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Abstract

The top-k operation, i.e., finding the k largest or smallest elements from a collection
of scores, is an important model component, which is widely used in information
retrieval, machine learning, and data mining. However, if the top-k operation is im-
plemented in an algorithmic way, e.g., using bubble algorithm, the resulting model
cannot be trained in an end-to-end way using prevalent gradient descent algorithms.
This is because these implementations typically involve swapping indices, whose
gradient cannot be computed. Moreover, the corresponding mapping from the input
scores to the indicator vector of whether this element belongs to the top-k set is
essentially discontinuous. To address the issue, we propose a smoothed approxima-
tion, namely the SOFT (Scalable Optimal transport-based diFferenTiable) top-k
operator. Specifically, our SOFT top-k operator approximates the output of the
top-k operation as the solution of an Entropic Optimal Transport (EOT) problem.
The gradient of the SOFT operator can then be efficiently approximated based on
the optimality conditions of EOT problem. We apply the proposed operator to
the k-nearest neighbors and beam search algorithms, and demonstrate improved
performance.

1 Introduction

The top-k operation, i.e., finding the k largest or smallest elements from a set, is widely used for
predictive modeling in information retrieval, machine learning, and data mining. For example, in
image retrieval (Babenko et al., 2014; Radenović et al., 2016; Gordo et al., 2016), one needs to query
the k nearest neighbors of an input image under certain metrics; in the beam search (Reddy et al.,
1977; Wiseman and Rush, 2016) algorithm for neural machine translation, one needs to find the k

sequences of largest likelihoods in each decoding step.

Although the ubiquity of top-k operation continues to grow, the operation itself is difficult to be
integrated into the training procedure of a predictive model. For example, we consider a neural
network-based k-nearest neighbor classifier. Given an input, we use the neural network to extract
features from the input. Next, the extracted features are fed into the top-k operation for identifying the
k nearest neighbors under some distance metric. We then obtain a prediction based on the k nearest
neighbors of the input. In order to train such a model, we choose a proper loss function, and minimize
the average loss across training samples using (stochastic) first-order methods. This naturally requires
the loss function being differentiable with respect to the input at each update step. Nonetheless, the
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top-k operation does not exhibit an explicit mathematical formulation: most implementations of the
top-k operation, e.g., bubble algorithm and QUICKSELECT (Hoare, 1961), involve operations on indices
such as indices swapping. Consequently, the training objective is difficult to formulate explicitly.

(a) Original top-k (b) SOFT top-k

Figure 1: Illustration of the top-k operators.

Alternative perspective — taking the top-k opera-
tion as an operator — still cannot resolve the dif-
ferentibility issue. Specifically, the top-k operator3

maps a set of inputs x1, . . . , xn to an index vector
{0, 1}n. Whereas the Jacobian matrix of such a
mapping is not well defined. As a simple example,
consider two scalars x1, x2. The top-1 operation as
in Figure 1 returns a vector [A1, A2]>, with each
entry denoting whether the scalar is the larger one
(1 for true, 0 for false). Denote A1 = f(x1, x2).
For a fixed x2, A1 jumps from 0 to 1 at x1 = x2. It
is clear that f is not differentiable at x1 = x2, and
the derivative is identically zero otherwise.

Due to the aforementioned difficulty, existing works resort to two-stage training for models with
the top-k operation. We consider the neural network-based k-nearest neighbor classifier again. As
proposed in Papernot and McDaniel (2018), one first trains the neural network using some surrogate
loss on the extracted features, e.g., using softmax activation in the output layer and the cross-entropy
loss. Next, one uses the k-nearest neighbor for prediction based on the features extracted by the
well-trained neural network. This training procedure, although circumventing the top-k operation,
makes the training and prediction misaligned; and the actual performance suffers.

In this work, we propose the SOFT (Scalable Optimal transport-based diFferenTiable) top-k operation
as a differentiable approximation of the standard top-k operation in Section. 2. Specifically, motivated
by the implicit differentiation (Duchi et al., 2008; Griewank and Walther, 2008; Amos and Kolter,
2017; Luise et al., 2018) techniques, we first parameterize the top-k operation in terms of the optimal
solution of an Optimal Transport (OT) problem. Such a re-parameterization is still not differentiable
with respect to the input. To rule out the discontinuity, we impose entropy regularization to the
optimal transport problem, and show that the optimal solution to the Entropic OT (EOT) problem
yields a differentiable approximation to the top-k operation. Moreover, we prove that under mild
assumptions, the approximation error can be properly controlled.

