
Appendix

A Proofs

A.1 Proof of Theorem 1

To prove Theorem 1, we need the following lemma.

Lemma 1 ([24]) . φk(S) is a convex function of the elements of S. Furthermore, for any i ∈ [1, n], we have∑k
i=1 s[i] = minλ∈R{kλ+

∑n
i=1[si − λ]+}, of which s[k] is an optimum solution.

Proof of Theorem 1

Proof: From Lemma 1, we have

min
θ
ψm,k(S(θ)) = min

θ

[
φk(S(θ))− φm(S(θ))

]
= min

θ

[
min
λ∈R

{
kλ+

n∑
i=1

[si(θ)− λ]+
}
−min

λ̂∈R

{
mλ̂+

n∑
i=1

[si(θ)− λ̂]+
}]
.

If the optimal solution θ∗ is achieved, from Lemma 1, we get λ = s[k] and λ̂ = s[m]. Therefore, λ̂ > λ because
k > m.

A.2 Proof of Equation (3)

Before introducing the sub-gradient of φm(S(θ)), we provide a very useful characterization of differentiable
properties of the optimal value function [3, Proposition A.22], which is also an extension of Danskin’s theorem
[9].

Lemma 2 Let φ : Rn × Rm → (−∞,∞] be a function and let Y be a compact subset of Rm. Assume
further that for every vector y ∈ Y the function φ(·, y) : Rn → (−∞,∞] is a closed proper convex function.
Consider the function f defined as f(x) = supy∈Y φ(x, y), then if f is finite somewhere, it is a closed proper
convex function. Furthermore, if int(domf) 6= ∅ and φ is continuous on the set int(domf) × Y , then for
every x ∈ int(domf) we have ∂f(x) = conv{∂φ(x, y)|y ∈ Y (x)}, where Y (x) is the set Y (x) = {y ∈
Y |φ(x, y) = maxy∈Y φ(x, y)}

Proof of Equation (3)

Proof: We apply Lemma 2 with a new notation φm(θ, λ̂) = mλ̂+
∑n
i=1[si(θ)− λ̂]+. Suppose θ ∈ Rn and

λ̂ ∈ R, the function φm : Rn × R → (−∞,∞]. Let Y be a compact subset of R and for every λ̂ ∈ Y , it is
obviously that the function φm(·, λ̂) : Rn → (−∞,∞] is a closed proper convex function w.r.t θ from the
second term of Eq.(1).

Consider a function f defined as f(θ) = supλ̂∈Y φ(θ, λ), since f is finite somewhere, it is a closed proper
convex function. The interior of the effective domain of f is nonempty, and that φm is continuous on the set
int(domf)× Y . The condition of lemma 2 is satisfied.

∀θ ∈ int(domf), we have

∂f(θ) = conv{∂φm(θ, λ)|λ ∈ Y (θ)},

where

Y (θ) = {λ ∈ Y |φm(θ, λ) = maxλ̂∈Y φm(θ, λ̂)} = {λ ∈ Y | − φm(θ, λ) = −minλ̂∈Y φm(θ, λ̂)}.

As we know −minλ̂∈Y φm(θ, λ̂) = −φm(S(θ)). This means the subdifferential of f w.r.t θ exists when we set
the optimal value of λ̂.

From the above and the lemma 1, we can get the sub-gradient θ̂ ∈ ∂φm(S(θ)) =
∑n
i=1 ∂si(θ) · I[si(θ)>λ̂],

where λ̂ equals to s[m](θ).

12

A.3 Proof of Theorem 2

Proof: Without loss of generality, by normalization we can assume s(0) = 1 which can be satisfied by scaling.
For any fixed x ∈ X , by the definition of f∗ = arg inf L(f, λ∗, λ̂∗), we know that

f∗(x) = t∗ = arg inf
t∈R

E
[
[s(Y t)− λ∗]+ − [s(Y t)− λ̂∗]+

∣∣∣X = x
]
.

Notice the assumption λ̂∗ > λ∗ and recall η(x) = P (y = 1|x). We need to show that t∗ > 0 for η(x) > 1/2
and t∗ < 0 if η(x) < 1/2. Indeed, if t∗ 6= 0, then, by the definition of t∗, we have that

E
[
[s(Y t∗)− λ∗]+ − [s(Y t∗)− λ̂∗]+

∣∣∣X = x
]
< E

[
[s(−Y t∗)− λ∗]+ − [s(−Y t∗)− λ̂∗]+

∣∣∣X = x
]

The above inequality is identical to[(
(s(t∗)− λ∗)+ − (s(t∗)− λ̂∗)+

)
−
(
(s(−t∗)− λ∗)+ − (s(−t∗)− λ̂∗)+

)][
2η(x)− 1

]
< 0.

