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Abstract

Much of the literature on differential privacy focuses on item-level privacy, where
loosely speaking, the goal is to provide privacy per item or training example.
However, recently many practical applications such as federated learning require
preserving privacy for all items of a single user, which is much harder to achieve.
Therefore understanding the theoretical limit of user-level privacy becomes crucial.
We study the fundamental problem of learning discrete distributions over k sym-
bols with user-level differential privacy. If each user has m samples, we show
that straightforward applications of Laplace or Gaussian mechanisms require the
number of users to be O(k/(mα2) + k/εα) to achieve an `1 distance of α be-
tween the true and estimated distributions, with the privacy-induced penalty k/εα
independent of the number of samples per user m. Moreover, we show that any
mechanism that only operates on the final aggregate should require a user com-
plexity of the same order. We then propose a mechanism such that the number of
users scales as Õ(k/(mα2) + k/

√
mεα) and further show that it is nearly-optimal

under certain regimes. Thus the privacy penalty is Θ̃(
√
m) times smaller compared

to the standard mechanisms.
We also propose general techniques for obtaining lower bounds on restricted
differentially private estimators and a lower bound on the total variation between
binomial distributions, both of which might be of independent interest.

1 Introduction

1.1 Differential privacy

Differential privacy [Dwork et al., 2006, Dwork and Roth, 2014, Wasserman and Zhou, 2010] has
emerged as the standard framework for providing privacy for various statistical problems. Ever
since its inception, it has been applied to various statistical and learning scenarios including learning
histograms [Dwork et al., 2006, Suresh, 2019], statistical estimation [Diakonikolas et al., 2015,
Kamath et al., 2019, Acharya et al., 2020, Kamath et al., 2020, Acharya et al., 2019a,b], learning
machine learning models [Chaudhuri et al., 2011, Bassily et al., 2014, McMahan et al., 2018b, Dwork
et al., 2014], hypothesis testing [Aliakbarpour et al., 2018, Acharya et al., 2018], and various other
tasks.

Differential privacy is studied in two scenarios, local differential privacy [Kasiviswanathan et al.,
2011, Duchi et al., 2013] and global differential privacy [Dwork et al., 2006]. In this paper, we study
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the problem under the lens of global differential privacy, where the goal is to protect the privacy of
the algorithm outcomes. Before we proceed further, we first define differential privacy.

Definition 1. A randomized mechanismM : D → R with domain D and range R satisfies (ε, δ)-
differential privacy if for any two adjacent datasets D,D′ ∈ D and for any subset of output S ⊆ R,
it holds that

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

If δ = 0, then the privacy is also referred to as pure differential privacy.

An important aspect of the above definition is the notion of neighboring or adjacent datasets. If a
dataset D is a collection of n items x1, x2, . . . , xn, then typically adjacent datasets are defined as
those that differ in a single item xi [Dwork et al., 2006].

However, in practice, each user may have many items and may wish to preserve privacy for all of
them. Hence, this simple definition of item-level neighboring datasets would not be enough. For
example, if each user has infinitely many points of the same example, then the bounds become
vacuous.

Motivated by this, user-level privacy was proposed recently. Formally, given s users where each user
u has mu items x1(u), x2(u), . . . xmu(u), then two datasets are adjacent if they differ in data of a
single user. For example, in the simple setting when each user has m samples, if two datasets are
adjacent in user-level privacy, they could differ in at most m items under this definition of item level
privacy.

Since user-level privacy is more practical, it has been studied in the context of learning machine
learning models via federated learning [McMahan et al., 2018b,a, Wang et al., 2019, Augenstein
et al., 2019]. The problem of bounding user contributions in user-level privacy in the context of
both histogram estimation and learning machine learning models was studied in Amin et al. [2019].
Differentially private SQL with bounded user contributions was proposed in Wilson et al. [2019].
Understanding trade-offs between utility and privacy in the context of user-level global DP is one
of the challenges in federated learning [Kairouz et al., 2019, Section 4.3.2]. Kasiviswanathan et al.
[2013] studied node differential privacy which guarantees privacy in the event of adding or removing
nodes in network data.

Our goal is to understand theoretically the utility-privacy trade-off for user-level privacy and compare
it to the item-level counterpart. To this end, we study the problem of learning discrete distributions
under user and item level privacy.

