
A Preliminaries

This section contains some standard linear-algebra results used in the proofs. It shares terminology
with Section 2. The Frobenius, or entry-wise L2, norm of a matrix A is

||A||F :=
√∑

i,j |Aij |2.

Theorem 5. (Singular value decomposition [Bha13]) For all A ∈ Rk×m,

1. Avi(A) = σi(A)ui(A) and Aᵀui(A) = σi(A)vi(A), ∀ i.

2. ||A|| = σ1(A).

3. (Courant-Fischer Theorem for Singular Values):

σi(A) = min
S:dim(S)=m−i+1

max
v∈S:||v||=1

||Av|| = max
S:dim(S)=i

min
v∈S:||v||=1

||Av||.

The singular values of a submatrix are smaller than those of the original matrix. In particular, the
same holds for their spectral norms.

Theorem 6. (Interlacing property of Singular Values [Que87]) For anyA ∈ Rk×m, I ⊆ [k], J ⊆ [m],
and i ≤ min(k,m),

σi(AI×J) ≤ σi(A).

Singular values are subadditive.

Theorem 7. (Weyl’s Inequality for Singular Values [Bha13]) For all A,A′ ∈ Rk×m and i, j ≥ 1 s.t.
i+ j − 1 ≤ min(k,m),

σi+j−1(A+A′) ≤ σi(A) + σj(A
′).

B Pseudo Code for the Algorithm

Algorithm 1 CURATED-SVD
Input : Matrix X , r, Wcn and τ
Output : Matrix M̂

1: Izr ← φ
2: while true do
3: U ← R(X, w̄)Ic

zr
{Recall R(X, w̄) = D−

1
2 (w̄f ) ·X ·D− 1

2 (w̄b)}
4: Perform rank 2r truncated SVD on U to get U (2r) =

∑2r
j=1 σjujvj

ᵀ

5: Iold
zr ← Izr

6: for j ∈ [2r] do
7: ROW DELETION(σj · uj , w̄f , Izr, 8τ2, Wcn) {to update Izr}
8: end for
9: if Iold

zr == Izr then
10: Break;
11: end if
12: end while
13: M cur ← D

1
2 (w̄f ) · U (2r) ·D 1

2 (w̄f ) {Same as (2r, w̄)-SVD of XIc
zr

}
14: Return( M cur )
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Algorithm 2 ROW DELETION
Input : u = σj · uj , w = w̄f , Izr, V = 8τ2, W = Wcn
Output: Updated Izr

1: while True do
2: Use 0.5-approx Algorithm [SCGDS92] for 0-1 knapsack problem to find subset I ⊆ Ic

zr with
total weight

∑
i∈I w(i) ≤W and

impact
∑
i∈I u(i)2 ≥ 0.5 max{

∑
i∈I′ u(i)2 : I ′ ⊆ Ic

zr,
∑
i∈I′ w(i) ≤W}

{Comment: Recall that impactH(R(X, w̄)Ic
zr
, I, j) =

∑
i∈I σ

2
ju

2
j (i) =

∑
i∈I u(i)2 }

3: if
∑
i∈I u(i)2 ≤ V then

4: Return;
{Comment: "if" condition ensures maxI′⊆Ic

zr:
∑

i∈I′ w(i)≤Wcn H(R(X, w̄)Ic
zr
, I ′, j) ≤ 2V }

5: end if
6: Izr ← Izr

⋃
An element i ∈ I where the probability of picking i is proportional to u(i)2

w(i)

7: end while

C Analysis of Curated SVD algorithm

Subsection C.1 shows that w.h.p. Curated SVD achieves Objective (ii). Subsection C.2 shows that if
Izr achieves both objectives then regularized Curated SVD recovers MIc

cn
.

