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Abstract

Weighted sampling is a fundamental tool in data analysis and machine learning
pipelines. Samples are used for efficient estimation of statistics or as sparse
representations of the data. When weight distributions are skewed, as is often the
case in practice, without-replacement (WOR) sampling is much more effective than
with-replacement (WR) sampling: it provides a broader representation and higher
accuracy for the same number of samples. We design novel composable sketches
for WOR `p sampling, weighted sampling of keys according to a power p ∈ [0, 2]
of their frequency (or for signed data, sum of updates). Our sketches have size
that grows only linearly with the sample size. Our design is simple and practical,
despite intricate analysis, and based on off-the-shelf use of widely implemented
heavy hitters sketches such as CountSketch. Our method is the first to provide
WOR sampling in the important regime of p > 1 and the first to handle signed
updates for p > 0.

1 Introduction

Weighted random sampling is a fundamental tool that is pervasive in machine learning and data
analysis pipelines. A sample serves as a sparse summary of the data and provides efficient estimation
of statistics and aggregates.

We consider data E presented as elements in the form of key value pairs e = (e.key, e.val). We
operate with respect to the aggregated form of keys and their frequencies νx :=

∑
e|e.key=x e.val,

defined as the sum of values of elements with key x. Examples of such data sets are stochastic
gradient updates (keys are parameters and element values are signed and the aggregated form is the
combined gradient), search (keys are queries, elements have unit values, and the aggregated form are
query-frequency pairs), or training examples for language models (keys are co-occurring terms).

The data is commonly distributed across servers or devices or is streamed and the number of distinct
keys is very large. In this scenario it is beneficial to perform computations without explicitly
producing a table of key-frequency pairs, as this requires storage or communication that grows
linearly with the number of keys. Instead, we use composable sketches which are data structures that
support (i) processing a new element e: Computing a sketch of E ∪ {e} from a sketch of E and e (ii)
merging: Computing a sketch of E1 ∪ E2 from sketches of each Ei and (iii) are such that the desired
output can be produced from the sketch. Composability facilitates parallel, distributed, or streaming
computation. We aim to design sketches of small size, because the sketch size determines the storage
and communication requirements. For sampling, we aim for the sketch size to be not much larger
than the desired sample size.
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The case for p’s: Aggregation and statistics of functions of the frequencies are essential for resource
allocation, planning, and management of large scale systems across application areas. The need
for efficiency prompted rich theoretical and applied work on streaming and sketching methods that
spanned decades [57, 39, 3, 36, 41, 34, 33, 52, 51]. We study `p sampling, which refers to weighted
sampling of keys with respect to a power p of their frequency νpx. These samples support estimates
of frequency statistics of the general form

∑
x f(νx)Lx for functions of frequency f and constitute

sparse representations of the data. Low powers (p < 1) are used to mitigate frequent keys and
obtain a better resolution of the tail whereas higher powers (p > 1) emphasize more frequent keys.
Moreover, recent work suggests that on realistic distributions, `p samples for p ∈ [0, 2] provide
accurate estimates for a surprisingly broad set of tasks [32].

Sampling is at the heart of stochastic optimization. When training data is distributed [54], sampling
can facilitate efficient example selection for training and efficient communication of gradient updates
of model parameters. Training examples are commonly weighted by a function of their frequency:
Language models [56, 62] use low powers p < 1 of frequency to mitigate the impact of frequent
examples. More generally, the function of frequency can be adjusted in the course of training to
shift focus to rarer and harder examples as training progresses [8]. A sample of examples can
be used to produce stochastic gradients or evaluate loss on domains of examples (expressed as
frequency statistics). In distributed learning, the communication of dense gradient updates can be
a bottleneck, prompting the development of methods that sparsify communication while retaining
accuracy [54, 1, 66, 45]. Weighted sampling by the p-th powers of magnitudes complements existing
methods that sparsify using heavy hitters (or other methods, e.g., sparsify randomly), provides
adjustable emphasis to larger magnitudes, and retains sparsity as updates are composed.

