
A Remark on the choice of the mixing matrix

In the main paper, the mixing matrix W is defined following the convention used in [43], where the
kernel of W is the vector of all ones. It is worth noting that the term mixing matrix is also used in the
literature to denote a doubly stochastic matrix WDS (see e.g. [10, 17, 35, 36, 39, 46, 47]). These two
approaches are equivalent as given a doubly stochastic matrix WDS , the matrix

I −WDS is a mixing matrix under Definition 1.

In the following discussion, we will use WDS to draw the connection when necessary.

B Recovering EXTRA under the augmented Lagrangian framework

The goal of this section is to show that EXTRA algorithm [47] is a special case of the non-accelerated
Augmented Lagrangian framework in Algorithm 1.
Proposition 5. The EXTRA algorithm is equivalent to applying one step of gradient descent to solve
the subproblem in Algorithm 1.

Proof. Taking a single step of gradient descent in the subproblem Pk in Algorithm 1 warm starting
at Xk−1 yields the update

Xk = Xk−1 − α(∇F (Xk−1) + Λk + ρWXk−1). (8)
Λk+1 = Λk + ηWXk.

Using the (k + 1)-th update,

Xk+1 = Xk − α(∇F (Xk) + Λk+1 + ρWXk). (9)

and subtracting (8) from (9) gives

Xk+1 = (2− α(ρ+ η)W )Xk − (1− αρW )Xk−1 − α(∇F (Xk)−∇F (Xk−1)).

When incorporating with the mixing matrix W = I −WDS and taking ρ = η = 1
2α gives,

Xk+1 = (I +WDS)Xk −
(
I +

WDS

2

)
Xk−1 − α(∇F (Xk)−∇F (Xk−1)),

which is the update rule of EXTRA [47].

Remark 6. When expressing the parameters in terms of ρ, the inner loop stepsize reads as α = 1
2ρ ,

and the outer-loop stepsize reads as η = ρ.

C Proof of Theorem 3

Algorithm 4 (Unscaled) Accelerated Decentralized Augmented Lagrangian framework
Input: mixing matrix W , regularization parameter ρ, stepsize η, extrapolation parameters {βk}k∈N

1: Initialize dual variables Λ1 = Ω1 = 0 ∈ Rnd.
2: for k = 1, 2, ...,K do
3: Xk ≈ arg min

{
Pk(X) := F (X) + (

√
WΩk)TX + ρ

2‖X‖
2
W

}
.

4: Λk+1 = Ωk + η
√

WXk

5: Ωk+1 = Λk+1 + βk+1(Λk+1 −Λk)
6: end for

Output: XK .

We start by noting that Algorithm 2 is equivalent to the “unscaled" version of Algorithm 4. More
specifically, we recover Algorithm 2 by substituting the variables

Λ←
√

WΛ, Ω←
√

WΩ.
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The unscaled version is computationally inefficient since it requires the computation of the square
root of W . This is the reason why we choose to present the scaled version Algorithm 2 in the main
paper. However, the unscaled version is easier to work with for the analysis. In the following proof,
the variables Λ and Ω are referred to as in the unscaled version Algorithm 4.

The key concept underlying our analysis on is the Moreau-envelope of the dual problem:

Φρ(Λ) = min
Γ∈Rnd

{
F ∗(−

√
WΓ) +

1

2ρ
‖Γ− Λ‖2

}
. (10)

Similarly, we define the associated proximal operator

proxΦρ(Λ) = arg min
Γ∈Rnd

{
F ∗(−

√
WΓ) +

1

2ρ
‖Γ− Λ‖2

}
. (11)

Note that when the inner problem is strongly convex, the proximal operator is unique (that is, a
single-valued operator). The following is a list well known properties of the Moreau-envelope:
Proposition 7. The Moreau envelope Φρ enjoys the following properties

1. Φρ is convex and it shares the same optimum as the dual problem (D).

