sequence of
functionals {Jε,x} is equi-coercive. �

Propositions B.3 and B.5 together imply, from the fundamental theorem of Γ-convergence [17,
Theorem 7.8], that the sequence of minimizers associated with {Jε,x} converge to the minimizer of
J , i.e., ∥∥f ε,xρ,σ − fρ,σ∥∥Hσ

→ 0 as ε→ 0.

B.2 Some Additional Results

Next, we note an important property of the hypothesis class, G = Hσ ∩Dσ . The elements of G can
be shown to have their ‖·‖∞–norm related their ‖·‖Hσ

–norm.

Lemma B.6 ([39, Lemma 6] and [34, Proposition 5.1]). For every g ∈ Hσ ∩Dσ ,

‖g‖2Hσ
≤ ‖g‖∞ ≤ ‖Kσ‖

1
2
∞ ‖g‖Hσ

.

The following result, which is essentially the population analogue of [39, Lemma 7], guarantees
that for small enough σ > 0, there exists 0 < δ < 1 such that fρ,σ is contained in the RKHS ball
BHσ

(0, δνσ), where for brevity we denote νσ = ‖Kσ‖1/2∞ . We provide the proof for completeness,
however, the proof uses exactly the same ideas from [39]. For notational convenience, we also define
ψσ(‖x− y‖2) = Kσ(x,y) = σ−dψ (‖x− y‖2 /σ).

Lemma B.7. Let P ∈M(Rd) and fρ,σ be the robust KDE for σ > 0. For sufficiently small σ > 0,
there exists 0 < δ < 1 such that fρ,σ ∈ B(0, δνσ).

Proof. For P ∈M(Rd), and G = Hσ ∩Dσ , consider the map Tσ : G → G given by

Tσ(g) =

∫
Rd

ϕ
(
‖Φσ(x)− g‖Hσ

)∫
Rd ϕ

(
‖Φσ(y)− g‖Hσ

)
dP(y)

Kσ(·,x) dP(x) =

∫
Rd
Kσ(·,x)wσ(x)dP(x),

for each g ∈ G. Observe that wσ ∈ L1(P) is a non-negative function such that∫
Rd
wσ(x)dP(x) = 1. (B.6)

Let Sσ = Im(Tσ) ⊂ G. It follows from [39, Page 11] that the robust KDE, fρ,σ = arg infg∈G J (g),
is the fixed point of the map Tσ and therefore fρ,σ ∈ Sσ. For a small ε > 0, from [39, Lemma 12;
Corollary 13] there exist r, s > 0 such that P(B(x, r)) ≤ ε and P(B(x, r+ s) \B(x, r)) ≤ ε for all
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x ∈ Rd. This implies that P(B(x, r + s)c) > 1− 2ε. We point out that the constant ε chosen here is
related to

√
9/10 used by [39] as

√
1− ε =

√
9/10, which, as remarked by the authors, was chosen

simply for convenience. Define the sets Bσ = BHσ (0, νσ
√

1− ε), and let

Rσ =· Sσ ∩Bcσ.

In what follows we will show that fρ,σ does not lie in Rσ . To this end, let g = arg infh∈Rσ J (h). It
suffices to show that J (g) > J (0) > J (fρ,σ). Since g ∈ Rσ , it must follow that

(1− ε)ν2
σ < ‖g‖

2
Hσ
≤ ‖g‖∞ = g(z), (B.7)

for some z ∈ Rd, where the second inequality follows from Lemma B.6. Since g ∈ Sσ , there exists a
non-negative function wσ satisfying Eq. (B.6), such that g =

∫
Rd wσ(x)Kσ(·,x)dP(x). Therefore,

(1− ε)ν2
σ ≤ g(z) =

∫
Rd
Kσ(z,x)wσ(x)dP(x)

=

∫
B(z,r)

Kσ(z,x)wσ(x)dP(x) +

∫
B(z,r)c

Kσ(z,x)wσ(x)dP(x)

(i)

≤ ν2
σ

∫
B(z,r)

wσ(x)dP(x) + ψσ(r)

∫
B(z,r)c

wσ(x)dP(x)︸ ︷︷ ︸
≤1

(ii)