1.2 Learning discrete distributions

Learning discrete distributions is a fundamental problem in statistics with practical applications
that include language modeling, ecology, and databases. In many applications, the underlying data
distribution is private and sensitive e.g., learning a language model from user-typed texts. To this end,
learning discrete distributions under differential privacy has been studied extensively with various
loss functions and non-asymptotic convergence rates [Braess and Sauer, 2004, Kamath et al., 2015,
Han et al., 2015], with local differential privacy [Duchi et al., 2013, Kairouz et al., 2016, Acharya
et al., 2019a, Ye and Barg, 2018], with global differential privacy [Diakonikolas et al., 2015, Acharya
et al., 2020], and with communication constraints [Barnes et al., 2019, Acharya et al., 2019a], among
others.

Before we proceed further, we first describe the learning scenario. Let p be an unknown distribution
over symbols 1, 2, . . . , k i.e.,

∑
i pi = 1 and pi ≥ 0 for all i ≤ k. Let ∆k be the set of all discrete

distributions over the domain [k] := {1, 2, . . . , k}.
Suppose there are s users indexed by u, and let U denote the set of all users. We assume that each
user u has m i.i.d. samples Xm(u) = [X1(u), X2(u), . . . , Xm(u)] ∈ X := [k]m from the same
distribution p. We extend our results to the case when users have different number of samples in
Appendix E. However, we assume that all users have samples from the same distribution throughout
the paper. Extending the algorithms to scenarios where users have samples from different distributions
is an interesting open direction.

Let Xs = [(u,Xm(u)) : u ∈ U ] ∈ X s be the collection of user and sample pairs.
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For an algorithm A, let p̂A(Xs) be its output, a mapping from X s 7→ ∆k. The performance for a
given sample Xs is measured in terms of `1 distance, `1(p, p̂A) =

∑k
i=1 |pi− p̂Ai (Xs)|. We measure

the performance of the estimator for a distribution p by its expectation over the algorithm and samples
i.e., L(A, s,m, p) = EA,Xs [`1(p, p̂A(Xs))].

We define the user complexity of an algorithm A as the minimum number of users required to achieve
error at most α for all distributions:

SAm,α = min
s
{s : sup

p∈∆k

L(A, s,m, p) ≤ α}. (1)

The min-max user complexity is
S∗m,α = min

A
SAm,α.

Well known results on non-private discrete distribution estimation (see [Kamath et al., 2015, Han
et al., 2015]) characterize the min-max user complexity as

S∗m,α = Θ

(
k

mα2

)
. (2)

Let Aε,δ be the set of all (ε, δ) differentially private algorithms. Similar to (1), for a differentially
private algorithm A, let SAm,α,ε,δ be the minimum of samples necessary to achieve α error for all dis-
tributions p ∈ ∆p with (ε, δ) differential privacy. We are interested in characterizing and developing
polynomial-time algorithms that achieve the min-max user complexity of (ε, δ) differentially private
mechanisms.

S∗m,α,ε,δ = min
A∈Aε,δ

SAm,α,ε,δ.

2 Previous results

The min-max rate of learning discrete distributions for item level privacy, which corresponds to
m = 1, was studied by Diakonikolas et al. [2015] and Acharya et al. [2020]. They showed that for
any (ε, δ) estimator,

S∗1,α,ε,δ = Θ

(
k

α2
+

k

α(ε+ δ)

)
.

The goal of our work is to understand the behavior of S∗m,α,ε,δ w.r.t. m. We first discuss a few natural
algorithms and analyze their user complexities.

One natural algorithm is for each user to sample one item and use known results from item level
privacy. Such a result would yield,

Ssample
m,α,ε,δ = O

(
k

α2
+

k

α(ε+ δ)

)
.

The other popular algorithms are Laplace or Gaussian mechanisms that rely on counts of users. For a
particular user sample Xm(u), let N(u) = [N1(u), . . . , Nk(u)], be the vector of counts. A natural
algorithm is to sum all the user contributions to obtain the overall count vector N , where the count of
a symbol i is given by

Ni =
∑
u

Ni(u).

Finally a non- private estimator can be obtained by computing the empirical estimate:

p̂emp
i =

Ni
ms

.

