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Abstract

We study deep neural networks (DNNs) trained on natural image data with entirely
random labels. Despite its popularity in the literature, where it is often used to study
memorization, generalization, and other phenomena, little is known about what
DNNs learn in this setting. In this paper, we show analytically for convolutional
and fully connected networks that an alignment between the principal components
of network parameters and data takes place when training with random labels.
We study this alignment effect by investigating neural networks pre-trained on
randomly labelled image data and subsequently fine-tuned on disjoint datasets with
random or real labels. We show how this alignment produces a positive transfer:
networks pre-trained with random labels train faster downstream compared to train-
ing from scratch even after accounting for simple effects, such as weight scaling.
We analyze how competing effects, such as specialization at later layers, may hide
the positive transfer. These effects are studied in several network architectures,
including VGG16 and ResNet18, on CIFAR10 and ImageNet.

1 Introduction

Over-parameterization helps deep neural networks (DNNs) to generalize better in real-life appli-
cations [6, 20, 24, 45], despite providing them with the capacity to fit almost any set of random
labels [46]. This phenomenon has spawned a growing body of work that aims at identifying funda-
mental differences between real and random labels, such as in training time [3, 16, 17, 47], sharpness
of the minima [23, 34], dimensionality of layer embeddings [2, 9, 29], and sensitivity [3, 35], among
other complexity measures [4, 5, 33, 34]. While it is obvious that over-parameterization helps DNNs
to interpolate any set of random labels, it is not immediately clear what DNNs learn when trained in
this setting. The objective of this study is to provide a partial answer to this question.

There are at least two reasons why answering this question is of value. First, in order to understand
how DNNs work, it is imperative to observe how they behave under “extreme” conditions, such as
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Figure 1: Pre-training on random labels may exhibit both positive (1 & 2) and negative (3 & 4)
effects on the downstream fine-tuning depending on the setup. VGG16 models are pre-trained on
CIFAR10 examples with random labels and subsequently fine-tuned on the fresh CIFAR10 examples
with either real labels (1 & 3) or 10 random labels (2 & 4) using different hyperparameters.

when trained with labels that are entirely random. Since the pioneering work of [46], several works
have looked into the case of random labels. What distinguishes our work from others is that previous
works aimed to demonstrate differences between real and random labels, highlighting the negative
side of training on random labels. By contrast, this work provides insights into what properties of the
data distribution DNNs learn when trained on random labels.

Second, observing DNNs trained on random labels can explain phenomena that have been previously
noted, but were poorly understood. In particular, by studying what is learned on random labels,
we offer new insights into: (1) why DNNs exhibit critical stages [1, 14], (2) how earlier layers in
DNNs generalize while later layers specialize [2, 3, 8, 44], (3) why the filters learned by DNNs in
the first layer seem to encode some useful structure when trained on random labels [3], and (4) why
pre-training on random labels can accelerate training in downstream tasks [36]. We show that even
when controlling for simple explanations like weight scaling (which was not always accounted for
previously), such curious observations continue to hold.

The main contributions of this work are:

• We investigate DNNs trained with random labels and fine-tuned on disjoint image data with real or
random labels, demonstrating unexpected positive and negative effects.

• We provide explanations of the observed effects. We show analytically for convolutional and fully
connected networks that an alignment between the principal components of the network parameters
and the data takes place. We demonstrate experimentally how this effect explains why pre-training
on random labels helps. We also show why, under certain conditions, pre-training on random labels
can hurt the downstream task due to specialization at the later layers.

• We conduct experiments verifying that these effects are present in several network architectures,
including VGG16 [39] and ResNet18-v2 [19], on CIFAR10 [25] and ImageNet ILSVRC-2012 [11],
across a range of hyper-parameters, such as the learning rate, initialization, number of training
iterations, width and depth.

In this work, we do not use data augmentation as it provides a (weak) supervisory signal. Moreover,
we use the terms “positive” and “negative” to describe the impact of what is learned with random labels
on the downstream training, such as faster/slower training. The networks reported throughout the
paper are taken from a big set of experiments that we conducted using popular network architectures,
datasets, and wide hyperparameter ranges. Experimental details are provided in Appendix A and B.
We use boldface for random variables, small letters for their values, and capital letters for matrices.