2. Φρ is differentiable and the gradient of Φρ is given by

∇Φρ(Λ) =
1

ρ
(Λ− proxΦρ(Λ))

3. If F is twice differentiable, then its convex conjugate F ∗ is also twice differentiable. In this case,
Φρ is also twice differentiable and the Hessian is given by

∇2Φρ(Λ) =
1

ρ
I − 1

ρ2

[
1

ρ
I +
√

W∇2F ∗(−
√

W proxΦρ(Λ))
√

W

]−1

.

Corollary 8. The Moreau envelope Φρ satisfies

1. Φρ is Lρ-smooth, where Lρ = λmax(W )
µ+ρλmax(W ) ≤

1
ρ .

2. Φρ is µρ-strongly convex in the image space of
√
W , where µρ =

λ+
min(W )

L+ρλ+
min(W )

.

Proof. These properties follow from the expressions for the Hessian of Φρ and by the fact that F ∗ is
1
µ -smooth and 1

L strongly convex.

In particular, Φρ is only strongly convex on the image space of
√
W , one of the keys to prove the

linear convergence rate is the following lemma.
Lemma 9. The variables Λk and Ωk in the un-scaled version Algorithm 4 all lie in the image space
of
√
W for any k.

Proof. This can be easily derived by induction according to the update rule in line 4, 5 of Algorithm 4.

Similar to the dual Moreau-envelope, we also define the weighted Moreau-envelope on the primal
function

Ψρ(Ω) = min
X

{
F (X) + ΩTX +

ρ

2
‖X‖2W

}
(12)

and its associated proximal operator

proxΨρ(Ω) = arg min
X

{
F (X) + ΩTX +

ρ

2
‖X‖2W

}
. (13)

Indeed, this function corresponds exactly to the subproblem solved in the augmented Lagrangian
framework (line 3 of Algorithm 2). Similar property holds for Ψρ:
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Proposition 10. The Moreau envelope Ψρ enjoys the following properties:

1. Ψρ is concave.

2. Ψρ is differentiable and the gradient of Ψρ is given by

∇Ψρ(Ω) = proxΨ(Ω).

3. If F is twice differentiable, then Ψρ is also twice differentiable and the Hessian is given by

∇2Ψρ(Ω) = −
[
∇2F (proxΨ(Ω)) + ρW

]−1
.

In particular, Ψρ is 1
µ -smooth and 1

L+ρλmax(W ) strongly concave.

The dual Moreau-envelope Φρ and primal Moreau-envelope Ψρ are connected through the following
relationship.

Proposition 11. The gradient of the Moreau envelope Φρ is given by

∇Φρ(Λ) = −
√

W∇Ψρ(
√

WΛ). (14)

Proof. To simplify the presentation, let us denote

X(Λ) = arg min
X

{
F (X) + (

√
WΛ)TX +

ρ

2
‖X‖2W

}
= ∇Ψρ(

√
WΛ).

From the optimality of X(Λ), we have

∇F (X(Λ)) +
√

WΛ + ρWX(Λ) = 0

From the fact that∇F (x) = y ⇔ ∇F ∗(y) = x, we have

X(Λ) = ∇F ∗
(
−
√

W
[
Λ + ρ

√
WX(Λ)

])
.

Let Γ = Λ + ρ
√

WX(Λ), then

−
√

W∇F ∗(−
√

WΓ) +
1

ρ
(Γ−Λ) = 0.

Therefore Γ is the minimizer of the function F ∗(−
√
WΓ) + 1

2ρ‖Γ− Λ‖2, namely

proxΦρ(Λ) = Λ + ρ
√

WX(Λ).

Then based on the expression for the gradient in Prop 7, we obtain the desired equality (14).

Proposition 14 demonstrates that solving the augmented Lagrangian subproblem could be viewed as
evaluating the gradient of the Moreau-envelope. Hence applying gradient descent on the Moreau-
envelope gives the non-accelerated augmented Lagrangian framework Algorithm 1. Even more,
applying Nesterov’s accelerated gradient on the Moreau-envelope Φρ yields accelerated Augmented
Lagrangian Algorithm 4. In addition, when the subproblems are solved inexactly, this corresponds
to an inexact evaluation on the gradient. This interpretation allows us to derive guarantees for the
convergence rate of the dual variables. Before present the the convergence analysis in detail, we
formally establish the connection between the primal solution and the dual solution.