C.1 Curated SVD achieves Objective (ii)

We first show that both the objectives can be achieved simultaneously.
Lemma 8. Assume that essential property (1) holds. There is a row-collection Ihv of weight∑
i∈Ihv

w̄ ≤ O(k/navg), such that for any subset I ⊆ Ic
hv of weight

∑
i∈I w̄

f (i) ≤Wcn,

||R(XI , w̄)|| ≤ 2τ.

Implication of the above Lemma It is easy to see that for any subset I ⊆ [k], ||R(XI , w̄)||2 upper
bounds the impact R(XI , w̄) can have on the SVD. Hence, if we let Izr = Ihv then both the objectives
will be satisfied. However, the above lemma only shows the existence of Ihv with small weight, and it
does not give a computationally efficient way to find Ihv. We later show that w.h.p. Curated-SVD
finds Izr, efficiently, with weight at most a constant times that of Ihv.

In proving the above lemma, we use the following two auxiliary lemmas, which are stated for general
matrices. The proofs of these two lemmas appear in the Appendix G, along with the proof of other
Linear algebra results used in the paper.
Lemma 9. For any matrix A and weight vectors wf and wb with positive entries

||D− 1
2 (wf ) ·A ·D− 1

2 (wb)|| ≤

√
max
i

||Ai,∗||1
wf (i)

×max
j

||A∗,j ||1
wb(j)

.

Applying the lemma for A = X and weights wf = w̄f and wb = w̄b we get:

||R(X, w̄)|| ≤

√
max
i

||Xi,∗||1
w̄f (i)

×max
j

||X∗,j ||1
w̄b(j)

≤ navg. (2)

Next, we state the second auxiliary lemma required in proving Lemma 8
Lemma 10. Let A be a k ×m matrix such that σ1(A) ≤ α and σr+1(A) ≤ β. Then the number of

disjoint row subsets I ⊂ [k] such that ||AI || > 2β is at most
(
rα
β

)2

.

Using the above two auxiliary lemmas, we prove Lemma 8.

Proof of Lemma 8. Using Weyl’s inequality 7

σr+1(R(X, w̄)Ic
cn

) ≤ σr+1(R(M, w̄)Ic
cn

) + σ1(R(X −M, w̄)Ic
cn

)
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(a)
≤ σ1(R(N, w̄)Ic

cn
) = ||R(N, w̄)Ic

cn
|| ≤ τ, (3)

here (a) uses X −M = N , and the fact that M has rank r.

From equation (2) and Theorem 6,

σ1(R(X, w̄)Ic
cn

) ≤ σ1(R(X, w̄)) ≤ navg. (4)

Applying Lemma 10 for A = R(X, w̄)Ic
cn

, and using (3) and (4) shows that the number of disjoint

subsets I ⊂ Ic
cn such that ||R(XI , w̄)|| > 2τ is at most

( rnavg

τ

)2
.

Therefore, the number of disjoint subsets I ⊂ Ic
cn, such that ||R(XI , w̄)|| > 2τ and weight w̄f (I) ≤

Wcn, is also at most
( rnavg

τ

)2
. Since every such subset I has weight w̄f (I) ≤Wcn, the combined total

weight of all such disjoint subsets is ≤Wcn ·
( rnavg

τ

)2
.

Let Ihv ⊆ [k] be the subset formed by combining all these disjoint subsets, and Icn. It is clear from
the construction of Ihv that, for every subset I ⊂ Ic

hv with weight w̄f (I) ≤Wcn,

||R(XI , w̄)|| ≤ 2τ.

Finally, noting that the total weight of subset Ihv is at most Wcn ·
( rnavg

τ

)2
+
∑
i∈Icn w̄

f (i) ≤
Wcn ·

( rnavg

τ

)2
+Wcn, and using Wcn = O(k/(rnavg)2) and τ = O(

√
navg log(rnavg)) completes the

proof. �

The next lemma bounds the expected weight of Izr, the set of rows zeroed out by Curated SVD, by
showing that it is at most twice the weight of Ihv.
Lemma 11. Assume that essential property (1) holds. When Curated SVD terminates, the total
weight of the final set of rows Izr satisfy,

E
[
w̄f (Izr)

]
≤ O(k/navg).