1.1 Motivating example

Figure 1 shows learning curves of the VGG16 architecture [39] pre-trained on 20k CIFAR10 exam-
ples [25] with random labels (upstream) and fine-tuned on a disjoint subset of 25k CIFAR10 examples
with either random or real labels (downstream). We observe that in this setup, pre-training a neural
network on images with random labels accelerates training on a second set of images, both for real
and random labels (positive effect). However, in the same setting but with a different initialization
scale and number of random classes upstream, a negative effect can be observed downstream: training
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becomes slower. We also observe a lower final test accuracy for real labels in both cases, which we
are not explicitly investigating in this paper (and which has been observed before, e.g. in [14]).

The fact that pre-training on random labels can accelerate training downstream has been observed
previously, e.g. in [36]. However, there is a “simple” property that can explain improvements in the
downstream task: Because the cross-entropy loss is scale-sensitive, training the network tends to
increase the scale of the weights [34], which can increase the effective learning rate of the downstream
task (see the gray curve in Figure 5). To eliminate this effect, in all experiments we re-scale the
weights of the network after pre-training to match their `2 norms at initialization. We show that even
after this correction, pre-training on random labels positively affects the downstream task. This holds
for both VGG16 and ResNet18 trained on CIFAR10 and ImageNet (see Appendix B).

We show experimentally that some of the positive transfer is due to the second-order statistics of
the network parameters. We prove that when trained on random labels, the principal components
of weights at the first layer are aligned with the principal components of data. Interestingly, this
alignment effect implies that the model parameters learned at the first layer can be summarized by a
one-dimensional mapping between the eigenvalues of the data and the eigenvalues of the network
parameters. We study these mappings empirically and raise some new open questions. We also
analyze how, under certain conditions, a competing effect of specialization at the later layers may
hide the positive transfer of pre-training on random labels, which we show to be responsible for the
negative effect demonstrated in Figure 1.

To the best of our knowledge, the alignment effect has not been established in the literature before.
This paper proves the existence of this effect and studies its implications. Note that while these effects
are established for training on random labels, we also observe them empirically for real labels.

1.2 Related work

A large body of work in the literature has developed techniques for mitigating the impact of partial
label noise, such as [47, 21, 32, 22, 26, 27, 41]. Our work is distinct from this line of literature
because we focus on the case of purely random labels.

The fact that positive and negative learning takes place is related to the common observation that earlier
layers in DNNs learn general-purpose representations whereas later layers specialize [2, 3, 8, 44].
For random labels, it has been noted that memorization happens at the later layers, as observed by
measuring the classification accuracy using activations as features [8] or by estimating the intrinsic
dimensionality of the activations [2]. We show that specialization at the later layers has a negative
effect because it exacerbates the inactive ReLU phenomenon. Inactive ReLUs have been studied in
previous works, which suggest that this effect could be mitigated by either increasing the width or
decreasing the depth [28], using skip connections [13], or using other activation functions, such as
the leaky ReLU [30, 18] or the exponential learning unit (ELU) [7].

For transfer learning, it has been observed that pre-training on random labels can accelerate training
on real labels in the downstream task [36]. However, prior works have not accounted for simple
effects, such as the change in first-order weight statistics (scaling), which increases when using the
scale-sensitive cross-entropy loss [34]. Changing the norm of the weights alters the effective learning
rate. [37] investigated transfer from ImageNet to medical data and observed that the transfer of
first-order weight statistics provided faster convergence. We show that even when taking the scaling
effect into account, additional gains from second-order statistics are identified.

Other works have considered PCA-based convolutional filters either as a model by itself without
training [15, 10], as an initialization [38, 42], or to estimate the dimensionality of intermediate
activations [9, 31]. Note that our results suggest an initialization by sampling from the data covariance
instead of initializing the filters directly using the principal axes of the data. Ye et al. [43] show that
a “deconvolution” of data at input and intermediate layers can be beneficial. This deconvolution
corresponds to a whitening of the data distribution, therefore aligning data with an isotropic weight
initialization, which is related to a positive effect of alignment we observe in this paper.