≤ ν2
σ

∫
B(z,r)

wσ(x)dP(x) + ψσ(r), (B.8)

where (i) follows from the fact that supB(z,r)c Kσ(z,x) = ψσ(r) and (ii) follows from Eq. (B.6).
From [39, Lemma 7], there exists σ small enough such that ψσ(r) < ε

2ν
2
σ. Plugging this back in

Eq. (B.8) we get ∫
B(z,r)

wσ(x)dP(x) ≥
(

1− 3ε

2

)
. (B.9)

Additionally,

sup
y∈B(z,r+s)c

g(y) = sup
y∈B(z,r+s)c

( ∫
B(z,r)

Kσ(y,x)wσ(x)dP(x) +

∫
B(z,r)c

Kσ(y,x)wσ(x)dP(x)
)

≤ sup
y∈B(z,r+s)c

sup
x∈B(z,r)

Kσ(y,x)

∫
B(z,r)

wσ(x)dP(x)

+ sup
y∈B(z,r+s)c

sup
x∈B(z,r)

Kσ(y,x)

∫
B(z,r)c

wσ(x)dP(x)

≤ ψσ(s) + ν2
σ

∫
B(z,r)c

wσ(x)dP(x).

For a choice of τ > 0, there is σ small enough satisfying ψσ(s) ≤ τ such that from Eq. (B.9)

sup
y∈B(z,r+s)c

g(y) ≤ τ +
3ε

2
ν2
σ. (B.10)
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Then we have that

J (g) =

∫
Rd

ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x)

=

∫
B(z,r+s)

ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x) +

∫
B(z,r+s)c

ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x)

≥
∫

B(z,r+s)c

ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x)

=

∫
B(z,r+s)c

ρ

(√
ν2
σ + ‖g‖2Hσ

− 2〈g,Φσ(x)〉Hσ

)
dP(x)

≥
∫

B(z,r+s)c

ρ

(√
ν2
σ + ‖g‖2Hσ

− 2 sup
y∈B(z,r+s)c

g(y)

)
dP(x).

Plugging in Equations (B.10) and (B.7) we get

J (g) ≥ (1− 2ε)ρ
(√

(2− 4ε)ν2
σ − 2τ

)
.

Since ρ is assumed to be strictly convex, this implies that ρ′ is strictly increasing. Additionally, from
(A2) we have that ρ′ is bounded. This implies that, for any 0 < α < ‖ρ′‖∞, there is β > 0 such that
ρ′(z) > ‖ρ′‖∞ − α for all z > β. Using [39, Eq. (11)], we have

ρ
(√

(2− 4ε)ν2
σ − 2τ

)
=

∫ (2−4ε)ν2
σ−2τ

0

ρ′(z)dz

≥
∫ (2−4ε)ν2

σ−2τ

β

ρ′(z)dz

≥
∫ (2−4ε)ν2

σ−2τ

β

(‖ρ′‖∞ − α) dz

≥ (‖ρ′‖∞ − α)
(√

(2− 4ε)ν2
σ − 2τ − β

)
.

Without loss of generality, we can assume ‖ρ′‖∞ = 1. Choosing α, τ and σ small enough we obtain

J (g) ≥ νσ.
Now we note that

J (0) =

∫
Rd
ρ
(
‖Φσ(x)‖Hσ

)
dP(x)

= ρ (νσ)

= ρ(0) +

∫ νσ

0

ρ′(z)dz

≤ ρ(0) + ‖ρ′‖∞
∫ νσ

0

dz = νσ.

Thus, we obtain that J (g) > J (0). We have g = arg infh∈Rσ J (h) and fρ,σ = arg infh∈G J (h),
and, additionally we know that fρ,σ 6= 0. It follows that since J (fρ,σ) ≤ J (0) < J (g), then
fρ,σ /∈ Rσ as σ → 0. Taking δ =

√
1− ε, we get the desired result. �

C Supplementary Results for the Persistence Influence

In this section, we collect the proofs for the results on persistence influence established in Section 4.1.
The following result shows that when ϕ is nonincreasing, the persistence influence in Eq. (3) can be
written in a more succinct form.
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Proposition C.1. Under the conditions of Theorem 4.2, if ϕ is nonincreasing, then the persistence
influence of x ∈ Rd on Dgm (fρ,σ) satisfies

Ψ (fρ,σ;x) ≤ ‖Kσ‖
1
2
∞ wσ(x) ‖Φσ(x)− fρ,σ‖Hσ

,

where wσ is the measure of inlyingness from Eq. (2).