The case for WOR: Weighted sampling is classically considered with (WR) or without (WOR)
replacement. We study here the WOR setting. The benefits of WOR sampling were noted in very
early work [42, 40, 67] and are becoming more apparent with modern applications and the typical
skewed distributions of massive datasets. WOR sampling provides a broader representation and
more accurate estimates, with tail norms replacing full norms in error bounds. Figure 1 illustrates
these benefits of WOR for Zipfian distributions with `1 sampling (weighted by frequencies) and `2
sampling (weighted by the squares of frequencies). We can see that WR samples have a smaller
effective sample size than WOR (due to high multiplicity of heavy keys) and that while both WR
and WOR well-approximate the frequency distribution on heavy keys, WOR provides a much better
approximation of the tail.
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Figure 1: WOR vs WR. Left and middle: Effective vs actual sample size Zipf[α = 1] and Zipf[α = 2],
with each point reflecting a single sample. Right: Estimates of the frequency distribution Zipf[α = 2].

Related work. The sampling literature offers many WOR sampling schemes for aggregated
data: [63, 67, 12, 64, 60, 35, 23, 24, 21]. A particularly appealing technique is bottom-k (order)
sampling, where weights are scaled by random variables and the sample is the set of keys with top-k
transformed values [64, 60, 35, 23, 24]. There is also a large body of work on sketches for sampling
unaggregated data by functions of frequency. There are two primary approaches. The first approach
involves transforming data elements so that a bottom-k sample by function of frequency is converted
to an easier problem of finding the top-k keys sorted according to the maximum value of an element
with the key. This approach yields WOR distinct (`0) sampling [50], `1 sampling [39, 20], and
sampling with respect to any concave sublinear functions of frequency (including `p sampling for
p ≤ 1) [18, 22]). These sketches work with non-negative element values but only provide limited
support for negative updates [38, 20]. The second approach performs WR `p sampling for p ∈ [0, 2]
using sketches that are random projections [43, 37, 4, 48, 58, 5, 49, 47]. The methods support signed
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updates but were not adapted to WOR sampling. For p > 2, a classic lower bound [3, 6] establishes
that sketches of size polynomial in the number of distinct keys are required for worst case frequency
distributions. This task has also been studied in distributed settings [14, 46]; [46] observes the
importance of WOR in that setting though does not allow for updates to element values.

Algorithm 1: WORp (high level)
Components:

Random hash map rx ∼ Exp[1] // Map keys x to i.i.d rx
`q residual Heavy Hitters (rHH) method

Input: Data elements E as key value pairs e = (e.key, e.val)
p ∈ (0, 2] // Specifies p ≤ q for `p sampling
k ≥ 1 // Sample Size
Specify one or two passes // One-pass requires a more accurate/larger sketch

Initialization:
Initialize rHH sketch R // Size determined by p, k, one/two passes

Process data element e = (e.key, e.val):
R.Process(e.key, e.val/r1/pe.key) // Transform element and insert into sketch

Final:
Extract sample from the sketch R // directly (one pass) or with a second pass.

Contributions: We present WORp: A method for WOR `p sampling for p ∈ [0, 2] via compos-
able sketches of size that grows linearly with the sample size (see pseudocode in Algorithm 1).
WORp is simple and practical and uses a bottom-k transform (see Figure 2) to reduce sam-
pling to a top-k problem on the transformed data. The technical heart of the paper is estab-
lishing that for any set of input frequencies, the keys with top-k transformed frequencies are
(residual) heavy hitters (rHH) and therefore can be identified using a small sketch. In terms of
implementation, WORp only requires an off-the-shelf use of popular (and widely-implemented)
HH sketches [57, 53, 13, 33, 55, 9]. WORp is the first WOR `p sampling method (that uses
sample-sized sketches) for the regime p ∈ (1, 2] and the first to fully support negative updates
for p ∈ (0, 2]. As a bonus, we include practical optimizations (that preserve the theoretical guar-
antees) and perform experiments that demonstrate both the practicality and accuracy of WORp.1

Frequencies wxTransformed frequencies wx*
sample

Figure 2: Illustration of
bottom-k sampling.

