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Figure 6: Overview of Separation by Localization. Similar to the overview figure in the main paper.
This figure is color-blind friendly, black and white printing friendly, and photocopy friendly.

A Hyperparameters and Training Details

Rendering Parameters For the simulated scenes, the origin of the scene is centered on the micro-
phone array. The foregrounds are placed randomly between 1 and 5 meters away from the microphone
array while the background is placed between 10 and 20 meters away. The walls of a virtual rectan-
gular room are chosen between 15 and 20 meters away, expanding as necessary so the background is
also within the room. The reverb absorption rate of the foreground is randomly chosen between 0.1
and 0.99, while the absorption rate of the background is chosen between 0.5 and 0.99.

Training Parameters We use a learning rate of 3⇥ 10
�4 and initialized our training from the

pretrained single-channel Demucs weights. We use ADAM optimizer [73] for training the network
with the following parameters: �1 = 0.9, �2 = 0.999, and ✏ = 10

�8. We found that training on our
spatial dataset converged after roughly 20 epochs.

Data Augmentation As an additional data augmentation step we make the following perturbations
to the data: Gaussian noise is added with a standard deviation of 0.001, and high-shelf and low-shelf
gain of up to 2 dB are randomly added using the sox library4.

B Real Dataset

Data Collection In order to fine-tune the network on real data, we played samples over a speaker and
recorded the signals with the real microphone array. Approximately 3 hours of VCTK samples were
played from a QSC K8 loudspeaker in a quiet room with the speaker volume set approximately to
the volume of a human voice. The loudspeaker was placed at carefully measured positions between
1-4 meters away from the microphone array. We used azimuth angles in 30

� increments for a total
of 12 different positions. The elevation angle was roughly the same as the microphone array. We
maintained the train and test splits of the VCTK dataset to avoid overlapping identities. Because
we could not record true diffuse background noise, we played various background noises over the
loudspeaker such as music or recorded restaurant sounds. With these recorded samples, we could
create mixtures with access to the ground truth voice samples. We found that jointly training with
50% real and 50% synthetic mixtures gave the best performance.

Numerical Results Because we did not have access to a true acoustic chamber, the ground truth
samples and positions are not as reliable for evaluation as the fully synthetic data. However, we report
separation results on mixtures of 2 voices and 1 background from the test set of real recorded data in
Table 4. This, along with the qualitative samples, shows evidence that our method can generalize to
real environments. We note that oracle baselines outperform our methods and other waveform-based

4http://sox.sourceforge.net/
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Table 4: Separation performance on the real dataset

Method Median SI-SDRi (dB)

Ours 8.885
TAC [40] 8.427
Conv-TasNet [18] 6.497
Oracle IBM 9.220
Oracle IRM 10.327
Oracle MWF 9.925

baselines because oracle baselines have access to the ground-truth utterances. Additionally, our
method outperforms other non-oracle baselines.

C Sample waveforms and spectrograms

In this section, we show sample waveforms of an input mixture and separated voices using our
method. The input mixture contains two voices and one background, and we show an example of
separation results in two different domains: waveform (Figure ??) and time-frequency spectrogram
(Figure 8). Although the output closely matches the ground truth, we can see several differences. As
illustrated by Figure 8, we observe that the network struggles in regions where the voice’s energy is
low. Additionally, we find that the network can create artifacts in the high-frequency regions, which
is why a simple denoising step or low pass filter is often helpful.

More example audio files are provided in the zip files.
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Figure 7: We show an example of separation on an input mixture containing 2 voices and background.
The topmost signal is the input mixture. (top) input mixture, (center + bottom) separated voices.

D Sampling Rate

We show the effect of lowering the sample rate on both separation and localization in Table 5. We
remark that our separation quality is worse at lower sample rates, showing that our model takes
advantage of the higher sample rate.
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Figure 8: An example of separation results with 2 voices and 1 background. (top) the spectrogram of
an input mixture, (left) the spectrograms of outputs from the network (right) the spectrograms of the
ground truth reference voice signals.

Table 5: Separation and localization performances on datasets with different sampling rates

Method Sampling Rate
44.1kHz 16kHz

Separation: Median SI-SDRi (dB)
Ours - Binary Search 17.059 14.132
Ours - Oracle Position 17.636 14.468
TAC [40] 15.104 13.613
Conv-TasNet [18] 15.526 15.559
Oracle IBM 13.359 13.611
Oracle IRM 4.193 4.289
Oracle MWF 8.405 8.893

Localization: Median Angular Error (�)
Ours - 2 Voices 1 BG 3.73� 3.98�

Ours - 2 Voices No BG 2.13� 2.68�
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