To obtain a differentially private version of the empirical estimate, one can add Laplace or Gaussian
noise with some suitable magnitude. To this end, we need to compute the sensitivity of the empirical
estimate.

Recall that two datasets D,D′ are adjacent if there exists a single user u such that N(u,D) 6=
N(u,D′), and N(v,D) = N(v,D′) for all v ∈ U and v 6= u. Therefore the `1 sensitivity is

∆1(N) = max
D,D′ adjacent

||N(D)−N(D′)||1 = 2m.
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and the `2 sensitivity is

∆2(N) = max
D,D′ adjacent

||N(D)−N(D′)||2 =
√

2m.

A widely used method is the Laplace mechanism, which ensures (ε, 0) differential privacy.

Definition 2. Given any function f that maps the dataset to Rk, let the `1 sensitivity ∆(f) =
maxD,D′ adjacent ||f(D)− f(D′)||1. The Laplace mechanism is defined as

M(D, f(·), ε) = f(D) + (Y1, . . . , Yk),

where Yi are i.i.d random variables drawn from Lap(∆f/ε).

The Gaussian mechanism is defined similarly with `2 sensitivity and Gaussian noise. We first analyze
Laplace and Gaussian mechanisms under user-level privacy.

Lemma 1. For the Laplace mechanism, given by p̂l
i = p̂emp

i + Zi
ms , where Zi = Lap(2m/ε),

Slm,α,ε,0 = O
(

k

mα2
+

k

αε

)
.

Similarly if ε ≤ 1, for the Gaussian mechanism, given by p̂g
i = p̂emp

i + Zi
ms , where Zi =

N (0, 4 log(1.25/δ)m2/ε2),

Sgm,α,ε,δ = O

(
k

mα2
+

k

αε

√
log

1

δ

)
.

The proof follows from the definitions of the Laplace and Gaussian mechanisms, which we provide
in Appendix A for completeness. The non-private user complexity term O(k/(mα2)) decreases with
the number of samples from user m, but somewhat surprisingly the additional term due to privacy
O(k/αε) is independent of m. In other words, no matter how many samples each user has, it does
not help to reduce the privacy penalty in the user complexity. This could be especially troublesome
when m gets large, in which case the privacy term dominates the user complexity.

3 New results

We first ask if the above results on Laplace and Gaussian mechanisms are tight. We show that they
are by proving a lower bound on a wide class of estimators that only rely on the final count. The
proof is based on a novel coupling technique with details explained in Section 4 .
Theorem 1. Let ε+ δ < c, where c is determined in the proof later. Let A be any (ε, δ) mechanism
that only operates on summed counts of all users N = [N1, N2, . . . Nk] directly. Then,

SAm,α,ε,δ = Ω

(
k

mα2
+

k

α(ε+ δ)

)
.

The above lower bound suggests that any algorithm that only operates on the final count aggregate
would incur additional cost for user complexity independent of m due to privacy restriction. However
it may not apply to algorithms that do not solely rely on the counts, which justifies the need to design
algorithms beyond straightforward applications of the Laplace or Gaussian mechanisms.

We proceed to design algorithms that exceed the above user-complexity limit. The first one is for the
dense regime where k ≤ m: on average each user sees most of the high-probability symbols. The
second one is for the sparse regime where k ≥ m: users don’t see many symbols. By combining the
two of them, we get the following improved upper bound on min-max user complexity.
Theorem 2. Let ε ≤ 1. There exists a polynomial time algorithm (ε, δ)-differentially private
algorithm A such that

SAm,α,ε,δ = O

(
log

km

α
·max

(
k

mα2
+

k√
mαε

√
log

1

δ
,

√
k

ε

√
log

1

δ

))
. (3)
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The algorithm in Theorem 2 assumes that all users have the same number of samples. In Appendix E,
we modify it to the setting when users have different number of samples. The sample complexity is
similar to (3), with m replaced by m̄, the median of number of samples per user. We also note that
our algorithms are designed using high probability arguments, and hence we can easily obtain the
sample complexity with logarithmic dependence on the inverse of the confidence parameter.

Finally we provide an information theoretic lower bound for any (ε, 0)-differentially private algorithm:
Theorem 3. Let ε ≤ 1. Then

S∗m,α,ε,0 = Ω

(
k

mα2
+

k√
mαε

)
.