In addition to the above, we show that perhaps surprisingly, it is possible
to obtain a WOR `p-sample of a set of k indices, for any p ∈ [0, 2], with
variation distance at most 1

poly(n) to a true WOR `p-sample, and using
only k · poly(log n) bits of memory. Our variation distance is extremely
small, and cannot be detected by any polynomial time algorithm. This
makes it applicable in settings for which privacy may be a concern; indeed,
this shows that no polynomial time algorithm can learn anything from
the sampled output other than what follows from a simulator who outputs
a WOR `p-sample from the actual (variation distance 0) distribution.
Finally, for p ∈ (0, 2), we show that the memory of our algorithm is
optimal up to an O(log2 log n) factor.

2 Preliminaries

A dataset E consists of data elements that are key value pairs e = (e.key, e.val). The frequency of
a key x, denoted νx :=

∑
e|e.key=x e.val, is the sum of values of elements with key x. We use the

notation ν for a vector of frequencies of keys.

For a function f and vector w, we denote the vector with entries f(wx) by f(w). In particular, wp

is the vector with entries wpx that are the p-th powers of the entries of w. For vector w ∈ <n and
index i, we denote by w(i) the value of the entry with the i-th largest magnitude in w. We denote by
order(w) the permutation of the indices [n] = {1, 2, . . . , n} that corresponds to decreasing order of
entries by magnitude. For k ≥ 1, we denote by tailk(w) the vector with the k entries with largest
magnitudes removed (or replaced with 0).

1Code for the experiments is provided in the following Colab notebook https://colab.research.
google.com/drive/1Tix7SwsPp7A_OtSuaRf3IwfTH-qo9_81?usp=sharing
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In the remainder of the section we review ingredients that we build on: bottom-k sampling, imple-
menting a bottom-k transform on unaggregated data, and composable sketch structures for residual
heavy hitters (rHH).

2.1 Bottom-k sampling (ppswor and priority)

Bottom-k sampling (also called order sampling [64]) is a family of without-replacement weighted
sampling schemes of a set {(x,wx)} of key and weight pairs. The weights (x,wx) are transformed
via independent random maps wTx ← wx

rx
, where rx ∼ D are i.i.d. from some distribution

D. The sample includes the pairs (x,wx) for keys x that are top-k by transformed magnitudes
|wT | [59, 64, 35, 15, 11, 23, 25] 2. For estimation tasks, we also include a threshold τ := |wT(k+1)|,
the (k + 1)-st largest magnitude of transformed weights. Bottom-k schemes differ by the choice
of distribution D. Two popular choices are Probability Proportional to Size WithOut Replacement
(ppswor) [64, 15, 25] via the exponential distribution D ← Exp[1] and Priority (Sequential Poisson)
sampling [59, 35] via the uniform distribution D ← U [0, 1]. Ppswor is equivalent to a weighted
sampling process [63] where keys are drawn successively (without replacement) with probability
proportional to their weight. Priority sampling mimics a pure Probability Proportional to Size (pps)
sampling, where sampling probabilities are proportional to weights (but truncated to be at most 1).

Estimating statistics from a Bottom-k sample. Bottom-k samples provide us with unbiased
inverse-probability [42] per-key estimates on f(wx), where f is a function applied to the weight [2,
24, 19, 17]):

f̂(wx) :=

{
f(wx)

Prr∼D[r≤|wx|/τ ] if x ∈ S
0 if x /∈ S

. (1)

These estimates can be used to sparsify a vector f(w) to k entries or to estimate sum statistics of the
general form: ∑

x

f(wx)Lx (2)

using the unbiased estimate

̂∑
x

f(wx)Lx :=
∑
x

f̂(wx)Lx =
∑
x∈S

f̂(wx)Lx .