We then develop an efficient implementation of the SOFT top-k operation in Section. 3. Specifically,
we solve the EOT problem via the Sinkhorn algorithm (Cuturi, 2013). Given the optimal solution, we
can explicitly formulate the gradient of SOFT top-k operation using the KKT (Karush-Kuhn-Tucker)
condition. As a result, the gradient at each update step can be efficiently computed with complexity
O(n), where n is the number of elements in the input set to the top-k operation.

Our proposed SOFT top-k operation allows end-to-end training, and we apply SOFT top-k operation
to kNN for classification in Section 4 and beam search in Section 5. The experimental results demon-
strate significant performance gain over competing methods, as an end-to-end training procedure
resolves the misalignment between training and prediction.

Notations. We denote k · k2 as the `2 norm of vectors, k · kF as the Frobenius norm of
matrices. Given two matrices B,D 2 Rn⇥m, we denote hB,Di as the inner product, i.e.,
hB,Di =

Pn,m
i=1,j=1

BijDij . We denote B � D as the element-wise multiplication of B and
D. We denote (·) as the indicator function, i.e., the output of (·) is 1 if the input condition is
satisfied, and is 0 otherwise. For matrix B 2 Rn⇥m, we denote Bi,: as the i-th row of the matrix.
The softmax function for matrix B is defined as softmaxi(Bij) = e

Bij/
Pn

`=1
e
Blj . For a vector

b 2 Rn, we denote diag(b) as the matrix where the i-th diagonal entries is bi.

3Throughout the rest of the paper, we refer to the top-k operator as the top-k operation.
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2 SOFT Top-k Operator
We adopt the following definition of the (augment of) top-k operator. Given a set of scalars X =
{xi}

n
i=1

, the standard top-k operator returns a vector A = [A1, . . . , An]>, such that

Ai =

⇢
1, if xi is a top-k element in X ,
0, otherwise.

Note that the definition is essentially an "arg-top-k" operation since it marks the top-k indices as 1,
instead of returning the top-k values. This allows more flexibility since we can obtain the top-k values
by multiplying A to X . The goal is to design a smooth relaxation of the standard top-k operator.
Without loss of generality, we refer to top-k elements as the smallest k elements.

2.1 Parameterizing Top-k Operator as OT Problem
We first show that the standard top-k operator can be parameterized in terms of the solution of
an Optimal Transport (OT) problem (Monge, 1781; Kantorovich, 1960). We briefly introduce OT
problems for self-containedness. An OT problem finds a transport plan between two distributions,
while the expected cost of the transportation is minimized. We consider two discrete distributions
defined on supports A = {ai}

n
i=1

and B = {bj}
m
j=1

, respectively. Denote P({ai}) = µi and
P({bj}) = ⌫j , and let µ = [µ1, . . . , µn]> and ⌫ = [⌫1, . . . , ⌫m]>. We further denote C 2 Rn⇥m as
the cost matrix with Cij being the cost of transporting mass from ai to bj . An OT problem can be
formulated as

�⇤ = argmin
��0

hC,�i, s.t., �1m = µ, �>1n = ⌫, (1)

where 1 denotes a vector of ones. The optimal �⇤ is referred to as the optimal transport plan.

In order to parameterize the top-k operator using the optimal transport plan �⇤, we set the support
A = X and B = {0, 1} in (1), with µ, ⌫ defined as

µ = 1n/n, ⌫ = [k/n, (n� k)/n]>.

We take the cost to be the squared Euclidean distance, i.e., Ci1 = x
2

i and Ci2 = (xi � 1)2 for
i = 1, . . . , n. We then establish the relationship between the output A of the top-k operator and �⇤.
Proposition 1. Consider the setup in the previous paragraph. Without loss of generality, we assume
X has no duplicates. Then the optimal transport plan �⇤ of (1) is

�⇤
�i,1 =

⇢
1/n, if i  k,

0, if k + 1  i  n.
, �⇤

�i,2 =

⇢
0, if i  k,

1/n, if k + 1  i  n,
(2)

with � being the sorting permutation, i.e., x�1 < x�2 < · · · < x�n . Moreover, we have

A = n�⇤
· [1, 0]>. (3)

The proof can be found in Appendix A. Figure 3(a) illustrates the corresponding optimal transport
plan for parameterizing the top-5 operator applied to a set of 7 elements. As can be seen, the mass
from the 5 closest points is transported to 0, and meanwhile the mass from the 2 remaining points is
transported to 1. Therefore, the optimal transport plan exactly indicates the top-5 elements.