Theorems 2 and 3 resolve the user complexity of learning discrete distributions up to log factors and
the δ-term in privacy. It would be interesting to see if Theorem 3 can be extended to nonzero values
of δ. In the next two sections, we first analyze the lower bounds and then propose algorithms.

4 Lower bounds

The Ω(k/(mα2)) part of the user-complexity lower bounds in Theorem 1 and 3 follows from classic
non-private results (2). Therefore in this section we focus on the private part.

4.1 (ε, δ)-lower bound for restricted estimators

We first start with the lower bound for algorithms that work directly on the counts vector N =
[N1, N2, . . . , Nk], even though the learner has access to {N(u) : u ∈ U}. This motivates the
definition of restricted estimators, which only depends on some function of the observation rather
than the observation itself.
Definition 3 (f -restricted estimators). Let f : X s 7→ Y which maps users’ data to some domain Y .
We say that an estimator θ̂ is f -restricted if it has the form θ̂(Xs) = θ̂′(f(Xs)) for some function θ̂′.

We generalize Assouad’s lemma [Assouad, 1983, Yu, 1997] with differential privacy and the restricted
estimators using the recent coupling methods of Acharya et al. [2018, 2020]. These bounds could be
of interest in other applications and we describe a general framework where they are applicable.

Let X be some domain of interest and P be any set of distributions over X .

Assume that P is parameterized by θ : P 7→ Θ ∈ Rd, i.e. each p ∈ P can be uniquely represented by
a parameter vector θ(p) ∈ Rd. Given s samples from an unknown distribution p ∈ P , an estimator
θ̂ : X s 7→ Θ takes in a sample from X s and outputs an estimation in Θ. Let ` : Θ × Θ 7→ R+

be a pseudo-metric that measures estimation accuracy. For a fixed function f , let Af be the class
of f -restricted estimators. We are interested in the min-max risk for (ε, δ)-differentially private
restricted estimators:

L(P, `, ε, δ) := min
θ̂∈Aε,δ∩Af

max
p∈P

EXs∼ps [`(θ̂(Xs), θ(p))].

We need two more definitions to state our results.
Definition 4 (f -identical in distribution). Given a function f and two random variables X and Y ,
we say they are f -identical in distribution if f(X) and f(Y ) have the same distributions, denoted by
Y ∼f X . If X ∼ p and Y ∼ p′ , then we can also say p ∼f p′.
Definition 5 (f -coupling). Given a function f and two distributions p, q, we say that random
variables (X,Y ) are an f -coupling of p and q if X ∼f p and Y ∼f q. When f is the identity
mapping, then an f -coupling is same as standard coupling.

We make the following observation for restricted estimators: since we can only estimate the true
parameter θ through some function f of the observation Xs, then any random variable Y s such that
f(Y s) has the same distribution as f(Xs) would yield the same distribution for restricted estimators
θ̂. Thus, if θ̂ could distinguish two distributions p1, p2 from the space of product distributions
Ps := {ps : p ∈ P}, then it should also be able to distinguish p′1 ∼f p1 and p′2 ∼f p2. We are
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able to prove tighter lower bounds because p′1, p
′
2 (potentially outside of Ps) could be harder to

distinguish than the original distributions p1, p2. This is the most significant difference between our
method and [Acharya et al., 2020], whose argument does not capture that restricted estimators cannot
distinguish certain distributions and hence requires designing testing problems within the original
class of distributions.

With this intuition, we show a generalization of Assouad’s lower bound in Theorem 4. It relies on an
extension of the Le Cam’s method [Le Cam, 1973, Yu, 1997]. The proofs are in Appendix B.1. For
two sequences Xs and Y s, let dh(Xs, Y s) =

∑s
i=1 1Xi 6=Yi denote the Hamming distance.

Theorem 4 ((ε, δ)-DP Assouad’s method for restricted estimators). Let V := {±1}k be a hypercube.
Consider a set of distributions PV := {pν : ν ∈ V} over X . Assume loss ` satisfies that for all
u, v ∈ V ,

`(θ(pu), θ(pv)) ≥ 2τ

k∑
i=1

1[ui 6= vi]. (4)

For each i ∈ [k], define the following mixture of product distributions:

ps+i =
2

|V|
∑

v∈V:vi=+1

psv, ps−i =
2

|V|
∑

v∈V:vi=−1

psv.