In addition, there is a large body of work on unsupervised learning. Among these, the Exemplar-CNN
method [12] can be seen as the limiting case of using random labels with infinitely many classes (one
label per image) and large-scale data augmentation. In our study we do not use data augmentation
since it provides a supervisory signal to the neural network that can cause additional effects.
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2 Covariance matrix alignment between network parameters and data

Returning to the motivating example in Figure 1, we observe that pre-training on random labels can
improve training in the downstream tasks for both random and real labels. This improvement is in the
form of faster training. In this section, we explain this effect. We start by considering the first layer
in the neural network, and extend the argument to later layers in Section 2.5.

2.1 Preliminaries

Let D be the probability distribution over the instance space X ⊆ Rd and Y be a finite target set. We
fix a network architecture, a loss function, a learning rate/schedule, and a distribution of weights for
random initialization. Then, “training on random labels” corresponds to the following procedure:
We randomly sample i.i.d. instances x1, ..., xN ∼ D, and i.i.d. labels y1, ..., yN ∈ Y independently
of each other. We also sample the initial weights of the neural network, and train the network on
the data {(xi, yi)}i=1,...,N for T training iterations using stochastic gradient descent (SGD). During
training, the weights are random variables due to the randomness of the initialization and the training
sample. Hence, we can speak of their statistical properties, such as their first and second moments.

In the following, we are interested in layers that are convolutional or fully connected. We assume
that the output of the k-th neuron in the first layer can be written as: fk(x) = g(〈wk, x〉 + bk)
for some activation function g. We write µx = E[x] and observe that since the covariance matrix
Σx = E[(x − µx) · (x − µx)T ] is symmetric positive semi-definite, there exists an orthogonal
decomposition Rd = V1 ⊕ ...⊕ Vr such that Vi are eigenspaces to Σx with distinct eigenvalues σ2

i .

Definition 1 (Alignment). A symmetric matrix A is said to be aligned with a symmetric matrix B if
each eigenspace of B is a subset of an eigenspace of A. If A is aligned with B, we define for each
eigenvalue of B with eigenspace V ⊆ Rd the corresponding eigenvalue of A as the one belonging
to the eigenspace that contains V .

If A and B’s eigenspaces are all of dimension 1 (which is true except for a Lebesgue null set in
the space of symmetric matrices), “A is aligned with B” becomes equivalent to the assertion that
they share the same eigenvectors. However, the relation is not symmetric in general (e.g. only scalar
multiples of the identity matrix Id are aligned with Id, but Id is aligned with any symmetric matrix).

2.2 Alignment for centered Gaussian inputs

Proposition 1. Assume the instances x are drawn i.i.d. from N (0,Σx) and the initial weights in
the first layer are drawn from an isotropic distribution (e.g. the standard Gaussian). Let w ∈ Rd

be a random variable whose value is drawn uniformly at random from the set of weights in the first
layer after training using SGD with random labels (see Section 2.1). Then: (1) E[w] = 0 and (2)
Σw = E[w · wT ] is aligned with the covariance matrix of data Σx.

Proof. The proof exploits symmetries: The input, initialization, and gradient descent are invariant
under the product of the orthogonal groups of the eigenspaces of Σx, so the distribution of weights
must have the same invariance properties. The full proof is given in Appendix C.

Proposition 1 says that independently of many settings (e.g. number of random labels, network
architecture, learning rate or schedule), the eigenspaces of Σw ∈ Rd×d are given by the eigenspaces
of Σx ∈ Rd×d. Hence, the only information needed to fully determine Σw is a function f that maps
the eigenvalues σ2

i of Σx to the corresponding eigenvalues τ2
i of Σw. Note that the argument of the

proof of Proposition 1 also apply to the case of a single training run of an infinitely wide network
in which the layers are given by weight vector distributions, see e.g. [40]. For finite networks, in
practice, one would only be able to approximate Σw based on several independent training runs.