Proof. From Theorem 4.2 we have that the persistence influence satisfies

Ψ (fρ,σ;x) ≤ ‖Kσ‖
1
2
∞ ρ′

(
‖Φσ(x)− fρ,σ‖Hσ

)(∫
Rd
ζ
(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y)

)−1

, (C.1)

where ζ(z) = ϕ(z)− zϕ′(z). When ϕ is nonincreasing, observe that zϕ′(z) ≤ 0 for all 0 ≤ z <∞.
Consequently, ζ can be bounded below by ϕ, and the r.h.s. in Eq. (C.1) can be bounded above by

Ψ (fρ,σ;x)
(i)

≤ ‖Kσ‖
1
2
∞

ρ′
(
‖Φσ(x)− fρ,σ‖Hσ

)
∫
Rd ϕ

(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y)

(ii)
= ‖Kσ‖

1
2
∞

ϕ
(
‖Φσ(x)− fρ,σ‖Hσ

)
∫
Rd ϕ

(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y)

‖Φσ(x)− fρ,σ‖Hσ

(iii)
= ‖Kσ‖

1
2
∞ wσ(x) ‖Φσ(x)− fρ,σ‖Hσ

,

where (i) follows from the fact that ζ(z) ≥ ϕ(z), (ii) follows from the definition of ϕ, i.e.,
ρ′(z) = zϕ(z), and (iii) follows from the definition of wσ in Eq. (2), yielding the desired result. �

The following result establishes the bound for the distance-to-measure described in Eq. (4).
Proposition C.2. For P ∈M(Rd), the persistence influence for the distance-to-measure function is
given by

Ψ (dP,m;x) ≤ 2√
m

sup

{∣∣∣f(x)−
∫
Rd
f(y)dP(y)

∣∣∣ : ‖∇f‖L2(P) ≤ 1

}
where ‖∇f‖L2(P) is a modified, weighted Sobolev norm [31, 41].

Proof. From [10, Theorem 3.5] the following stability result holds:∥∥dP,m − dPεx,m∥∥∞ ≤ 1√
m
W2 (P,Pεx) .

From [31, Theorem 1] we have that
W2 (P,Pεx) ≤ 2 ‖P− Pεx‖Ḣ−1(P) ,

where the weighted, homogeneous Sobolev norm ‖·‖Ḣ−1(µ) for a signed measure ν w.r.t. a positive
measure µ is given by

‖ν‖Ḣ−1(µ) = sup

{∣∣∣∫
Rd
f(x)dν(x)

∣∣∣ : ‖∇f‖L2(µ) ≤ 1

}
.

Observe that P− Pεx = ε (δx − P) and since ‖·‖Ḣ−1(µ) defines a norm, we have that

lim
ε→0

1

ε

∥∥dP,m − dPεx,m∥∥∞ ≤ 1√
m

lim
ε→0

1

ε
W2 (P,Pεx)

≤ 2√
m

lim
ε→0

1

ε
‖ε (δx − P)‖Ḣ−1(P)

=
2√
m
‖(δx − P)‖Ḣ−1(P)

=
2√
m

sup

{∣∣∣f(x)−
∫
Rd
f(y)dP(y)

∣∣∣ : ‖∇f‖L2(P) ≤ 1

}
.

From the stability for persistence diagrams, we have that

Ψ (dP,m;x) ≤ lim
ε→0

1

ε

∥∥dP,m − dPεx,m∥∥∞
and the result follows. �
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Persistence-Influence Experiment Points Xn are sampled from an annular region inside [−5, 5]
2

along with some uniform noise in the ambient space, corresponding to the black points in Figure 6 (a).
Xn has interesting 1st-order homological features. We compute the robust KDE fnρ,σ and the KDE
fnσ on the points Xn along with the corresponding persistence diagrams Dgm

(
fnρ,σ

)
and Dgm (fnσ ).