If for all i ∈ [k] there exists an f -coupling (Xs, Y s) between ps+i and ps−i with E[dh(Xs, Y s)] ≤ D,
then for any restricted estimator θ̂ ∈ Af ∩ Aε,δ ,

sup
p∈P

EXs∼ps`(θ(p), θ̂(Xs)) ≥ max

(
τ

2

k∑
i=1

(1− dTV (ps+i, p
s
−i)),

kτ

2

(
0.9e−10εD − 10Dδ

))
.

The proof of Theorem 1 follows from Theorem 4. We provide details in Appendix B.2.

Proof sketch of Theorem 1. In our problem setting, X = [k]m is the domain and P is the set of
multinomial distributions P = {Mul(m, p) : p ∈ ∆k}, where Mul(m, p) denotes the multinomial
distribution. The parameter we are trying to estimate is the underlying p and the loss is `1 distance.

We construct PV as follows: let α ∈ (0, 1/6), and for each ν ∈ V := {−1, 1}k/2,

pν = Mul
(
m,

1

k
(1 + 3αν1, 1− 3αν1, ..., 1 + 3ανk/2, 1− 3ανk/2)

)
. (5)

For any u, v ∈ V , `1 distance satisfies (4) with τ = 6α/k.

For restricted estimator p̂A which only operates on N = [N1, ..., Nk], for each i ∈ [k] we can design
an N -coupling (Xs, Y s) of ps+i and ps−i with E[dh(Xs, Y s)] ≤ 6αs/k + 1 =: D. Plugging in τ
and D in Theorem 4 yields the desired min-max rate and user complexity.

4.2 (ε, 0)-lower bound for the general case

We provide the complete proof of Theorem 3 in Appendix B.3 and sketch an outline here.

We use differentially private Fano’s method [Acharya et al., 2020, Corollary 4]. We design a set of
distributions P ⊆ ∆k such that, |P| = Ω(exp(k)), and for each p, q ∈ P ,

`1(p, q) = Ω(α), dKL(Mul(p)||Mul(q)) = O(mα2), dTV (Mul(p)||Mul(q)) = O(
√
mα2).

Applying [Acharya et al., 2020, Corollary 4] with M = Ω(exp(k)), τ = α, β = O(mα2), γ =
O(
√
mα2) yields the result.

5 Algorithms

We first propose an algorithm for the dense regime where k ≤ m. In this regime, on average each
user sees most of the high-probability symbols. However, this algorithm does not extend directly to
the sparse regime when k ≥ m. In the sparse regime, we augment the dense algorithm regime with
another sub-routine for small probabilities. Both algorithms could be extended to the case when users
have different number of samples (see Appendix E).

6



Algorithm 1 Private hypothesis selection: PHS(H, D, α, ε) [Bun et al., 2019]

1: Input: H = {H1, . . . ,Hd} the set of hypotheses, dataset D of s samples drawn i.i.d. from
p ∈ H, accuracy parameter α ∈ (0, 1), privacy parameter ε.

2: for each Hi, Hj ∈ H do
3: W = {x ∈ X : Hi(x) > Hj(x)}, pi = Hi(W), pj = Hj(W).
4: Compute τ̂ = 1

s |{x ∈ D : x ∈ W}| and

Γ(Hi, Hj , D) =

{
s pi − pj ≤ 3α;

s ·max{0, τ̂ − (pj + (3/2)α)} otherwise.

5: end for
6: For each Hj ∈ H compute S(Hj , D) = minHk∈H Γ(Hj , Hk, D)

7: return random hypothesis Ĥ such that for each Hj :

Pr[Ĥ = Hj ] ∝ exp

(
S(Hj , D)

2ε

)
.

Algorithm 2 Learning binomial distributions: Binom(D, ε, α)

1: Input: Dataset D of s samples i.i.d. from Bin(m, p), privacy parameter ε, accuracy parameter α.

2: Let P = {0, cα
20m ,

2cα
20m , . . . , 1e} andH = {Bin(m, p) : p ∈ P}.

3: Run PHS(H, D, cα/5, ε) and obtain Bin(m, p̂).
4: return p̂.