Next, we present experimental evidence that first-layer alignment actually takes place, not just for
Gaussian input with random labels, but also in real image datasets with random labels, and even when
training on real labels using convolutional networks. The intuition behind this result for real labels is
that small patches in the image (e.g. 3× 3) are nearly independent of the labels. Before we do that,
we introduce a suitable measure of alignment that we use in the experiments.
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Figure 2: Plots of the misalignment scores of
the filters of the first layer in a two-layer neu-
ral network (256 convolutional filters, 64 fully-
connected nodes) when trained on CIFAR10
with either real or random labels. Throughout
training, misalignment scores between the fil-
ters of the first layer and the data remain very
small compared to those between filters and a
random orthonormal basis.
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Figure 3: Visualization of covariance alignment. LEFT: Random selection of WRN-28-4 first-layer
convolutional filters (CIFAR10, random labels). CENTER/RIGHT: Eigenvectors vw of Σw with largest
eigenvalues (rank in column ‘#’) and eigenvectors vx of Σx with 〈vx, vw〉 > 0.4. CENTER: Cases
where one vx matches. RIGHT: Cases where two vx and their weighted combination vx match.

Definition 2. For two positive definite matrices A,B, the “misalignment” M(A,B) is defined as:

M(A,B) := inf
Σ�0 aligned with A

{
1
2 tr(Σ−1B +B−1Σ)− d

}
(1)

The rationale behind this definition of misalignment is presented in Appendix D. In particular, it can
be shown that for any A,B � 0, we have M(A,B) ≥ 0 with equality if and only if B is aligned
with A. In addition, M(A,B) is continuous in B and satisfies desirable equivariance and invariance
properties and can be computed in closed form by M(A,B) + d =

∑r
i=1

√
tr(B|Vi

) · tr(B−1|Vi
)

where V1 ⊕ ...⊕ Vr is the orthogonal decomposition of Rd into eigenspaces of A, and B|Vi is the
linear map Vi → Vi, v 7→ pri(B(v)) with pri the orthogonal projection Rd → Vi.

Figure 2 displays the misalignment scores between the covariance of filters at the first layer with the
covariance of the data (patches of images). For comparison, the misalignment scores with respect
to some random orthonormal basis are plotted as well. As predicted by Proposition 1, the weight
eigenvectors stay aligned to the data eigenvectors but not to an arbitrary random basis.

For image data, we can also visualize the alignment of Σw to Σx. Figure 3 shows results based on 70
wide ResNet models [45] trained on CIFAR10 with random labels. For better visualization, we use a
5× 5 initial convolution here. The left part of the figure shows a random selection of some of the
70·64 convolution filters. From the filters we estimate Σw and compute the eigenvectors vw, then
visualize the ten vw with the largest eigenvalues. From the image data we compute the patch data
covariance Σx and its eigenvectors vx. We show the data eigenvectors for which the inner product
with the filter eigenvectors exceeds a threshold and the weighted sum vx of these if there are multiple
such vx. (See Appendix D.1. for why this is expected to occur as well.)

The visual similarity between the vw and the vx illustrates the predicted covariance alignment. Note
that this alignment is visually non-obvious when looking at individual filters as shown on the left.

2.3 Mapping of eigenvalues

As stated earlier, Proposition 1 shows that, on average, the first layer effectively learns a function
which maps each eigenvalue of Σx to the corresponding eigenvalue of Σw (see Definition 1). In this
section, we examine the shape of this function.
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Figure 4: LEFT: f(σ) for synthetic data N (0,diag(0.1, 0.2, . . . , 3.0)) in fully-connected neural
networks with two layers of size 256. The graph is approximately continuous and of a regular
structure: increasing, then decreasing. CENTER,RIGHT: f(σ) that results from training a 2-layer
convolutional network (256 filters followed by 64 fully-connected nodes) on CIFAR10 for random
(CENTER) and real labels (RIGHT) after 5, 10, 20, and 40 epochs (∼195 training iterations per epoch).