Proof. Recall that the rows get added to Izr one by one. Let Zt denotes the weight of the tth row that
gets added to Izr. Let indicator random variable 1t(Ihv) = 1, if the tth that gets added in Izr belongs
to Ihv and similarly indicator random variable 1t(Ic

hv) = 1, if the tth that gets added in Izr doesn’t
belongs to Ihv. Clearly Zt = Zt · 1t(Ihv) + Zt · 1t(Ic

hv). We first show that for any t,

E[Zt · 1t(Ic
hv)] ≤ E[Zt · 1t(Ihv)].

Let It ⊆ Ic
zr denote the row subset from which tth row added to Izr was chosen, probabilistically, by

Row-Deletion (Line 6 in Row-Deletion procedure). Since Row-Deletion chooses rows only from the
row subsets that have weight ≤Wcn and impact > 8τ2 on one of the components of SVD, therefore,
w̄f (It) ≤Wcn and some j ∈ [2r], and its impact

H(R(X, w̄)Ic
zr
, It, j) > 8τ2.

We decomposeH(R(X, w̄)Ic
zr
, It, j) in two parts as

H(R(X, w̄)Ic
zr
, It, j) = H(R(X, w̄)Ic

zr
, It ∩ Ihv, j) +H(R(X, w̄)Ic

zr
, It \ Ihv).

Since, the weight of It is ≤Wcn, the weight of It \ Ihv is also ≤Wcn. Lemma 8 implies that

H(R(X, w̄)Ic
zr
, It \ Ihv, j) ≤ 4τ2.

Combining the last three equation gives,

H(R(X, w̄)Ic
zr
, It ∩ Ihv, j) ≥ 4τ2.

Next, note that

E[Zt · 1t(Ihv)] =
∑

i∈It∩Ihv

Pr[ith row is picked ] · w̄f (i) ∝
∑

i∈It∩Ihv

H(R(X, w̄)Ic
zr
, i, j)

w̄f (i)
· w̄f (i)
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= H(R(X, w̄)Ic
zr
, It ∩ Ihv, j),

where we used the fact that the probability of adding row i to Izr by Row-Deletion procedure is

proportional to
σ2
ju

2
j (i)

w̄f (i)
=
H(R(X,w̄)

Ic
zr
,i,j)

w̄f (i)

A similar calculation implies that

E[Zt · 1t(Ic
hv)] ∝ H(R(X, w̄)Ic

zr
, It \ Ihv, j).

Combining the last four equations show,

E[Zt · 1t(Ic
hv)] ≤ E[Zt · 1t(Ihv)].

Let random variable ` denote the total number of rows that are added to Izr before algorithm stops.
Then using the optional stopping theorem for supermartingale

(
Zt · 1t(Ic

hv)− Zt · 1t(Ihv)
)

implies
that when algorithm stops after putting ` rows in Izr,

E[
∑̀
t=1

(
Zt · 1t(Ic

hv)− Zt · 1t(Ihv)
)
] ≤ 0.

And since, the total weight of the rows in Ihv that gets added to Izr is at-most the total weight of all
rows in Ihv, using Lemma 8, we get

∑̀
t=1

Zt · 1t(Ihv) ≤ O(k/navg).

Combining the above two equations bounds the expected total weight of rows that gets added to Izr

E[
∑̀
t=1

Zt] = E[
∑̀
t=1

Zt · 1t(Ic
hv)] + E[

∑̀
t=1

Zt · 1t(Ihv)] ≤ 2E[
∑̀
t=1

Zt · 1t(Ihv)] ≤ 2O(k/navg). �

Lemma 12. Assume that the essential property (1) holds. If Curated SVD is run O(log k) times,
then w.p. > 1− k−O(1), at-least one of the runs finds Izr s.t.,

w̄f (Izr) ≤ O(k/navg).