Outliers Ym are added to the original points at a distance r from the origin, the number of points
roughly equal to r. Figure 6 (a) depicts these outliers in orange when r = 20. The robust KDE
fn+m
ρ,σ and fn+m

σ are now computed on the composite sample Xn ∪ Ym along with the persistence
diagrams Dgm

(
fn+m
ρ,σ

)
and Dgm (fn+m

σ ). The bandwidth σ(k) is chosen as the median distance to
the kth–nearest neighbour of each xi ∈ Xn, for the Gaussian kernel with the Hampel loss and k = 5.

For the KDE and robust KDE, we compute the L∞ influence of Ym i.e., ‖fn+m − fn‖∞ as shown in
Figure 6 (d). Additionally for each of the 0th-order and 1st-order persistence diagrams, we compute
the persistence influence of Ym, i.e., W∞ (Dgm (fn+m) ,Dgm (fn)) as shown in Figures 6 (b, e),
and the 1-Wasserstein influence, i.e., W1 (Dgm (fn+m) ,Dgm (fn)) as shown in Figures 6 (c, f). We
refer the reader to Eq. (E.1) in Appendix E for the definition of W1 metric.

For each value of r, we generate 100 such samples and report the average in Figure 6. The results
indicate that the robust persistence diagrams, Dgm

(
fnρ,σ

)
, are relatively unperturbed when the

outliers are added. It exhibits stability even as r become very large. The KDE persistence diagrams,
Dgm (fnσ ), on the other hand, are unstable as the outlying noise becomes more extreme.

As discussed in the Remark 4.3(iii), the persistence influence for DTM has a much weaker bound
as the outliers become more extreme, and in general is not guaranteed to be bounded. In Figure
7 we illustrate the results from the same experiment when the persistence diagrams from DTM is
contrasted with the persistence diagrams from the KDE. This analysis is for the same data as that
used in Figure 3. We remark that even though DTM is highly sensitive to extreme outliers, DTM
based filtrations have other remarkable properties, as described in [13]. They are very useful for
analyzing persistent homology when one has access to just a single collection of points Xn. For DTM
the smoothing parameter is chosen as m(k) = k/n with k = 5.
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Figure 6: (a) An example of Xn in blue and the contamination Ym when r = 10. (d) The L∞ influence of Ym
on the KDE and robust KDE. (b, e) The bottleneck influence of Ym. (c, f) The 1-Wasserstein influence of Ym as
the distance r increases.
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Figure 7: For the same data in Figure 6, (a, d) depicts the bottleneck influence for the DTM in contrast to the
KDE – the red line is the same as the one from Figure 6 (b, e). Similarly, in (c, e) we see the W1 persistence
influence of Ym for the DTM in contrast to the KDE. (b) shows the L∞ influence of Ym on the DTM. The
robust KDE lines were omitted from all plots as it appears to almost merge with the KDE at this scale.

D Additional Experiments with Robust Persistence Diagrams

In this section, we provide information on some additional experiments with the proposed robust
persistence diagrams. The experimental setup is the same as in Section 5.

Random Circles. The objective of this simulation is to evaluate the performance of persistence
diagrams in a supervised learning task. We select circles S1,S2, . . . ,SN randomly in R2 with centers
inside [0, 2]

2, with the number of such circles, N uniformly sampled from {1, 2, . . . , 5}. Conditional
on N = N , Xn is sampled uniformly from S1, . . . ,SN with 50% noise in the enclosing square. Two
such point clouds are shown in Figure 8 (a, b). Persistence diagrams Dgm (fnσ ) and Dgm

(
fnρ,σ

)
are

constructed for bandwidth σ(k) selected from k = 5, 7, and vectorized in the form of persistence
images Img (fnσ , h), and Img

(
fnρ,σ, h

)
for varying bandwidths h [1]. With N as the response and the

persistence images as the input, results from a support vector regression, averaged over 50 random
splits, is shown in Figure 8 (c, d). For a fixed h the robust persistence diagram seems to always
contain more predictive information, as observed in the envelope it forms in Figure 8 (c, d).
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Figure 8: (a, b) A realization Xn when N = 2 and N = 5. (c, d) The predicted mean-squared error vs. the
persistence image bandwidth for persistence diagrams in support vector regression.
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E Background on Persistent Homology

Given a set of a points Xn = {x1 . . .xn} in a metric space (X, d) their topology is encoded in a
geometric object called a simplicial complex K ⊆ 2Xn .