Since, in practice, we will only have approximate alignment due to the finiteness of the number of
inputs and weights, non–Gaussian inputs, and correlations between overlapping patches, we extend
the definition of f(σ). Such an extension is based on the following identity (2): For Σx ∈ Rd×d let vi
be an eigenvector of length 1 with eigenvalue σ2

i . If Σw is aligned with Σx, vi is also an eigenvector
of Σw and the corresponding eigenvalue τ2

i is:

τ2
i = vTi Σwvi = vT

i E[(w− µw)(w− µw)T ]vi = E[〈w− µw, vi〉2], (2)

which is the variance of the projection of the weight vectors onto the principal axis vi. We can take
this as the definition of τi in the general case, since this formulation can be applied even when we
have an imperfect alignment between the eigenspaces.
Definition 3. Given two positive definite symmetric d× d matrices Σx,Σw, such that Σw is aligned
with Σx or Σx has d distinct eigenvalues. Let σ2

1 , σ
2
2 , ... be the eigenvalues of Σx with corresponding

eigenvectors v1, v2, ... of length 1, we define the transfer function from Σx to Σw as

f : {σ1, σ2, ...} → R, σi 7→
√

vTi Σwvi (3)

In practice, the eigenvalues are distinct almost surely so every eigenvalue of the data has a unique
corresponding eigenvector of length 1 (up to ±) and the function f(σ) is well-defined.

Using this definition of f(σ), we can now look at the shape of the function for concrete examples.
Here, we train a simple fully connected network 50 times, collect statistics, and plot the corresponding
mapping between each eigenvalue σi of Σx with the corresponding τi in (2) (see Appendix E.1 for
more details). The result is shown in Figure 4 (LEFT). In general, f(σ) on synthetic data looks
smooth and exhibits a surprising structure: the function first increases before it decreases. Both the
decreasing part or the increasing part may be missing depending on the setting (e.g. dimensionality of
data and network architecture) but we observe the same shape of curves in all experiments. For real
data (CIFAR10), Figure 4 (CENTER/RIGHT) shows that the function f(σ) appears to have a similar
shape (increasing, then decreasing, but less smooth) for training with both real and random labels.

We interpret (without a formal argument) this surprisingly regular shape of f(σ) to be the result of two
effects: (1) Larger eigenvalues σi lead to larger effective learning rate in gradient descent, which leads
in turn to larger corresponding τi, hence the increasing part of f . (2) Very large eigenvalues τi would
dominate the output of the layer, masking the contribution of other components. Backpropagation
compensates for this effect to capture more of the input signal. This leads to the decreasing part of f
for higher σi. (See also Appendix E.1)

2.4 Covariance alignment and eigenvalue mapping explains positive transfer experimentally

To connect the alignment effect to the faster learning downstream, we conduct the following ex-
periment. Suppose that instead of pre-training on random labels, we sample from the Gaussian
approximation of the filters in the first layer that were trained on random labels. In a simple CNN on
CIFAR10, consisting of one convolutional and one fully connected layers, the gain in downstream task
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Figure 5: Training accuracy for learning real labels (LEFT) and random labels (MIDDLE, zoomed in:
RIGHT) on CIFAR10 with a simple CNN (one 3× 3 convolution, one hidden dense layer). Randomly
initializing the convolutional filters from a learned covariance reproduces the effect of pre-training
within measurement error (red and pink lines are almost indistinguishable in the right plot).

is almost fully recovered, as shown in Figure 5. The gray curves show the raw effect of pre-training,
but this contains the scaling effect. To eliminate the latter effect, we always re-scale the weights after
pre-training to match their `2 norm at initialization (using `1 norm gives similar results). Recovering
the transfer effect in this way implies that the positive transfer is mainly due to the second-order
statistics of the weights in the first layer, which, by Proposition 1, are fully described by the alignment
of principal components in combination with the shape of the function f(σ).

Note that the combined results presented up to here indicate that both analytically and experimentally
the following seems to be true: Given the training data of a neural network that is trained with random
labels, we can predict the second-order statistics of its first layer weights up to a one-dimensional
scaling function f(σ) of the eigenvalues and this function has a surprisingly regular shape. If further
investigation of f may lead us to understand its shape (which we regard as an interesting area of
research), we could predict these after-training statistics perfectly by only gathering the data statistics.