Lemma 12. Let x∗ be the optimum of f and define X∗ = 1n⊗x∗ ∈ Rnd. Then there exists a unique
Λ∗ ∈ Im(W) such that Λ∗ is the optimum of the dual problem (D). Moreover, it satisfies

∇F (X∗) = −
√

WΛ∗.

Proof. Since Ker(W ) = R1n, we have

Ker(W) = Ker(W ⊗ Id) = V ect(1n ⊗ ei, i = 1, · · · , d),
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where ei is the canonical basis with all entries 0 except the i-th equals to 1. By optimality,∇f(x∗) =∑n
i=1∇fi(x∗) = 0. This implies that ∇F (x∗)T (1n ⊗ ei) = 0, for all i = 1, · · · d. In other words,

∇F (X∗) is orthogonal to the null space of W, namely ∇F (X∗) ∈ Im(W). Therefore, there
exists Λ such that ∇F (X∗) = −WΛ. By setting Λ∗ =

√
WΛ, we have Λ∗ ∈ Im(W) and

∇F (X∗) = −
√

WΛ∗. In particular, since∇F (x) = y ⇔ ∇F ∗(y) = x, we have,
√

W∇F ∗(−
√

WΛ∗) =
√

WX∗ = 0. (15)

Hence Λ∗ is the solution of the dual problem (D) and it is the unique one lies in the Im(W).

Throughout the rest of the paper, we use Λ∗ to denote the unique solution as shown in the lemma
above. We would like to emphasize that even though F ∗ is strongly convex, the dual problem (D) is
not strongly convex, because W is singular. Hence, the solution of the dual problem is not unique
unless we restrict to the image space of W. To derive the linear convergence rate, we need to show
that the dual variable always lies in this subspace where the Moreau-envelope Φρ is strongly convex.

Theorem 13. Consider the sequence of primal variables (Xk)k∈N generated by Algorithm 3 with
the subproblem solved up to εk accuracy, i.e. Option I. Therefore,

‖Xk+1 −X∗‖2 ≤ 2εk+1 + C

(
1−

√
µρ
Lρ

)k (√
µρ∆dual +Ak

)2

(16)

where X∗ = 1n ⊗ x∗, Lρ = λmax(W )
µ+ρλmax(W ) , µρ =

λ+
min(W )

L+ρλ+
min(W )

, C = 2λmax(W )
µ2µ2

ρ
, ∆dual

is the dual function gap defined by ∆dual = F ∗(−
√

WΛ1) − F ∗(−
√

WΛ∗) and Ak =√
λmax(W )

∑k
i=1

√
εi

(
1−

√
µρ
Lρ

)−i/2
.

Proof. The proof builds on the concepts developed so far in this section. We start by showing that the
dual variable Λk converges to the dual solution Λ∗ in a linear rate. From the interpretation given in
Prop 7 and Prop 11, the sequence (Λk)k∈N given in Algorithm 2 is equivalent to applying Nesterov’s
accelerated gradient method on the Moreau-envelope Φρ. In the inexact variant, the inexactness on
the solution directly translates to an inexact gradient of Φρ, where the inexactness is given by

‖ek‖ = ‖
√

W(Xk −X∗k)‖ ≤
√
λmax(W )‖Xk −X∗k‖ ≤

√
λmax(W )εk.

Hence (Λk)k∈N in Algorithm 4 is obtained by applying inexact accelerated gradient method on the
Moreau-envelope Φρ. Note that by induction Λk and Ωk belong to the image space of

√
W, in which

the dual Moreau-envelope Φρ is strongly convex. Following the analysis on inexact accelerated
gradient method Prop 4 in [45], we have

µρ
2
‖Λk+1 − Λ∗‖2 ≤

(
1−

√
µρ
Lρ

)k+1
(√

2∆Φρ +

√
2

µρ
Ak

)2

(17)

where ∆Φρ = Φρ(Λ1)− Φ∗ρ and Ak is the accumulation of the errors given by

Ak =

k∑
i=1

‖ei‖
(

1−
√
µρ
Lρ

)−i/2
≤

k∑
i=1

√
λmax(W )εi

(
1−

√
µρ
Lρ

)−i/2
.