5.1 Algorithms for the dense regime

We first motivate our algorithm with an example. Consider a symbol with probability around 1/2. If
m is large, then by the Chernoff bound, such a symbol has counts in the range[

m

2
−
√
m

2
log

2

δ
,
m

2
+

√
m

2
log

2

δ

]
,

with probability ≥ 1− δ. Hence, neighboring datasets differ typically with
√
m counts. However, in

the worst case, they could differ by m and hence standard mechanisms add noise proportional to m.

We propose the following alternative method. The count for symbol i ∈ [k] can take values from
0, 1, . . . ,m and is distributed according to Bin(m, pi). Thus, we can learn this distribution Bin(m, pi)
itself to a good accuracy and then estimate pi from the estimated density of Bin(m, pi).

We propose to use the private hypothesis selection algorithm due to Bun et al. [2019] to learn
the density of the Binomial distribution. It gives a score for every hypothesis using the Scheffé
algorithm [Scheffé, 1947] and then privately selects a hypothesis using the exponential mechanism
based on the score functions. For completeness, we state the private hypothesis selection algorithm in
Algorithm 1 and its guarantee in Lemma 9.

Our proposed algorithm for learning Binomial distributions is given in Algorithm 2. We compute a
cover of Binomial distributions and use Algorithm 1 to select an estimate of the underlying Binomial
distribution. We return the parameter of the Binomial distribution as our estimate for the underlying
parameter. Translating the guarantees on total variation distance between binomial distributions
to difference of parameters requires a bound on parameter estimation from the binomial density
estimation. To this end, we show the following theorem, which might be of independent interest.
Theorem 5. For all m and p, q,

`1(Bin(m, p),Bin(m, q)) = Θ

(
min

(
m|p− q|,

√
m|p− q|√
p(1− p)

, 1

))
.

Due to space constraints, we provide the proof in Appendix C. We show empirically that the bounds
in Theorem 5 should hold by estimating the `1 distance between Bin(m, 0.01) and Bin(m, 0.011).
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(a) m ≤ 20. `1 distance grows linearly with m. (b) Larger values of m. `1 distance grows as
√
m.

Figure 1: `1(Bin(m, p),Bin(m, q)) with p = 0.01 and q = 0.011. We approximate the `1 distance
by samples. The blue curves are the approximations and orange curves are the best line fit.

Algorithm 3 Dense regime: Dense(D, ε, δ, α)

1: Input: dataset D of s samples i.i.d. from Mul(m, p), where p ∈ ∆k , privacy parameter ε, δ,
accuracy parameter α.

2: ε′ = ε

4
√
k log(1/δ)

, α′ = min
(√

mα

2
√
k
, 1
)

.

3: For each i ∈ [k], learn the binomial distribution Bin(m, pi) using Algorithm 2, i.e. p̂i =
Binom(Di, ε

′, α′), where Di is the dataset of counts of symbol i in D.
4: return p̂ = [p̂1, . . . , p̂k].

Figure 1 shows that the `1 distance grows linearly with m when m is small, and grows linearly with√
m when m is large, which illustrates our bounds in Theorem 5.

Combining Lemma 9 with Theorem 5 yields guarantees for Algorithm 2. Its sample complexity and
utility are given by Theorem 6. We provide a proof in Appendix D.1.

Theorem 6. Let s ≥ 16 log(20m/αβ)
α2 + 16 log(20m/αβ)

αε . Given s i.i.d. samples from an unknown
binomial distribution Bin(m, p), Algorithm 2 returns p̂ such that with probability at least 1− β,

|p− p̂| ≤ αmax

(
1

m
,

√
p(1− p)√
m

)
.

Furthermore, Algorithm 2 is (ε, 0)-differentially private.

Applying Algorithm 2 independently on each symbol i to learn pi, we obtain Algorithm 3, an (ε, δ)-
private algorithm that learns unknown multinomial distributions under the dense regime. Its user
complexity is given by Theorem 7. We provide the proof in Appendix D.2.
Theorem 7 (Dense regime). Let k ≤ m and ε ≤ 1. Algorithm 3 is (ε, δ)-differentially private and
has sample complexity given by,

SAm,α,ε,δ = O

(
log

km

α
·max

(
k

mα2
+

k√
mαε

,

√
k

ε

√
log

1

δ

))
.