2.5 Deeper layers

So far, we have only discussed effects in the first layer of a neural network. However, in Figure 6
we show that transferring more of the layers from the model pre-trained on random labels improves
the effect considerably. We now turn to generalizing Section 2.4 to the multi-layer case, i.e. we
reproduce this effect with weight initializations computed from the input distribution.

For the first layer, we have seen that we can reproduce the effect of training on random labels by
randomly sampling weights according to the corresponding covariance matrix Σw, which in turn is
given by the same eigenvectors e1, ..., ed as the data covariance Σx, and a set of new eigenvalues
τ2
1 , ..., τ

2
d . So, if we can approximate the right (or good) eigenvalues, we can directly compute an

initialization that results in faster training in a subsequent task of learning real labels. See the first
two accuracy columns in Table 1 for results in an example case, and Appendix E for different choices
of τ1, ..., τd (it turns out different reasonable choices of the τi give all results very similar to Table 1).

We can then iterate this procedure also for the next (fully connected or convolutional) layers. Given
the filters for the earlier layers L1, ..., Lk−1, for each training image we can compute the output after
layer Lk−1, which becomes the input to the layer Lk. Treating this as our input data, we determine
the eigenvectors e1, e2, ... of the corresponding data covariance matrix. Then we compute the d most
important directions and use τ1e1, τ2e2, ..., τded (with the same assumed τ1, τ2, ... as before) as our
constructed filters. (Alternatively, we can sample according to the covariance matrix given by the
eigenvectors ei and eigenvalues τ2

1 , ..., τ
2
d , 0, ..., 0, which gives again essentially the same results,

compare Table 2 and 4 in Appendix E.3.)

Applying this recipe to a CNN with three convolutional layers and one fully connected layer, we
see that this indeed gives initializations that become better when applied to 1,2, and 3 layers, see
Table 1. The performance after applying this approach to all three convolutional layers matches the
performance of transferring the first three layers of a network trained on random labels. See Appendix
E.3 for details.
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Table 1: Training and test accuracy on sub-
sets of CIFAR10 of the initialization proce-
dure described in Section 2.5 on the layers
of a simple convolutional network. Both
training and test accuracies improve with
the number of layers that are initialized in
this way.

Convolutional layers sampled
Iterations Data {} {1} {1, 2} {1, 2, 3}

100 Train 0.31 0.34 0.38 0.41
Test 0.31 0.33 0.37 0.40

1000 Train 0.58 0.61 0.67 0.68
Test 0.53 0.55 0.56 0.56

Simple CNN VGG16 ResNet18
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Figure 6: Transferring more layers improves downstream performance. Simple CNN architecture with
3 convolutional layers (LEFT), VGG16 (CENTER), and ResNet18 (RIGHT) pre-trained on CIFAR10
examples with random labels and subsequently fined-tuned on 25k fresh CIFAR10 examples with
random labels. Lines with circular markers correspond to training from scratch. Error bars correspond
to min/max over 3 runs. Plots for fine-tuning with real labels available in the appendix.

3 Specializing neurons

Despite the alignment effect taking place at the earlier layers of the neural network when trained with
random labels, negative transfer is sometimes observed when fine-tuning on a downstream task as
shown in Figure 1. In this section, we show that this is likely due to a specialization at the later layer.

Figure 7 displays the distribution of neurons with respect to the number of held out images they
are activated by for the settings of Figure 1 that exhibited positive (top row) and negative (bottom
row) transfers. Comparing neural activations during initialization, end of pre-training, and end of
fine-tuning, we note that neural activations are markedly diminished in the negative transfer case
compared to the positive transfer case despite the fact that their neural activation distributions were
identical during initialization. In Appendix F, we show that the significant drop in neural activation
in the negative transfer case happens immediately after switching to the downstream task. As a
result, the effective capacity available downstream is diminished. By contrast, neural activations are
not severely impacted in the positive transfer setting. In Appendix F, we provide detailed figures
describing this phenomenon across all layers of VGG16, which reveal that such a specialization effect
becomes more prominent in the later layers compared to the earlier layers. In particular, Appendix F
shows that neural activations at the later layers can drop abruptly and permanently once the switch to
the downstream task takes place due to specialization, which can prevent the network for recovering
its fully capacity.