The quality of estimates depends on f and L. We measure the quality of these unbiased estimates by
the sum over keys of the per-key variance. With both ppswor and priority sampling and f(w) := w,
the sum is bounded by a respective one for pps with replacement. The per-key variance bound is

Var[ŵx] ≤ 1

k − 1
wx‖w‖1 (3)

and the respective sum by
∑
x Var[ŵx] ≤ 1

k−1‖w‖
2
1. This can be tightened to Var[ŵx] ≤

min{O( 1
k )wx‖tailk(w)‖1, exp

(
−O(k) wx

‖tailk(w)‖1

)
w2
x} and respective bound on the sum of

O(‖tailk(w)‖21/k). For skewed distributions, ‖tailk(w)‖21 � ‖w‖21 and hence WOR sampling is ben-
eficial. Conveniently, bottom-k estimates for different keys x1 6= x2 have non-positive correlations
Cov[ŵx1

, ŵx2
] ≤ 0, so the variance of sum estimates is at most the respective weighted sum of per-

key variance. Note that the per-key variance for a function of weight is Var[f̂(wx)] = f(wx)2

w2
x

Var[ŵx].
WOR (and WR) estimates are more accurate (in terms of normalized variance sum) when the sampling
is weighted by f(w).

2.2 Bottom-k sampling by power of frequency

To perform bottom-k sampling ofwp with distribution D, we draw rx ∼ D, transform the weights
wTx ← wpx/rx, and return the top-k keys in wT . This is equivalent to bottom-k sampling the vector

2Historically, the term bottom-k is due to analogous use of 1/wTx , but here we find it more convenient to
work with "top-k"

4



w using the distribution D1/p, that is, draw rx ∼ D, transform the weights

w∗x ←
wx

r
1/p
x

(4)

and return the top-k keys according to w∗. Equivalence is because (w∗x)p =
(
wx
r
1/p
x

)p
=

wpx
rx

= wTx

and f(x) = xp is a monotone increasing and hence order(w∗) = order(wT ). We denote the
distribution ofw∗ obtained from the bottom-k transform (4) as p-D[w] and specifically, p-ppswor[w]
when D = Exp[1] and p-priority[w] when D = U [0, 1]. We use the term p-ppswor for bottom-k
sampling by Exp1/p.

The linear transform (4) can be efficiently performed over unaggregated data by using a random hash
to represent rx for keys x and then locally generating an output element for each input element

(e.key, e.val)→ (e.key, e.val/r1/p
e.key) (5)

The task of sampling by p-th power of frequency νp is replaced by the task of top-k by frequency
ν∗x :=

∑
e∈E∗|e.key=x e.val on the respective output dataset E∗, noting that ν∗x = νx/r

1/p
x . Therefore,

the top-k keys in ν∗ are a bottom-k sample according to D of νp. Note that we can approximate the
input frequency ν′x of a key x from an approximate output frequency ν̂∗x using the hash rx. Note that
relative error is preserved:

ν′x ← ν̂∗xr
1/p
x . (6)

This per-element scaling was proposed in the precision sampling framework of Andoni et al. [5] and
inspired by a technique for frequency moment estimation using stable distributions [43].

Generally, finding the top-k frequencies is a task that requires large sketch structures of size linear in
the number of keys. However, [5] showed that when the frequencies are drawn from p-priority[w]
(applied to arbitrary w) and p ≤ 2 then the top-1 value is likely to be an `2 heavy hitter. Here we
refine the analysis and use the more subtle notion of residual heavy hitters [9]. We show that the
top-k output frequencies in w∗ ∼ p-ppswor[w] are very likely to be `q residual heavy hitters (when
q ≥ p) and can be found with a sketch of size Õ(k).