Definition E.1. [24]. A simplicial complex K is a collection of simplices 〈σ〉 i.e. points, lines,
triangles, tetrahedra and its higher dimensional analogues, such that

1. ∀τ 4 σ, σ ∈ K we have τ ∈ K;

2. ∀σ, τ ∈ K, we have that σ ∩ τ 4 σ, τ or σ ∩ τ = φ.

For a given spatial resolution r > 0, the simplicial complex for Xn, given by K (Xn, r), can be
constructed in multiple ways. For example, the Vietoris-Rips complex is the simplicial complex

Kr = {σ ⊆ Xn :
⋂
x∈σ

B(x, r) 6= ∅},

and the Čech complex is given by
Kr = {σ ⊆ Xn : max

xi,xj∈σ
d (xi,xj) ≤ r}.

More generally, if K is a simplicial complex constructed using an approximation of the space X
(e.g., triangulation, surface mesh, grid, etc.), and φ : X → R a filter function, φ induces the map
φ : K → R. Then, Kr = φ−1 ([0, r]) encodes the information in the sublevel set of φ at resolution r.
Similarly, Kr encodes the information in the superlevel sets at resolution r.

For 0 ≤ k ≤ d, the kth-homology [24] of a simplicial complex K, given by Hk (K) is an alge-
braic object encoding its topology as a vector-space (over a fixed field). Using the Nerve lemma,
Hk (K (Xn, r)) is isomorphic to the homology of its union of r-balls, Hk (

⋃n
i=1Br (xi)). The

ordered sequence {K (Xn, r)}r>0 forms a filtration, encoding the evolution of topological features
over a spectrum of resolutions. For 0 < r < s, the simplicial complex K (Xn, r) is a sub-simplicial
complex of K (Xn, s). Their homology groups are associated with the inclusion maps

ιsr : Hk (K (Xn, r)) ↪→ Hk (K (Xn, s)) ,
which in turn carry information on the number of non-trivial k-cycles. As the resolution r varies,
the evolution of the topology is captured in the filtration. Roughly speaking, new cycles (e.g.,
connected components, loops, voids and higher order analogues) can appear or existing cycles can
merge. Formally, a new k-cycle σk with homology class [αk] is born at b ∈ R if [αk] /∈ Im(ιkb−ε,b)

for all ε > 0 and [αk] ∈ Im(ιkb,b+δ) for some δ > 0. The same k-cycle born at b dies at d > b if
ιkb,d−δ ([αk]) /∈ Im(ιkb−ε,d−δ) and ιkb,d ([αk]) ∈ Im(ιkb−ε,d) for all ε > 0 and 0 < δ < d−b. Persistent
homology, PH∗(φ), is an algebraic module which tracks the persistence pairs (b, d) of births b and
deaths d across the entire filtration. By collecting all persistence pairs (b, d), the persistent homology
is represented as a persistence diagram

Dgm (K (Xn)) =·
{

(b, d) ∈ R2 : 0 ≤ b < d ≤ ∞
}
.

The persistence diagram is a multiset of points on the space Ω = {(x, y) : 0 ≤ x < y ≤ ∞}, such
that each point (x, y) in the persistence diagram corresponds to a distinct topological feature which
existed in K(Xn, r) for x ≤ r < y. Given a persistence diagram D and 1 ≤ p ≤ ∞ the degree-p
total persistence of D is given by

persp(D) =

 ∑
(b,d)∈D

|d− b|p
 1

p

.