Since λ̂∗ > λ∗, we have that that g(s) = (s−λ∗)+−(s−λ̂∗)+ is a non-decreasing function of variable s. Then,
if η(x) > 1

2
we must have g(s(t∗)) < g(s(−t∗)) which indicates s(t∗) < s(−t∗). From the non-increasing

property of s on R, s(t) is also a convex function and s′(0) < 0 immediately indicates t∗ > 0. Likewise, we
can show that t∗ < 0 for η(x) < 1/2.

To prove t = 0 is not a minimizer, without loss of generality, assume η(x) > 1
2

. We need to consider two
conditions as follows,

1. If 0 ≤ λ∗ < λ̂∗ ≤ 1 and s(0) = 1, then

A = E
[
[s(0)− λ∗]+ − [s(0)− λ̂∗]+

∣∣∣X = x
]

= [1− λ∗]+ − [1− λ̂∗]+
= λ̂∗ − λ∗

Since s′(0) < 0 and s is non-increasing, there exists t0 > t∗ = 0 > −t0, and s(−t0) > s(0) ≥ λ̂∗ > s(t0) >
λ∗. Let

B = E
[
[s(Y t0)− λ∗]+ − [s(Y t0)− λ̂∗]+

∣∣X = x
]

=
(
[s(t0)− λ∗]+ − [s(t0)− λ̂∗]+

)
η(x) +

(
[s(−t0)− λ∗]+ − [s(−t0)− λ̂∗]+

)(
1− η(x)

)
=
(
[s(−t0)− λ∗]+ − [s(−t0)− λ̂∗]+

)
+
[(

[s(t0)− λ∗]+ − [s(t0)− λ̂∗]+
)
−
(
[s(−t0)− λ∗]+ − [s(−t0)− λ̂∗]+

)]
η(x)

= λ̂∗ − λ∗ +
[
s(t0)− λ∗ − (λ̂∗ − λ∗)

]
η(x)

Then

B −A = (s(t0)− λ̂∗)η(x) < 0

Therefore, t = 0 is not a minimizer.

2. If 0 ≤ λ∗ ≤ 1 < λ̂∗ and s(0) = 1, then
d

dt
E[[s(Y t)− λ∗]+ − [s(Y t)− λ̂∗]+]|t=0

=
d

dt
[η(x)([s(t)− λ∗]+ − [s(t)− λ̂∗]+) + (1− η(x))([s(−t)− λ∗]+ − [s(−t)− λ̂∗]+)]|t=0

=
d

dt
[η(x)(s(t)− λ∗) + (1− η(x))(s(−t)− λ∗)]|t=0

= [η(x)s′(t)− (1− η(x))s′(−t)]|t=0

= (2η(x)− 1)s′(0) < 0

Thus t = 0 is not a minimizer.

A.4 Proof of Proposition 1

Proof: We just need to prove that maxy 6∈Y θ
>
y x ≥ θ>[|Y |+1]x. If this is not the case, then for any label y 6∈ Y ,

then its rank in the ranked list is no more than |Y |+ 2, then the sum of total number of such labels is not larger
than l − (|Y |+ 2) + 1 = l − |Y | − 1. And the total number of labels will be |Y |+ |{y 6∈ Y }| ≤ l − 1 6= l,
which is a contradiction.

13

B Additional Experimental Details

B.1 Source Code

For the purpose of review, the source code and datasets are accessible at supplementary file.

B.2 Computing Infrastructure Description

All algorithms are implemented in Python 3.6 and trained and tested on an Intel(R) Xeon(R) CPU W5590
@3.33GHz with 48GB of RAM.

B.3 Time Complexity Analyze

We consider the average case in the time complexity analyze. For a given outer loop size |t|, a inner loop size |l|,
and training sample size n, the complexity of our MSoRR Algorithm 1 is O(|t|(n logn+ |l|)).

B.4 Training Settings on Toy Examples for Aggregate Loss

To reproduce the experimental results of AoRR on synthetic data, we provide the details about the settings when
we are training the model in Table 4. For example, the learning rate, the number of epochs for the outer loop,
and the number of epochs for the inner loop.