2.3 Residual heavy hitters (rHH)

An entry in a weight vector w is called an ε- heavy hitter if wx ≥ ε
∑
y wy. A heavy hitter with

respect to a function f is defined as a key with f(wx) ≥ ε
∑
y f(wy). When f(w) = wq , we refer to

a key as an `q heavy hitter. For k ≥ 1 and ψ > 0, a vector w has (k, ψ) residual heavy hitters [9]
when the top-k keys are “heavy" with respect to the tail of the frequencies starting at the (k + 1)-st
most frequent key, that is, ∀i ≤ k, w(i) ≥ ψ

k ‖tailk(w)‖1. This is equivalent to ‖tailk(w)‖1
w(k)

≤ k
ψ . We

say that w has rHH with respect to a function f if f(w) has rHH. In particular, w has `q (k, ψ) rHH
if

‖tailk(w)‖qq
wq(k)

≤ k

ψ
. (7)

Popular composable HH sketches were adopted to rHH and include (see Table 1): (i) `1 sketches
designed for positive data elements. A deterministic counter-based variety [57, 53, 55] with rHH
adaptation [9] and the randomized CountMin sketch [33]. (ii) `2 sketches designed for signed data
elements, notably CountSketch [13] with rHH analysis in [49]. With these designs, a sketch for
`q (k, ψ)-rHH provides estimates ν̂x for all keys x with error bound:

‖ν̂ − ν‖q∞ ≤
ψ

k
‖tailk(ν)‖qq . (8)

With randomized sketches, the error bound (8) is guaranteed with some probability 1 − δ.
CountSketch has the advantages of capturing top keys that are `2 but not `1 heavy hitters and
supports signed data, but otherwise provides lower accuracy than `1 sketches for the same sketch
size. Methods also vary in supported key domains: counters natively work with key strings whereas
randomized sketches work for keys from [n] (see Appendix ?? for a further discussion). We use these
sketches off-the-shelf through the following operations:
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• R.Initialize(k, ψ, δ): Initialize a sketch structure

• Merge(R1, R2): Merge two sketches with the same parameters and internal randomization

• R.Process(e): process a data element e

• R.Est(x): Return an estimate of the frequency of a key x .

Sketch (`q , sign) Size ‖ν̂ − ν‖q∞ ≤
Counters (`1, +) [9] O( kψ ) ψ

k ‖tailk(ν)‖1
CountSketch (`2,±) [13] O( kψ log n

δ ) ψ
k ‖tailk(ν)‖22

Table 1: Sketches for `q (k, ψ) rHH.

3 WORp Overview

Our WORp methods apply a p-ppswor transform to data elements (5) and (for q ≥ p) compute an `q
(k, ψ)-rHH sketch of the output elements. The rHH sketch is used to produce a sample of k keys.

We would like to set ψ to be low enough so that for any input frequencies ν, the top-k keys by
transformed frequencies ν∗ ∼ p-ppswor[ν] are rHH (satisfy condition (7)) with probability at least
1 − δ. We refine this desiderata to be conditioned on the permutation of keys in order(ν∗). This
conditioning turns out not to further constrain ψ and allows us to provide the success probability
uniformly for any potential k-sample. Since our sketch size grows inversely with ψ (see Table 1), we
want to use the maximum value that works. We will be guided by the following:

Ψn,k,ρ=q/p(δ) := sup

{
ψ | ∀w ∈ <n, π ∈ Sn Pr

w∗∼p-ppswor[w]|order(w∗)=π

[
k
|w∗(k)|q

‖tailk(w∗)‖qq
≤ ψ

]
≤ δ

}
,

(9)
where Sn denotes the set of permutations of [n]. If we set the rHH sketch parameter to ψ ← εΨn,k,ρ

then using (8), with probability at least 1− δ,

‖ν̂∗ − ν∗‖q∞ ≤
ψ

k
‖tailk(ν∗)‖qq = ε

Ψn,k,ρ(λ)

k
‖tailk(ν∗)‖qq ≤ ε|ν∗(k)|

q . (10)

We establish the following lower bounds on Ψn,k,ρ(δ):

Theorem 3.1. There is a universal constant C > 0 such that for all n, k > 1, and ρ = q/p

For ρ = 1: Ψn,k,ρ(3e
−k) ≥ 1

C ln n
k

(11)

For ρ > 1: Ψn,k,ρ(3e
−k) ≥ 1

C
max{ρ− 1,

1

ln n
k )
} . (12)

To set sketch parameters in implementations, we approximate Ψ using simulations of what we
establish to be a “worst case" frequency distribution. For this we use a specification of a “worst-case"
set of frequencies as part of the proof of Theorem 3.1 (See the full version). From simulations we
obtain that very small values of C < 2 suffice for δ = 0.01, ρ ∈ {1, 2}, and k ≥ 10.