2.2 Smoothing by Entropy Regularization
We next rule out the discontinuity of (1) to obtain a smoothed approximation to the top-k operator.

Specifically, we employ entropy regularization to the OT problem (1):

�⇤,✏ = argmin
��0

hC,�i+ ✏H(�), s.t., �1m = µ, �>1n = ⌫, (4)

where h(�) =
P

i,j �ij log�ij is the entropy regularizer. We define A
✏ = n�⇤,✏

· [0, 1]> as a
smoothed counterpart of output A in the standard top-k operator. Accordingly, SOFT top-k operator
is defined as the mapping from X to A

✏. We show that the Jacobian matrix of SOFT top-k operator
exists and is nonzero in the following theorem.
Theorem 1. For any ✏ > 0, SOFT top-k operator: X 7! A

✏ is differentiable, as long as the cost Cij

is differentiable with respect to xi for any i, j. Moreover, the Jacobian matrix of SOFT top-k operator
always has a nonzero entry for any X 2 Rn.

3



(a) ✏ = 10�3 (b) ✏ = 5⇥ 10�3 (c) ✏ = 10�2 (d) ✏ = 5⇥ 10�2

Figure 2: Color maps of �✏ (upper) and the corresponding scatter plots of values in A✏ (lower), where X
contains 50 standard Gaussian samples, and K = 5. The scatter plots show the correspondence of the input X
and output A✏.

(a) (b)

Figure 3: (a). Illustration of the OT plan with input X = [0.4, 0.7, 2.3, 1.9,�0.2, 1.4, 0.1]> and k = 5. We
set ⌫ = [ 57 ,

2
7 ]

>. In this way, 5 of the 7 scores align with 0, while {2.3, 1.9} align with 1. (b). Illustration for
sorted top-k with similar input and k = 2. We set ⌫ = [ 17 ,

1
7 ,

5
7 ]

> and B = [0, 1, 2]>. Then, the smallest score
�0.2 aligns with 0, the second smallest score 0.1 aligns with 1, and the rest of the scores align with 2.

The proof can be found in Appendix A. We remark that the entropic OT (4) is computationally more
friendly, since it allows the usage of first-order algorithms (Cuturi, 2013).

The Entropic OT introduces bias to the SOFT top-k operator. The following theorem shows that such
a bias can be effectively controlled.
Theorem 2. Given a distinct sequence X and its sorting permutation �, with Euclidean square cost
function, for the proposed top-k solver we have

k�⇤,✏
� �⇤

kF 
✏(lnn+ ln 2)

n(x�k+1 � x�k)
.

Therefore, with a small enough ✏, the output vector A✏ can well approximate A, especially when
there is a large gap between x�k and x�k+1 . Besides, Theorem 2 suggests a trade-off between the
bias and regularization of SOFT top-k operator. See Section 7 for a detailed discussion.

2.3 Sorted SOFT Top-k Operator
In some applications, we not only need to distinguish the top-k elements, but also sort the top-k
elements. For example, in image retrieval (Gordo et al., 2016), the retrieved k images are expected to
be sorted. Our SOFT top-k operator can be extended to the sorted SOFT top-k operator.

Analogous to the derivation of the SOFT top-k operator, we first parameterize the sorted top-k
operator in terms of an OT problem. Specifically, we keep A = X and µ = 1n/n and set

B = [0, 1, 2, · · · , k]>, and ⌫ = [1/n, · · · , 1/n, (n� k)/n]>.

One can check that the optimal transport plan of the above OT problem transports the smallest element
in A to 0 in B, the second smallest element to 1, and so on so forth. This in turn yields the sorted
top-k elements. Figure 3(b) illustrates the sorted top-2 operator and its optimal transport plan.