Datasets Outliers Logistic loss Hinge loss
LR # OE # IE LR # OE # IE

Multi-modal data

1 0.01 100 1000 0.01 5 1000
2 0.01 100 1000 0.01 5 1000
3 0.01 100 1000 0.01 5 1000
4 0.01 100 1000 0.01 5 1000
5 0.01 100 1000 0.01 5 1000

10 0.01 100 1000 0.01 5 1000
20 0.01 100 1000 0.01 5 1000

Imbalanced data 1 0.01 100 1000 0.01 5 1000
LR: Learning Rate, OE: Outer Epochs, IE: Inner epochs

Table 4: AoRR settings on toy experiments.

B.5 Description of Datasets for Aggregate Loss

In aggregate loss experiments, for real-world datasets, we use five benchmark datasets from the UCI and the
KEEL data repositories. The details of these datasets are shown in Table 5.

Datasets #Classes #Samples #Features Class Ratio
Monk 2 432 6 1.12

Australian 2 690 14 1.25
Phoneme 2 5,404 5 2.41
Titanic 2 2,201 3 2.10
Splice 2 3,175 60 1.08

Table 5: Statistical information of each dataset for aggregate loss.

B.6 Training Settings on Real Datasets for Aggregate Loss

We provide a reference for setting parameters to reproduce our AoRR experiments on real datasets. Table 6
contains the settings for individual logistic loss. Table 7 is for individual hinge loss.

Datasets k m C # Outer epochs # Inner epochs Learning rate
Monk 70 20 104 5 2000 0.01

Australian 80 3 104 10 1000 0.01
Phoneme 1400 100 104 10 1000 0.01
Titanic 500 10 104 10 1000 0.01
Splice 450 50 104 10 1000 0.01

Table 6: AoRR settings on real datasets for individual logistic loss.

14

Datasets k m C # Outer epochs # Inner epochs Learning rate
Monk 70 45 104 5 1000 0.01

Australian 80 3 104 5 1000 0.01
Phoneme 1400 410 104 10 500 0.01
Titanic 500 10 104 5 500 0.01
Splice 450 50 104 10 1000 0.01

Table 7: AoRR settings on real datasets for individual hinge loss.

B.7 Description of Datasets for Multi-label Learning

In multi-label learning experiments, we conduct experiments on three benchmark datasets (Emotions, Scene and
Yeast) from the KEEL data repository. The details of them as described in Table 8.

Datasets #Samples #Features #Labels c
Emotions 593 72 6 1.81

Scene 2,407 294 6 1.06
Yeast 2,417 103 14 4.22

Table 8: Statistical information of each dataset for multi-label learning, where c represents the average number
of positive labels per instance.

B.8 Training Settings for Multi-label Learning

The settings for TKML on three real datasets are shown in Table 9.

Datasets C #Outer epochs #Inner epochs Learning rate
Emotions 104 20 1000 0.1

Scene 104 20 1000 0.1
Yeast 104 20 1000 0.1

Table 9: TKML settings on each dataset.

B.9 Training Settings for Multi-class Learning

Training settings for the MNIST dataset in different noise level can be found in Table 10.

Noise level #Outer epochs #Inner epochs Learning rate
0.2 27 2000 0.1
0.3 25 2000 0.1
0.4 21 2000 0.1

Table 10: TKML settings on the MNIST dataset in different noise levels.

C Additional Experimental Results

C.1 Toy Examples with More Outliers for Effects of Aggregate Losses

In order to evaluate the effects of different aggregate losses on more than one outlier, we also conducted
additional experiments on a multi-modal toy example with outliers. We use Gaussian distributions with the
different mean and standard deviations to generate this dataset (Fig.5). It contains 200 samples and is distributed
in 2 classes (100 samples in red class and 100 samples in blue class). The red samples are sampled from
two distributions (primary distribution and minor distribution). The blue samples are sampled from only one
distribution. However, they can still be separated. A linear classifier is considered and different aggregate losses
are evaluated in individual logistic loss (i.e., Fig.5 (a), (c), (e), (g), (i), (k)) and individual hinge loss (i.e., Fig.5
(b), (d), (f), (h), (j), (l)). Given a number n, we set outliers as replacing n blue samples class with the opposite
class. The outliers have been shown as × in blue class. For ATk and AoRR losses, we let the value of k be the
same and equals to n+ 1. Let the value of m equals to n in AoRR loss. We consider six cases as follows,

Case 1 (2 outliers). In Fig.5 (a) and (b), there exist two outliers. Let hyper-parameters k = 3 and m = 2.