We analyse a few WORp variants. The first we consider returns an exact p-ppswor sample, including
exact frequencies of keys, using two passes. We then consider a variant that returns an approximate
p-ppswor sample in a single pass. The two-pass method uses smaller rHH sketches and efficiently
works with keys that are arbitrary strings.

We also provide another rHH-based technique that provides a guaranteed very small variation distance
on k-tuples in a single pass.

4 Two-pass WORp

We design a two-pass method for ppswor sampling according to νp for p ∈ (0, 2] (Equivalently, a
p-ppswor sample according to ν):
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Sketch size
sign, p words key strings Pr[success]
±, p < 2 O(k logn) O(k) (1− 1

poly(n) )(1− 3e−k)

±, p = 2 O(k log2 n) O(k) (1− 1
poly(n) )(1− 3e−k)

+, p < 1 O(k) O(k) 1− 3e−k

+, p = 1 O(k logn) O(k) 1− 3e−k

Table 2: Two-pass ppswor sampling of k keys according to νp. Sketch size (memory words and
number of stored key strings). For p ∈ (0, 2] and signed (±) or positive (+) value elements.

• Pass I: We compute an `q (k + 1, ψ)-rHH sketch R of the transformed data elements

(KeyHash(e.key), e.val/r1/p
e.key) . (13)

A hash KeyHash→ [n] is applied when keys have a large or non-integer domain to facilitate use of
CountSketch or reduce storage with Counters. We set ψ ← 1

3q Ψn,k,ρ(δ).

• Pass II: We collect key strings x (if needed) and corresponding exact frequencies νx for keys with
the Bk largest |ν̂∗x|, where B is a constant (see below) and ν̂∗x := R.Est[KeyHash(x)] are the
estimates of ν∗x provided by R. For this purpose we use a composable top-(Bk) sketch structure T .
The size of T is dominated by storing Bk key strings.

• Producing a p-ppswor sample from T : Compute exact transformed frequencies ν∗x ← νxr
1/p
x for

stored keys x ∈ T . Our sample is the set of key frequency pairs (x, νx) for the top-k stored keys by
ν∗x. The threshold τ is the (k + 1)th largest ν∗x over stored keys.

• Estimation: We compute per-key estimates as in (1): Plugging in D = Exp[1]1/p for p-ppswor, we
have f̂(νx) := 0 for x 6∈ S and for x ∈ S is f̂(νx) := f(νx)

1−exp(−( νxτ )p)
.

We establish that the method returns the p-ppswor sample with probability at least 1− δ, propose
practical optimizations, and analyze the sketch size:
Theorem 4.1. The 2-pass method returns a p-ppswor sample of size k according to ν with success
probability and composable sketch sizes as detailed in Table 2. The success probability is defined to
be that of returning the exact top-k keys by transformed frequencies. The bound applies even when
conditioned on the top-k being a particular k-tuple.

Proof. From (10), the estimates ν̂∗x = R.Est[KeyHash(x)] of ν∗x are such that:

Pr

[
∀x ∈ {e.key | e ∈ E}, |ν̂∗x − ν∗x| ≤

1

3
|ν∗(k+1)|

]
≥ 1− δ . (14)

We set B in the second pass so that the following holds:

The top-(k + 1) keys by ν∗ are a subset of the top-(B(k + 1)) keys by ν̂∗. (15)

Note that for any frequency distribution with rHH, it suffices to store O(k/ψ) keys to have (15). We
establish (see the appendix) that for our particular distributions, a constant B suffices.

Correctness for the final sample follows from property (15) : T storing the top-(k+1) keys in the data
according to ν∗. To conclude the proof of Theorem 4.1 we need to specify the rHH sketch structure
we use. From Theorem 3.1 we obtain a lower bound on Ψn,k,ρ for δ = 3e−k and we use it to set
ψ. For our rHH sketch we use CountSketch (q = 2 and supports signed values) or Counters
(q = 1 and positive values). The top two lines in Table 2 are for CountSketch and the next two
lines are for Counters. The rHH sketch sizes follow from ψ and Table 1.