Theorem 7 has a better dependency on m than that of the Laplace or Gaussian mechanism. Further-
more, even if the number of samples tends to infinity, the number of users is least O(

√
k).

5.2 Algorithms for the sparse regime

We now propose a more involved algorithm for the sparse regime where m ≤ k. In this regime, users
will not see samples from many symbols. A direct application of the private hypothesis selection
algorithm would not yield tight bounds in this case.

We overcome this by proposing a new subroutine for estimating symbols with small probabilities, say
pi ≤ 1/m. In this regime, most symbols appear at most once. Hence, we propose each user sends if
a symbol appeared or not i.e., 1Ni(u)>0. Since Ni(u) is distributed as Bin(m, p), observe that

E[1Ni(u)=0] = (1− pi)m.
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Algorithm 4 Estimation of binomial with small p: SmallBinom(D, ε)

1: Input: dataset D of s samples i.i.d. from Bin(m, p), privacy parameter ε.
2: return p̂ such that:

(1− p̂)m = max

(
min

(
1

s

∑
u

1N(u)=0 + Z, 1

)
, 0

)
,

where Z ∼ Lap(1/ε).

Algorithm 5 Sparse regime: Sparse(D, ε, δ, α)

1: Input: dataset D of s i.i.d. samples from Mul(m, p), p ∈ ∆k, privacy parameter ε, δ, accuracy
parameter α.

2: ε′ = ε

8
√

min(k,m) log 1
δ

, α′ = min
(√

mα

8
√
k
, 1
)
, α′′ = α

240 .

3: p̂ = Dense(D, ε′, α′′).
4: Obtain D1, . . . , Dk from D where each Di consists of s i.i.d. samples from Bin(m, pi).
5: for i = 1 : k do
6: if p̂i < 2/m then
7: p̂i ← SmallBinom(Di, ε

′), where Di is the dataset of counts of symbol i in D.
8: end if
9: end for

10: return p̂ = [p̂1, . . . , p̂k].

Hence, if we get a good estimate for this quantity, then since pi ≤ 1/m, we can use it to get a good
estimate of pi. We describe the details of this approach in Algorithm 4. Its user complexity and utility
guarantee are given by Lemma 2, whose proof is in Appendix D.3.

Lemma 2. Let p ≤ min(c/m, 1/2). Let the number of users s ≥ 64e3c max(c, 1) log 3
β and

s ≥ 16e3c

α2 log 3
β + 16e3c

γε log 3
β . Algorithm 4 is (ε, 0)-differentially private and returns p̂ such that

with probability at least 1− β,

|p− p̂| ≤
√
pα2

m
+
α2

m
+
γ

m
.

Combining the private hypothesis selection algorithm and the subroutine described in Algorithm 4,
we obtain an algorithm for the sparse regime, shown in Algorithm 5. We first estimate p using the
private hypothesis selection algorithm. If for some i, the estimated probability is too small, we run
Algorithm 4 to obtain a more accurate estimate of pi. Theorem 8 gives the user complexity guarantee
of Algorithm 5. We provide the proof in Appendix D.4.

Theorem 8. Let ε ≤ 1 and k ≥ m. Algorithm 5 is (ε, δ)-differentially private algorithm and has
sample complexity,

SAm,α,ε,δ = O

(
log

km

α
·

(
k

mα2
+

k√
mεα

√
log

1

δ

))
.

6 Conclusion

We study user-level differential privacy and its theoretical limit in the context of learning discrete
distributions. We discover a fundamental limit in terms of user complexity for Laplace or Gaussian
mechanisms and propose a nearly-optimal algorithm which surpasses this limit. Future directions
include removing the i.i.d. assumption on users’ data and investigating user-level privacy for other
statistical estimation problems and empirical risk minimization. Our novel coupling technique for
lower bounds on restricted estimators and the algorithm we propose for discrete distributions could
be of interest in other scenarios.

9



7 Broader impact

In this work, we propose algorithms that have better privacy-utility trade-offs under global differ-
ential privacy compared to those of standard algorithms. Privacy-aware techniques are crucial for
widespread use of machine learning leveraging user data. While our work is theoretical in nature,
we hope that having higher utility private algorithms would encourage more practitioners to adopt
user-level differential privacy in their applications.
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