The sorted SOFT top-k operator is obtained similarly to SOFT top-k operator by solving the entropy
regularized OT problem. We can show that the sorted SOFT top-k operator is differentiable and the
bias can be properly controlled.

3 Efficient Implementation

Algorithm 1 SOFT Top-k

Require: X = [xi]ni=1
, k, ✏, L

Y = [y1, y2]> = [0, 1]>

µ = 1n/n, ⌫ = [k/n, (n�K)/n]>

Cij = |xi � yj |
2
, Gij = e

�Cij
✏ , q = 12/2

for l = 1, · · · , L do
p = µ/(Gq), q = ⌫/(G>

p)
end for
� = diag(p)�G� diag(q)
A

✏ = n� · [0, 1]>

We now present our implementation of SOFT top-k
operator, which consists of 1) computing A

✏ from
X and 2) computing the Jacobian matrix of A✏ with
respect to X . We refer to 1) as the forward pass and
2) as the backward pass.

Forward Pass The forward pass from X to A
✏ can

be efficiently computed using Sinkhorn algorithm.
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Specifically, we run iterative Bregman projections
(Benamou et al., 2015), where at the `-th iteration,
we update

p
(`+1) =

µ

Gq(`)
, q

(`+1) =
⌫

G>p(`+1)
.

Here, the division is entrywise, q(0) = 12/2, and G 2 Rn⇥m with Gij = e
�Cij

✏ . Denote p
⇤ and q

⇤

as the stationary point of the Bregman projections. The optimal transport plan �⇤,✏ can be obtained
by �⇤,✏

ij = p
⇤
iGijq

⇤
j . The algorithm is summarized in Algorithm 1.

Backward Pass. Given A
✏, we compute the Jacobian matrix dA✏

dX using implicit differentiation and
differentiable programming techinques. Specifically, the Lagrangian function of Problem (4) is

L = hC,�i � ⇠
>(�1m � µ)� ⇣

>(�>1n � ⌫) + ✏H(�),
where ⇠ and ⇣ are dual variables. The KKT condition implies that �⇤,✏ can be formulated using the
optimal dual variables ⇠⇤ and ⇣

⇤ as (Sinkhorn’s scaling theorem, Sinkhorn and Knopp (1967)),

�⇤,✏ = diag(e
⇠⇤
✏ )e�

C
✏ diag(e

⇣⇤
✏ ). (5)

Substituting (5) into the Lagrangian function, we obtain

L(⇠⇤, ⇣⇤;C) = (⇠⇤)>µ+ (⇣⇤)>⌫ � ✏

n,mX

i,j=1

e
�

Cij�⇠⇤i �⇣⇤j
✏ .

We now compute the gradient of ⇠⇤ and ⇣
⇤ with respect to C, such that we can obtain d�⇤,✏

/dC by
the chain rule applied to (5). Denote !

⇤ = [(⇠⇤)>, (⇣⇤)>]>, and �(!⇤;C) = @L(!⇤;C)/@!⇤. At
the optimal dual variable !

⇤, the KKT condition immediately yields
�(!⇤;C) ⌘ 0.

By the chain rule, we have
d�(!⇤;C)

dC
=

@�(!⇤;C)

@C
+

@�(!⇤;C)

@!⇤
d!

⇤

dC
= 0.

Rearranging terms, we obtain
d!

⇤

dC
= �

✓
@�(!⇤;C)

@!⇤

◆�1
@�(!⇤;C)

@C
. (6)

Combining (5), (6), Cij = (xi � yj)2, and A
✏ = n�⇤,✏

· [1, 0]>, the Jacobian matrix dA
✏
/dX can

then be derived using the chain rule again.

The detailed derivation and the corresponding algorithm for computing the Jacobian matrix can
be found in Appendix B. The time and space complexity of the derived algorithm is O(n) and
O(kn) for top-k and sorted top-k operators, respectively. We also include a Pytorch Paszke et al.
(2017) implementation of the forward and backward pass in Appendix B by extending the autograd
automatic differentiation package.