5 One-pass WORp

Our 1-pass WORp yields a sample of size k that approximates a p-ppswor sample of the same size
and provides similar guarantees on estimation quality.
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• Sketch: For q ≥ p and ε ∈ (0, 1
3 ] Compute an `q (k + 1, ψ)-rHH sketch R of the transformed data

elements (5) where ψ ← εqΨn,k+1,ρ.

• Produce a sample: Our sample S includes the keys with top-k estimated transformed frequencies
ν̂∗x := R.Est[x]. For each key x ∈ S we include (x, ν′x), where the approximate frequency
ν′x ← ν̂∗xr

1/p
x is according to (6). We include with the sample the threshold τ ← ν̂∗(k+1).

• Estimation: We treat the sample as a p-ppswor sample and compute per-key estimates as in (1),
substituting approximate frequencies ν′x for actual frequencies νx of sampled keys and the 1-pass
threshold ν̂∗(k+1) for the exact ν∗(k+1). The estimate is f̂(νx) := 0 for x 6∈ S and for x ∈ S is:

f̂(νx) :=
f(ν′x)

1− exp
(
−(

ν′x
ν̂∗(k+1)

)p
) =

f(ν̂∗xr
1/p
x )

1− exp
(
−rx(

ν̂∗x
ν̂∗(k+1)

)p
) (16)

We relate the quality of the estimates to those of a perfect p-ppswor. Since our 1-pass estimates are
biased (unlike the unbiased perfect p-ppswor), we consider both bias and variance. The proof is
provided in the full version.
Theorem 5.1. Let f(w) be such that |f((1+ε)w)−f(w)| ≤ cεf(w) for some c > 0 and ε ∈ [0, 1/2].

Let f̂(νx) be per-key estimates obtained with a one-pass WORp sample and let f̂(νx)
′

be the
respective estimates obtained with a (perfect) p-ppswor sample. Then Bias[f̂(νx)] ≤ O(ε)f(νx) and

MSE[f̂(νx)] ≤ (1 +O(ε))Var[f̂(νx)
′
] +O(ε)f(νx)2.

Note that the assumption on f holds for f(w) = wp with c = (1.5)p. Also note that the bias bound
implies a respective contribution to the relative error of O(ε) on all sum estimates.

6 One-pass Total Variation Distance Guarantee

We provide another 1-pass method, based on the combined use of rHH and known WR perfect `p
sampling sketches [47] to select a k-tuple with a polynomially small total variation (TV) distance
from the k-tuple distribution of a perfect p-ppswor. The method uses O(k) (for variation distance
2−Θ(k), and O(k log n) for variation distance 1/nC for an arbitrarily large constant C > 0) perfect
samplers (each providing a single WR sample) and an rHH sketch. The perfect samplers are processed
in sequence with prior selections “subtracted" from the linear sketch (using approximate frequencies
provided by the rHH sketch) to uncover fresh samples. As with WORp, exact frequencies of sampled
keys can be obtained in a second pass or approximated using larger sketches in a single pass. Details
are provided in the full version.
Theorem 6.1. There is a 1-pass method via composable sketches of size O(k polylog(n)) that
returns a k-tuple of keys such that the total variation distance from the k-tuples produced by a perfect
p-ppswor sample is at most 1/nC for an arbitrarily large constant C > 0. The method applies to
keys from a domain [n], and signed values with magnitudes and intermediate frequencies that are
polynomial in n.

We also show in the full version that our sketches in Theorem 6.1 use O(k · log2 n(log log n)2) bits
of memory for 0 < p < 2, and we prove a matching lower bound on the memory required of any
algorithm achieving this guarantee, up to a (log log n)2 factor. For p = 2 we also show they are of
optimal size, up to an O(log n) factor.