Case 2 (3 outliers). Fig.5 (c) and (d) contain three outliers. In this scenario, k = 4 and m = 3.

Case 3 (4 outliers). Fig.5 (e) and (f) include four outliers and we set k = 5 and m = 4.

15

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Comparison of different aggregate losses on 2D synthetic data with 200 samples for binary classifica-
tion with individual logistic loss (a, c, e, g, i, k) and individual hinge loss (b, d, f, h, j, l). Outliers are shown as
× in blue class.

Case 4 (5 outliers). There are five outliers in Fig.5 (g) and (h). We set k = 6 and m = 5.

Case 5 (10 outliers). Ten outliers have been included in Fig.5 (i) and (j). Let k = 11 and m = 10 in this case.

Case 6 (20 outliers). We create twenty outliers in Fig.5 (k) and (l) and make k = 21 and m = 20.

See from case 1, 2, 3, 4, the linear classifier learned from average aggregate loss cross some red samples
from minor distribution even though the data is separable. The reason is that the samples close to the decision
boundary are sacrificed to reduce the total loss over the whole dataset.

Since the k value is set to be n+ 1, the ATk loss select k largest individual losses which contain many outliers
to train the classifier. It leads to the instability of the learned classifier. This phenomenon can be found when we
compare all cases. Similarly, the maximum aggregate loss cannot fit this data very well in all cases. This loss is
very sensitive to outliers.

From cases 5 and 6, the average aggregate loss with individual logistic loss achieves better results than with
individual hinge loss. A possible reason is that for correctly classified samples with a margin greater than 1, the
penalty caused by hinge loss is 0. However, it is non-zero when using logistic loss. Since many outliers in blue
class, to reduce the average loss, the decision boundary will close to blue class. Especially, when we compare (i)
and (k), it is obvious that average loss can achieve a better result while the number of outliers is increasing.

As we discussed, hinge loss has less penalty for correctly classified samples than logistic loss. This causes
outliers to be more prominent than normal samples while using the individual hinge loss. This analysis can
be verified in the experiment when we compare the individual logistic loss and the individual hinge loss. For
example, (i) and (j), (k) and (l), etc.. We find the decision boundaries of maximum loss and ATk loss are close to
outliers in the individual hinge loss scenario because both of them are sensitive to outliers in our cases.

C.2 Additional Tendency Curves for Effects of Aggregate Losses

In this section, we use individual hinge loss as an example and plot tendency curves of the error rate w.r.t m in
Fig.6 on 4 real-world datasets. From this figure, we get similar results as we discussed before.

16

Figure 6: Tendency curves of error rate of learning AoRR loss w.r.t. m on four datasets.

(a) (b) (c)

Figure 7: The class-wise error rates of two methods with different noise level data.

C.3 Performance of Additional Evaluation Metric on TKML

We also adopt a widely used multi-label learning metric named average precision (AP) for performance evaluation.
It is calculated as [39]

AP =
1

n

n∑
i=1

1

|Yi|
∑
j∈Yi

|{τ ∈ Yi|rankf (xi, τ) < rankf (xi, j)}|
rankf (xi, j)

where rankf (xi, j) returns the rank of fj(xi) in descending according to {fa(xi)}la=1.

From Table 11, we can find our TKML method outperforms the other two baseline approaches on all datasets. For
the Emotions dataset, the AP score of TKML is 2.16% higher than the LSEP method and near 10% higher than
the LR. The performance is also slightly improved on Scene and Yeast datasets. These results demonstrate the
effectiveness of our TKML method.

Methods
Datasets Emotions Scene Yeast

LR 74.85 71.6 73.56
LSEP 82.66 85.43 74.26
TKML 84.82 86.38 74.32

Table 11: AP (%) results on three datasets. The best performance is shown in bold.

C.4 Performance on Each Class of the MNIST for Effects of TKML

Performance on each class. To evaluate our method is better than SVMα on the noisy data, we plot the
class-wise error rate w.r.t different noise level data. As seen in Figure 7, our method TKML outperforms SVMα

on the flipping classes such as 2 and 3, especially in class 5. As the noise level increases, the performance gap
becomes more pronounced. For flipping class 7, the performance in this class is increased when the noise level
increases from 0.3 to 0.4. The flipping class 6 also get good performance on the noise level 0.2 and 0.3.

17