4 k-NN for Image Classification

The proposed SOFT top-k operator enables us to train an end-to-end neural network-based kNN
classifier. Specifically, we receive training samples {Zi, yi}

N
i=1

with Zi being the input data and
yi 2 {1, . . . ,M} the label from M classes. During the training, for an input data Zj (also known as
the query sample), we associate a loss as follows. Denote Z\j as all the input data excluding Zj (also
known as the template samples). We use a neural network f✓ parameterized by ✓ to extract features
from all the input data, and measure the pairwise Euclidean distances between the extracted features
of Z\j and that of Zj . Denote X\j,✓ as the collection of these pairwise distances, i.e.,

X\j,✓ = {kf✓(Z1)� f✓(Zj)k2, ..., kf✓(Zj�1)� f✓(Zj)k2,

kf✓(Zj+1)� f✓(Zj)k2, ..., kf✓(ZN )� f✓(Zj)k2},
where the subscript of X emphasizes its dependence on ✓.

Next, we apply SOFT top-k operator to X\j,!, and the returned vector is denoted by A
✏
\j,✓. Let

Y\j 2 RM⇥(N�1) be the matrix by concatenating the one-hot encoding of labels yi for i 6= j as
columns, and Yj 2 RM the one-hot encoding of the label yj . The loss of Zj is defined as

`(Zj , yj) = Y
>
j Y

>
\jA

✏
\j,✓.
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Consequently, the training loss is L({Zj , yj}
N
j=1

) = 1

N

PN
j=1

`(Zj , yj). Recall that the Jacobian
matrix of A✏

\j,✓ exists and has no zero entries. This allows us to utilize stochastic gradient descent al-
gorithms to update ✓ in the neural network. Moreover, since N is often large, to ease the computation,
we randomly sample a batch of samples to compute the stochastic gradient at each iteration.

In the prediction stage, we use all the training samples to obtain a predicted label of a query sample.
Specifically, we feed the query sample into the neural network to extract its features, and compute
pairwise Euclidean distances to all the training samples. We then run the standard kNN algorithm
(Hastie et al., 2009) to obtain the predicted label.

Figure 4: Illustration of the entire forward pass
of kNN.

Table 1: Classification accuracy of kNN.
Algorithm MNIST CIFAR10
kNN 97.2% 35.4%
kNN+PCA 97.6% 40.9%
kNN+AE 97.6% 44.2%
kNN+pretrained CNN 98.4% 91.1%
RelaxSubSample 99.3% 90.1%
kNN+NeuralSort 99.5% 90.7%
kNN+Cuturi et al. (2019) 99.0% 84.8%
kNN+Softmax k times 99.3% 92.2%
CE+CNN (He et al., 2016) 99.0% 91.3%
kNN+SOFT Top-k 99.4% 92.6%

4.1 Experiment

We evaluate the performance of the proposed neural network-based kNN classifier on two benchmark
datasets: MNIST dataset of handwritten digits (LeCun et al., 1998) and the CIFAR-10 dataset of
natural images (Krizhevsky et al., 2009) with the canonical splits for training and testing without
data augmentation. We adopt the coefficient of entropy regularizer ✏ = 10�3 for MNIST dataset and
✏ = 10�5 for CIFAR-10 dataset. Further implementation details can be found in Appendix C.

Baselines. We consider several baselines:

1. Standard kNN method.
2. Two-stage training methods: we first extract the features of the images, and then perform kNN on

the features. The feature is extracted using Principle Component Analysis (PCA, top-50 principle
components is adopted), autoencoder (AE), or a pretrained Convolutional Neural Network (CNN)
using the Cross-Entropy (CE) loss.

3. Differentiable ranking + kNN: This includes NeuralSort (Grover et al., 2019) and Cuturi et al.
(2019). Cuturi et al. (2019) is not directly applicable, which requires adaptations (see Appendix C).

4. Stochastic kNN with Gumbel top-k relaxation (Xie and Ermon, 2019): The model is referred as
RelaxSubSample.

5. Softmax Augmentation for smoothed top-k operation: A combination of k softmax operation is
used to replace the top-k operator. Specifically, we recursively perform softmax on X for k times
(Similar idea appears in Plötz and Roth (2018)). At the k-th iteration, we mask the top-(k � 1)
entries with negative infinity.

6. CNNs trained with CE without any top-k component4.
For the pretrained CNN and CNN trained with CE, we adopt identical neural networks as our method.
Results. We report the classification accuracies on the standard test sets in Table 1. On both datasets,
the SOFT kNN classifier achieves comparable or better accuracies.