7 Experiments

We simulated 2-pass and 1-pass WORp in Python using CountSketch with 15 repetitions and
table size 2k (total space 30k) as our rHH sketch. Figure 3 reports estimates of the rank-frequency
distribution obtained with 1-pass and 2-pass WORp and perfect WOR (p-ppswor) and perfect WR
samples (shown for reference). For best comparison, all WOR methods use the same randomization
of the p-ppswor transform. Table 3 reports normalized root averaged squared errors (NRMSE) on
example statistics. As expected, 2-pass WORp and perfect 2-ppswor are similar and WR `2 samples
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`p α p′ perfect WR perfect WOR 1-pass WORp 2-pass WORp
`2 Zipf[2] ν3 1.16e-04 2.09e-11 1.06e-03 2.08e-11
`2 Zipf[2] ν2 7.96e-05 1.26e-07 1.14e-02 1.25e-07
`1 Zipf[2] ν 9.51e-03 1.60e-03 2.79e-02 1.60e-03
`1 Zipf[1] ν3 3.59e-01 5.73e-03 5.14e-03 5.72e-03
`1 Zipf[2] ν3 3.45e-04 7.34e-10 5.11e-05 7.38e-10

Table 3: NRMSE on estimates of frequency moments on statistics of the form ‖ν‖p
′

p′ from `p samples
(p = 1, 2). Zipf[α] distributions with support size n = 104, k = 100 samples, averaged over 100
runs. CountSketch of size 2k × 31

are less accurate with larger skew or on the tail. Note that current state of the art sketching methods
are not more efficient for WR sampling than for WOR sampling, and estimation quality with perfect
methods is only shown for reference. We can also see that 1-pass WORp performs well, although it
requires more accuracy (lager sketch size) since it works with estimated weights (reported results are
with fixed CountSketch size of k × 31 for all methods).
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Figure 3: Estimates of the rank-frequency distribution of Zipf[1] and Zipf[2]. Using WORp 1-pass,
WORp 2-pass with CountSketch (matrix k × 31), perfect WOR, and perfect WR. Estimates from
a (representative) single sample of size k = 100. Left and Center: `2 sampling. Right: `1 sampling.

Conclusion

We present novel composable sketches for without-replacement (WOR) `p sampling, based on
“reducing" the sampling problem to a heavy hitters (HH) problem. The reduction, which is simple
and practical, allows us to use existing implementations of HH sketches to perform WOR sampling.
Moreover, streaming HH sketches that support time decay (for example, sliding windows [7]) provide
a respective time-decay variant of sampling. We present two approaches, WORp, based on a bottom-k
transform, and another technique based on “perfect” with-replacement sampling sketches, which
provides 1-pass WOR samples with negligible variation distance to a true sample. Our methods open
the door for a wide range of future applications: In particular, WORp provides efficient coordinated
bottom-k samples (aka bottom-k sketches) of datasets. WORp produces bottom-k samples with
respect to a specified randomization rx over the support (with 1-pass WORp we obtain approximate
bottom-k samples). Samples of different datasets or different p values or different time-decay
functions that are generated with the same rx are coordinated [10, 65, 61, 15, 30, 11]. Coordination
is a desirable and powerful property: Samples are locally sensitivity (LSH) and change little with
small changes in the dataset [10, 65, 44, 31, 17]. This allows for a compact representation of multiple
samples, efficient updating, and sketch-based similarity searches. Moreover, coordinated samples
(sketches) facilitate powerful estimators for multi-set statistics and similarity measures such as
weighted Jaccard similarity, min or max sums, and 1-sided distance norms [15, 11, 26, 29, 27, 28, 16].

Acknowledgments: D. Woodruff would like to thank partial support from the Office of Naval
Research (ONR) grant N00014-18-1-2562, and the National Science Foundation (NSF) under Grant
No. CCF-1815840. R. Pagh is supported by Villum Foundation grant 16582 to Basic Algorithms
Research Copenhagen (BARC).
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8 Broader Impact

Broader Impact Discussion is not applicable. We presented a method for WOR sampling that has
broad applications in ML. But this is a technical paper with no particular societal implications.
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