Based on the convergence on the dual variable, we could now derive the convergence on the primal
variable. Let X∗k+1 be the exact solution of the problem Pk+1. Then

‖X∗k+1 −X∗‖ = ‖∇Ψρ(
√

WΛk+1)−∇Ψρ(
√

WΛ∗)‖

≤ 1

µ
‖
√

W(Λk+1 −Λ∗)‖ (From Prop 10.3)

≤
√
λmax(W )

µ
‖Λk+1 −Λ∗‖. (18)
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Finally, from triangle inequality

‖Xk+1 −X∗‖2 ≤ 2‖Xk+1 −X∗k+1‖2 + 2‖X∗k+1 −X∗‖2

≤ 2εk+1 +
2λmax(W )

µ2µρ
(1−√κρ)k+1

(√
2∆Φρ +

√
2

µρ
Ak

)2

.

The desired inequality follows from reorganizing the constant and the fact that ∆Φρ ≤ ∆dual.

Proof of Theorem 2. Plugging in the choice of εk =
µρ

2λmax(W )

(
1− 1

2

√
µρ
Lρ

)k
∆dual in (16) yields

the desired convergence rate.

D Proof of Lemma 4

Lemma 14. With the parameter choice as Theorem 2, then warm starting the k-th subproblem Pk at
the previous solution Xk−1 gives an initial gap

‖Xk−1 −X∗k‖2 ≤ 8
Cρ
µρ
εk−1.

Proof. From triangle inequality, we have

‖Xk−1 −X∗k‖2 ≤ 2(‖Xk−1 −X∗‖2 + ‖X∗k −X∗‖2)

The desired inequality follows from the convergence on the primal iterates and (18), i.e.

‖Xk−1 −X∗k‖2 ≤
2Cρ
µρ

εk−1, ‖X∗k −X∗k‖2 ≤
2Cρ
µρ

εk.

Deriving the complexity in Table 2 We have applied the same warm-start strategy in the com-
plexity analysis of SSDA+AGD as IDEAL+AGD, the higher computation cost of SSDA is due to
an intrinsic weakness of the method. The high level intuition is that the regularization parameter ρ
improves the condition number of the Moreau-envelope, which reduces the number of subproblems.
More explicitly, the number of subproblems to be solved by IDEAL/SSDA is given by the formula

K = O

(√
Lρ
µρ

log

(
Cρ∆dual

ε

))
, where Lρ =

λmax(W )

µ+ ρλmax(W )
, µρ =

λ+
min(W )

L+ ρλ+
min(W )

.

(Eq. 5 on page 5)

Ignoring the log factor, this quantity is proportional to the regularized condition number
√

Lρ
µρ

.

• For SSDA (which is equivalent to ρ = 0), we have
√
Lρ/µρ =

√
κfκW ;

• for IDEAL, by choosing ρ = L
λmax(W ) , we have

√
Lρ/µρ ≤

√
2κW .

Hence, IDEAL saves a factor of order √κf compared to SSDA in the number of subproblems.
Moreover, with the proposed choice of ρ, the cost of inexactly solving the subproblems is essentially
the same for IDEAL and SSDA. Therefore we obtain the improvement in computation cost.

E Multi-stage algorithm: MIDEAL

Intuitively, we simply replace the mixing matrix W by Q(W ), resulting in a better graph condi-
tion number. However, each evaluation of the new mixing matrix Q(W ) requires deg(Q) rounds
of communication, given by the AcceleratedGossip algorithm introduced in [43]. For complete-
ness of the discussion, we recall this procedure in Algorithm 6. In particular, given W and X ,
AcceleratedGossip(W ,X) returns Q(W )X , based on the communication oracle W .
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Algorithm 5 MIDEAL: Multi-stage Inexact Acc-Decentralized Augmented Lagrangian framework
Input: mixing matrix W , regularization parameter ρ, stepsize η, extrapolation parameters {βk}k∈N

1: Initialize dual variables Λ1 = Ω1 = 0 ∈ Rnd and the polynomial Q according to (7).
2: for k = 1, 2, ...,K do
3: Xk ≈ arg min

{
Pk(X) := F (X) + ΩT

kX + ρ
2‖X‖

2
Q(W)

}
.