5 Beam Search for Machine Translation

Beam search is a popular method for the inference of Neural Language Generation (NLG) models,
e.g., machine translation models. Here, we propose to incorporate beam search into the training

procedure based on SOFT top-k operator.

4Our implementation is based on github.com/pytorch/vision.git
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5.1 Misalignment between Training and Inference
Denote the predicted sequence as y = [y(1), · · · , y(T )], and the vocabularies as {z1, · · · , zV }.
Consider a recurrent network based NLG model. The output of the model at the t-th decoding step
is a probability simplex [P(y(t) = zi|h

(t)]Vi=1
, where h

(t) is the hidden state associated with the
sequence y

(1:t) = [y(1), ..., y(t)].

Beam search recursively keeps the sequences with the k largest likelihoods, and discards the rest.
Specifically, at the (t+ 1)-th decoding step, we have k sequences ey(1:t),i’s obtained at the t-th step,
where i = 1, ..., k indexes the sequences. The likelihood of ey(1:t),i is denoted by Ls(ey(1:t),i). We
then select the next k sequences by varying i = 1, . . . , k and j = 1, . . . , V :

{ey(1:t+1),`
}
k
`=1

= arg top-k[ey(1:t),i,zj ]Ls([ey(1:t),i, zj ]).

where Ls([ey(1:t),i, zj ]) is the likelihood of the sequence appending zj to ey(1:t),i defined as

Ls([ey(1:t),i, zj ])=P(y(t+1)=zj |h
(t+1),i)Ls(ey(1:t),i), (7)

and h
(t+1),i is the hidden state generated from ey(1:t),i. Note that zj’s and ey(1:t),i’s together yield V k

choices. Here we abuse the notation: ey(1:t+1),` denotes the `-th selected sequence at the (t+ 1)-th
decoding step, and is not necessarily related to ey(1:t),i at the t-th decoding step, even if i = `.

For t = 1, we set ey(1) = zs as the start token, Ls(y(1)) = 1, and h
(1) = he as the output of the

encoder. We repeat the above procedure, until the end token is selected or the pre-specified max
length is reached. At last, we select the sequence y(1:T ),⇤ with the largest likelihood as the prediction.

Moreover, the most popular training procedure for NLG models directly uses the so-called
“teacher forcing” framework. As the ground truth of the target sequence (i.e., gold sequence)
ȳ = [ȳ(1), · · · , ȳ(T )] is provided at the training stage, we can directly maximize the likelihood

Ltf =
TY

t=1

P(y(t) = ȳ
(t)
|h

(t)(ȳ(1:t-1))). (8)

As can be seen, such a training framework only involve the gold sequence, and cannot take the
uncertainty of the recursive exploration of the beam search into consideration. Therefore, it yields a
misalignment between model training and inference (Bengio et al., 2015), which is also referred as
exposure bias (Wiseman and Rush, 2016).

5.2 Differential Beam Search with Sorted SOFT Top-k
To mitigate the aforementioned misalignment, we propose to integrate beam search into the training
procedure, where the top-k operator in the beam search algorithm is replaced with our proposed
sorted SOFT top-k operator proposed in Section 2.3.

Specifically, at the (t + 1)-th decoding step, we have k sequences denoted by E
(1:t),i, where

i = 1, ..., k indexes the sequences. Here E
(1:t),i consists of a sequence of D-dimensional vectors,

where D is the embedding dimension. We are not using the tokens, and the reason behind will be
explained later. Let eh(t),i denote the hidden state generated from E

(1:t),i. We then consider

X
(t) = {�Ls([E

(1:t),i
, wj ]), j = 1, ..., V, i = 1, ..., k},

where Ls(·) is defined analogously to (7), and wj 2 RD is the embedding of token zj .

Recall that ✏ is the smoothing parameter. We then apply the sorted SOFT top-k operator to X
(t) to

obtain {E
(1:t+1),`

}
k
`=1

, which are k sequences with the largest likelihoods. More precisely, the sorted
SOFT top-k operator yields an output tensor A(t),✏

2 RV⇥k⇥k, where A
(t),✏
ji,` denotes the smoothed

indicator of whether [E(1:t),i
, wj ] has a rank `. We then obtain

E
(1:t+1),` =

h
E

(1:t),r
,

VX

j=1

kX

i=1

A
(t),✏
ji,` wj

i
, (9)

where r denotes the index i (for E(1:t),i’s) associated with the index ` (for E(1:t+1),`’s). This is why
we use vector representations instead of tokens: this allows us to compute E

(t+1),` as a weighted
sum of all the word embeddings [wj ]Vj=1

, instead of discarding the un-selected words.