The space of persistence diagrams, given byDp =
{
D : persp(D) <∞

}
, is endowed with the family

of p-Wasserstein metrics Wp. Given two persistence diagrams D1,D2 ∈ Dp, the p-Wasserstein
distance is given by

Wp (D1,D2) =·
(

inf
γ∈Γ

∑
z∈D1∪∆

‖z − γ(z)‖p∞

) 1
p

, (E.1)

where Γ = {γ : D1 ∪∆→ D2 ∪∆} is the set of all bijections from D1 to D2 including the
diagonal ∆ =

{
(x, y) ∈ R2 : 0 ≤ x = y ≤ ∞

}
with infinite multiplicity.
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Figure 9: Points are sampled from a circular region with adverse outlying noise in the enclosing region. The
persistence diagrams from sublevel and superlevel filtration from fnρ,σ and dn,m respectively are compared with
those from the DTM-filtration for p ∈ {1, 2,∞}. The connected components are shown in • and loops in N.

E.1 Weighted Rips Filtrations

For p ≥ 1 and a weight function w : Rd → R, the pth-power distance from x ∈ Xn at resolution
t > 0 is given by rx,w,p(t) =· (tp − w(x)p)

1
p . Anai et al. [2] introduce the weighted-Rips filtration,

where the weighted-Rips complex at resolution t > 0 is the simplicial complex

Kt,w,p =·
{
σ ⊆ Xn :

⋂
x∈σ

B (x, rx,w,p(t)) 6= ∅

}
. (E.2)

The weighted-Rips filtration, {Kt,w,p}0≤t<∞ is used to construct the persistence diagram
Dgm (Xn;w, p). On the computational front, the construction of Dgm (Xn;w, p) does not depend
on the dimension of the underlying space. As a result, weighted-Rips filtrations are very appealing
for applications in high dimensions. In addition, the weighted-Rips filtrations obtained by using
the distance-to-measure (DTM) as the weight function, i.e., Dgm (Xn; dm,n, p), have some very
appealing approximation properties [2, Theorems 15 & 20].

We highlight some key differences between our approach and that in Anai et al. [2]. First, as
remarked in [2, Section 5], many of the favourable properties of the DTM-filtrations follow from
the stability of DTM w.r.t. the Wasserstein Distance. However, it should be noted that stability
is inherently different from robustness, as we have described in our analysis using the persistence
influence in Section 4.1, and particularly, in Proposition C.2. In this context, Figure 9 demonstrates
the advantage of our proposed approach in the presence of adverse noise. Second, we note that that
our implementations of the robust persistence diagrams use the superlevel filtrations of the robust
KDE fnρ,σ (e.g., see Figure 10), in contrast to weighted-Rips filtrations. While latter is arguably better
in higher dimensions, it becomes infeasible for large sample sizes. Notwithstanding, the contributions
of [2] provide an interesting direction to pursue using the tools presented here to develop efficient
and robust persistence diagrams.
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(c) Birth at level r ≈ 8
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(d) Death at level r ≈ 7
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Figure 10: An example for the superlevel filtration of φ : R→ R. (a) As the superlevel set enters r ≈ 15, the
first connected component is born, corresponding to the blue dot on the highest peak of φ. The superlevel set for
r = 15 is depicted in pink below. This is recorded as a birth in the corresponding orange dot enclosed in the pink
shaded region of the persistence diagram. (b) As the r enters r ≈ 12, another connected component is born. This
is recorded as the second orange dot in the shaded region of the persistence diagram. (c) Again, at r ≈ 8, a third
connected component is born at the lowest peak of φ. The three connected components in the superlevel set are
shaded in pink below the function. The persistence diagram has three orange dots corresponding to these three
connected components. (d) As r enters the first valley of φ, depicted by the red dot, two connected components
merge (i.e., one of the existing connected components die). By convention, the most recent persistent feature
is merged into the older one, i.e., the connected component from (c) merges into the one from (b), and thus, it
dies at this resolution. In the persistence diagram, this is noted by the fact that the orange dot born in (c) dies
at resolution r ≈ 7. At this stage, there are only two orange dots in the pink shaded region of the persistence
diagram, corresponding to the two pink connected components in the superlevel set of φ. (e) When r enters the
second valley of φ, the connected component from (b) merges into the connected component from (a), and form
a single connected component. The orange dot in the persistence diagram records the death of this feature. (f)
The single connected component persists from then on, and eventually dies at r = 0.
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