One way to mitigate the effect of the inactive ReLU units is to increase the width so that the capacity
remains sufficiently large for the downstream task. Figure 8 shows that increasing the width can
indeed mitigate the negative transfer effect. While increased width seems to have general performance
advantages [45], it seems to be also particularly useful in the case of transfer learning [24].

4 Concluding remarks

The objective of this paper is to answer the question of what neural networks learn when trained on
random labels. We provide a partial answer by proving an alignment effect of principal components
of network parameters and data and studying its implications, particularly for transfer learning.
One important consequence is that second-order statistics of the earlier layers can be reduced to a
one-dimensional function, which exhibits a surprising, regular structure. It remains an open question
what the “optimal” shape of such function is, or whether it can be described analytically.

The models used in this paper are taken from a large set of experiments that we conducted using popu-
lar network architectures and datasets, such as simple convolutional networks, VGG16, ResNet18-v2,

8



Initialization End of pre-training End of fine-tuning

0 20 40 60 80 100
conv9

Distribution of neurons

0 20 40 60 80 100
% of examples activating the neuron

conv11

0 20 40 60 80 100

Distribution of neurons

0 20 40 60 80 100
% of examples activating the neuron

0 20 40 60 80 100

Distribution of neurons

0 20 40 60 80 100
% of examples activating the neuron

0 20 40 60 80 100
conv9

Distribution of neurons

0 20 40 60 80 100
% of examples activating the neuron

conv11

0 20 40 60 80 100

Distribution of neurons

0 20 40 60 80 100
% of examples activating the neuron

0 20 40 60 80 100

Distribution of neurons

0 20 40 60 80 100
% of examples activating the neuron

Figure 7: Activation plots for the two VGG16 models in Figure 1 at initialization (LEFT), after
pre-training with random labels (CENTER), and after subsequently fine-tuning on fresh examples with
random labels (RIGHT). Top row is for the positive transfer case; bottom row shows negative transfer.
Histograms depict distributions of neurons over the fraction of held out examples that activate them.
The two histograms in each subplot correspond to two different activation spaces.
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Figure 8: Increasing model width mitigates negative transfer. Simple CNN architectures with two
convolutional layers and 64 (LEFT), 128 (CENTER), and 1024 (RIGHT) units in the dense layer.

CIFAR10, and ImageNet, with wide range of hyperparameter settings (Appendix B). These experi-
ments show that pre-training on random labels very often accelerates training on downstream tasks
compared to training from scratch with the same hyperparameters and rarely hurts the training speed.

By studying what is learned on random labels, we shed new insights into previous phenomena
that have been reported in the literature. For instance, the alignment effect at the earlier layers
explains the empirical observations of [36] that pre-training on random labels can accelerate training
in downstream tasks and the observation of [3] that the filters learned on random labels seem to
exhibit some useful structure. Also, our findings related to the inactive ReLU units at the later
layers demonstrate how upper layers specialize early during training, which may explain why
neural networks exhibit critical learning stages [1] and why increasing the width seems to be
particularly useful in transfer learning [24]. Both alignment and specialization are in agreement with
the observation that earlier layers generalize while later layers specialize, a conclusion that has been
consistently observed in the literature when training on real labels [2, 3, 8, 44]. We show that it holds
for random labels as well.
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Broader Impact

This work is partially theoretical and contains experiments to study the theoretical results and related
hypotheses. The paper aims at improving our understanding of how DNNs learn from data and
therefore does not have a direct impact on applications or society. Hence, speculating on its potential
broader impact is difficult at this stage. Nevertheless, we hope that a better understanding of deep
neural networks will lead to improvements in the future along the direction of building interpretable
and explainable AI, which are critical ingredients for the creation of socially-responsible AI systems.
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