7



Accordingly, we generate the k hidden states for the (t+ 1)-th decoding step:

eh(t),` =
VX

j=1

kX

i=1

A
(t),✏
ji,` h

(t),i
, (10)

where h
(t),i is the hidden state generated by the decoder based on E

(1:t),i.

After decoding, we select the sequence with largest likelihood E
(1:T ),⇤, and maximize the likelihood

as follows,

LSOFT =
TY

t=1

P(y(t) = ȳ
(t)
|eh(t-1),⇤(E(1:t-1),⇤)).

We provide the sketch of training procedure in Algorithm 2, where we denote logit(t),i as
[logP(y(t+1) = !j |

eh(t),i(E(1:t),i))]Vj=1
, which is part of the output of the decoder. More tech-

nical details (e.g., backtracking algorithm for finding the index r in (9)) are provided in Appendix
C.

Note that integrating the beam search into training essentially yields a very large search space
for the model, which is not necessarily affordable sometimes. To alleviate this issue, we further
propose a hybrid approach by combining the teacher forcing training with beam search-type training.
Specifically, we maximize the weighted likelihood defined as follows,

Lfinal = ⇢Ltf + (1� ⇢)LSOFT,

where ⇢ 2 (0, 1) is referred to as the “teaching forcing ratio”. The teaching forcing loss Ltf can help
reduce the search space and improve the overall performance.

5.3 Experiment

Algorithm 2 Beam search training with SOFT Top-k
Require: Input sequence s, target sequence ȳ; embedding

matrix W 2 RV⇥D; max length T ; k; regularization
coefficient ✏; number of Sinkhorn iteration L

eh(1)

i = he = Encoder(s), E(1),i = ws

for t = 1, · · · , T � 1 do
for i = 1, · · · , k do

logit(t),i, h(t),i = Decoder(E(t),i
,eh(t),i)

logLs([E(1:t),i
, wj ]) = logLs(E(1:t),i)+logit(t),ij

X
(t) = {� logLs([E(1:t),i

, wj ]) | j = 1, · · · , V }

end for
A

(t),✏ = Sorted-SOFT-Top-k(X (t)
, k, ✏, L)

Compute E
(t+1),`, eh(t+1),` as in (9) and (10)

end for
Compute rLSOFT and update the model

We evaluate our proposed beam
search + sorted SOFT top-k training
procedure using WMT2014 English-
French dataset. We adopt beam size
5, teacher forcing ratio ⇢ = 0.8, and
✏ = 10�1. For detailed settings of
the training procedure, please refer to
Appendix C.

We reproduce the experiment in Bah-
danau et al. (2014), and run our pro-
posed training procedure with the
identical data pre-processing proce-
dure and the LSTM-based sequence-
to-sequence model. Different from
Bahdanau et al. (2014), here we also
preprocess the data with byte pair en-

coding (Sennrich et al., 2015).

Results. As shown in Table 2, the proposed SOFT beam search training procedure achieves an
improvement in BLEU score of approximately 0.9. We also include other LSTM-based models for
baseline comparison.

Ablation study. We replace the SOFT top-k operator with a vanilla top-k operator, i.e., we ignore the
gradient of the top-k operation. The obtained BLEU score is 35.84, which suggest a) our SOFT top-k
operator and b) incorporating beam search into training both contribute to the improved performance.

6 Related Work
We parameterize the top-k operator as an optimal transport problem, which shares the same spirit as
Cuturi et al. (2019). Specifically, Cuturi et al. (2019) formulate the ranking and sorting problems as
OT problems. Ranking is more complicated than identifying the top-k elements, since one needs to
align different ranks to corresponding elements. Therefore, the algorithm complexity per iteration
for ranking whole n elements is O(n2). Cuturi et al. (2019) also propose an OT problem for finding
the ⌧ -quantile in a set of n elements and the algorithm complexity reduces to O(n). Top-k operator
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essentially finds all the elements more extreme than the (n � k)/n-quantile, and our proposed
algorithm achieves the same complexity O(n) per iteration. The difference is that top-k operator
returns the top-k elements in a given input set, while finding a quantile only yields a certain threshold.