4: Λk+1 = Ωk + ηQ(W)Xk

5: Ωk+1 = Λk+1 + βk+1(Λk+1 −Λk)
6: end for

Output: XK .

Algorithm 6 AcceleratedGossip [43]
Input: mixing matrix W , vector or matrix X .

1: Set parameters κW = λmax(W )

λ+
min(W )

, c2 = κW+1
κW−1 , c3 = 2

(κW+1)λ+
min(W )

, # of iterations J = b√κW c.
2: Initialize coefficients a0 = 1, a1 = c2, iterates X0 = X , X1 = c2(I − c3W )X .
3: for j = 1, 2, ..., J − 1 do
4: aj+1 = 2c2aj − aj−1

5: Xj+1 = 2c2(1− c3W )Xj −Xj−1

6: end for
Output: X0 − XJ

aJ
.

F Implementation of Algorithms

We include in the following (Algorithm 7) an implementable version of the IDEAL+AGD algorithm
to facilitate re-implementation of our framework.

Algorithm 7 Implementation: IDEAL+AGD solver
Input: number of iterations K > 0, gossip matrix W ∈ Rn×n

1: ωi(0) = ~0, γi(0) = ~0, xi(0) = xi(0) = x0 for any i ∈ [1, n]

2: κinner = L+ρλmax(W )
µ , βinner =

√
κinner−1√
κinner+1 , κρ =

L+ρλ+
min(W )

µ+ρλmax(W )
λmax(W )

λ+
min(W )

, βouter =
√
κouter−1√
κouter+1

3: for k = 1, 2, ...,K do
4: Inner iteration: Approximately solve the augmented Lagrangian multiplier.
5: Set xi,k(0) = yi,k(0) = xi(k − 1), xi,k(0) = yi,k(0) =

∑
j∼iWijxj,k(0)

6: for t = 0, 1, ..., T − 1 do
7: xi,k(t+ 1) = yi,k(t)− η(γi(k) +∇fi(yi,k(t)) + ρyi,k(t))
8: yi,k(t+ 1) = xi,k(t+ 1) + βinner(xi,k(t+ 1)− xi,k(t))
9: yi,k(t+ 1) =

∑
j∼iWijyj,k(t+ 1)

10: end for
11: Set xi(k) = xi,k(T ), xi(k) =

∑
j∼iWijxj,k(T )

12: Outer iteration: Update the dual variables on each node
13: λi(k + 1) = ωi(k) + ρxi(k)
14: ωi(k + 1) = λi(k + 1) + βouter(λi(k + 1)− λi(k))
15: end for
Output:

G Further Experimental Results
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Figure 3: Network Structures: Left:Circular graph with 4 nodes. Right:Barbell graph with 8 nodes.
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Figure 4: Ablation study on the regularization parameter ρ in IDEAL framework. For all the
experiments, we use AGD as inner loop solver and set the same parameters as predicted by theory.
We observe that when ρ is selected in the range [0.5ρdefault, 10ρdefault], the perfomance of the algorithm
is quite similar and robust. We also observe that using a small ρ degrades the performance of the
algorithm, this phenomenon is consistent with the observation that the inexact SSDA [43] does not
perform well since it uses ρ = 0. Another observation is that with larger ρ, such as ρ = 2ρdefault or
10ρdefault, the algorithm is more stable with less zigzag oscillation, which is preferable in practice.
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Figure 5: Ablation study on the inner loop complexity Tk in IDEAL framework. When the inner
loop iteration is small, the algorithm becomes less stable, so we have decreased the momentum
parameters to ensure the convergence. For these experiments, we use AGD solver with βin = 0.8
and βout = 0.4. As we can see, it is beneficial to perform multiple iterations in the inner loop rather
than taking T=1 as in the EXTRA algorithm [47].
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Figure 6: Test accuracy on MNIST task.
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