Table 2: BLEU on WMT’14 with single LSTM.
Algorithm BLEU
Luong et al. (2014) 33.10
Durrani et al. (2014) 30.82
Cho et al. (2014) 34.54
Sutskever et al. (2014) 30.59
Bahdanau et al. (2014) 28.45
Jean et al. (2014) 34.60
Bahdanau et al. (2014) (Our implementation) 35.38
Beam Search + Sorted SOFT Top-k 36.27

Gumbel-Softmax trick (Jang et al.,
2016) can also be utilized to derive a
continuous relaxation of the top-k op-
erator. Specifically, Kool et al. (2019)
adapted such a trick to sample k el-
ements from n choices, and Xie and
Ermon (2019) further applied the trick
to stochastic kNN, where neural net-
works are used to approximating the
sorting operator. However, as shown
in our experiments (see Table 1), the
performance of stochastic kNN is not
as good as deterministic kNN.

Our SOFT beam search training procedure is inspired by several works that incorporate some of
the characteristics of beam search into the training procedure (Wiseman and Rush, 2016; Goyal
et al., 2018; Bengio et al., 2015). Specifically, Wiseman and Rush (2016) and Goyal et al. (2018)
both address the exposure bias issue in beam search. Wiseman and Rush (2016) propose a new
loss function in terms of the error made during beam search. This mitigates the misalignment of
training and testing in beam search. Later, Goyal et al. (2018) approximates the top-k operator using
k softmax operations (This method is described and compared to our proposed method in 4). Such an
approximation allows an end-to-end training of beam search. Besides, our proposed training loss
Lfinal is inspired by Bengio et al. (2015), which combines teacher forcing training procedure and
greedy decoding, i.e., beam search with beam size 1.

7 Discussion
Relation to automatic differentiation. We compute the
Jacobian matrix of SOFT top-k operator directly in the
backward pass. The OT plan can be obtained by the
Sinkhorn algorithm (Algorithm 1), which is iterative and
each iteration only involves multiplication and addition.
Therefore, we can also apply automatic differentiation
(auto-diff) to compute the Jacobian matrix. Specifically,
we denote �` as the transport plan at the t-th iteration
of Sinkhorn algorithm. The update of �` can be written
as �`+1 = T (�`), where T denotes the update of the
Sinkhorn algorithm. In order to apply auto-diff, we need
to store all the intermediate states, e.g., p, q,G in each it-
eration, as defined in Algorithm 1 at each iteration. This
requires a huge memory size proportional to the number of
iterations of the algorithm. In contrast, our backward pass
allows us to save memory.

Figure 5: Visualization of MNIST data
based on features extracted by the neural
network-based k-NN classifier trained by
our proposed method in Section 4.

Bias and regularization trade-off. Theorem 2 suggests a trade-off between the regularization and
bias of SOFT top-k operator. Specifically, a large ✏ has a strong smoothing effect on the entropic OT
problem, and the corresponding entries of the Jacobian matrix are neither too large nor too small.
This eases the end-to-end training process. However, the bias of SOFT top-k operator is large, which
can deteriorate the model performance. On the contrary, a smaller ✏ ensures a smaller bias. Yet the
SOFT top-k operator is less smooth, which in turn makes the end-to-end training less efficient.

On the other hand, the bias of SOFT top-k operator also depends on the gap between x�k+1 and
x�k . In fact, such a gap can be viewed as the signal strength of the problem. A large gap implies
that the top-k elements are clearly distinguished from the rest of the elements. Therefore, the bias
is expected to be small since the problem is relatively easy. Moreover, in real applications such as
neural network-based kNN classification, the end-to-end training process promotes neural networks
to extract features that exhibit a large gap (as illustrated in Figure 5). Hence, the bias of SOFT top-k
operator can be well controlled in practice.
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8 Broader Impact

This paper makes a significant contribution to extending the frontier of the end-to-end training of
compositional models. To the best of our knowledge, our method is the first work targeting at efficient
end-to-end training with top-k operation.

We remark that our proposed SOFT top-k operator can be integrated into many existing machine
learning methods, and has a great potential to become a standard routine in various applications such
as computer vision, natural language processing, healthcare, and computational social science.
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