Proof. From Markov’s inequality and the previous lemma, we get

Pr[w̄f (Izr) ≥ 5×O(k/navg)
)

] ≤
O(k/navg)

5×O(k/navg)
≤ 1/5.

Therefore, w.p. ≥ 4/5, Curated SVD finds Izr such that,

w̄f (Izr) ≤ 5×O(k/navg).

Hence, if we run Curated SVD for O(log k) times, with probability 1− k−O(1), at-least one of the
runs will find Izr that satisfy the above equation and Objective (ii). �

C.2 Objectives (i) and (ii) implies recovery

Lemma 13. Assume that essential property (1) holds and let Izr be any row subset satisfying
objectives (i) and (ii) and let M̂ be (2r, w̄)-SVD of XIc

zr
, then

||MIccn − M̂ ||1 ≤ O(k
√
rnavg log(rnavg)).

The rest of this subsection proves the lemma.

Let Z := R(XIc
zr
, w̄)(2r), be rank 2r truncated SVD of regularized matrix R(XIc

zr
, w̄). Then, from

the definition of (2r, w̄)-SVD,

M̂ = D
1
2 (w̄f ) · Z ·D 1

2 (w̄b).
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Clearly, both Z and M̂ have rank ≤ 2r and their rows Izr are all zero.

To bound the total loss in Lemma 13, using the triangle inequality, we first decompose the loss
incurred in estimating matrix M by M̂ into three parts as follows.

||MIccn − M̂ ||1 = ||MIccn − M̂Ic
zr
||1

≤ ||(M − M̂)(Icn∪Izr)c ||1 + ||MIzr\Icn ||1 + ||M̂Icn\Izr ||1. (5)

Lemma 14 bounds the contribution of the first term above on the right. Intuitively, the contribution of
the other two terms is small, since the weight of row subsets Izr and Icn are small. And using this
observation we later bound the contribution of the last two terms.
Lemma 14.

||(M − M̂)(Icn∪Izr)c ||1 ≤ O(k
√
rnavg log(rnavg)).

To prove Lemma 14, we use the following lemma which bounds the spectral distance between
Z(Icn∪Izr)c and R(M, w̄)(Icn∪Izr)c is small.

Lemma 15. Let Izr ⊆ [k] be a row subset that satisfy Objective-1, then

||Z(Icn∪Izr)c −R(M, w̄)(Icn∪Izr)c || ≤ 9τ.

In proving the above Lemma, we need the following auxiliary lemmas, which is stated for general
matrices, and its proof appears in the Appendix G
Lemma 16. Let A = B + C and A =

∑
i σi(A)uivi

ᵀ be the SVD decomposition of A. And
σr+1(B) ≤ β and ||Cvi|| ≤ 2β for i ∈ [2r]. Then σ2r(A) ≤ 4β.

Proof of Lemma 15. Using equation (3) and Theorem 6, we get,

σr+1(R(X, w̄)(Icn∪Izr)c) ≤ σr+1(R(X, w̄)Ic
cn

) ≤ τ. (6)

Observe that,
R(X, w̄)Ic

zr
= R(X, w̄)(Icn∪Izr)c +R(X, w̄)Icn\Izr .

Let (R(X, w̄)Ic
zr

)(2r) =
∑2r
j=1 σjujvj

ᵀ. Since Izr satisfy Objective (i) and the weight of Icn is
at-most w̄f (Icn) ≤ εk, therefore, the condition in Objective (i) implies that

||R(X, w̄)Icn\Izr · vi|| ≤ 4τ.

Then applying Lemma 16, for A = R(X, w̄)Ic
zr

and using the above three equations gives

σ2r(R(X, w̄)Ic
zr

) ≤ 8τ.

Since, for Z is rank-2r truncated SVD of R(X, w̄)Ic
zr

, we have

||R(X, w̄)Ic
zr
− Z|| = ||(R(X, w̄)− Z)Ic

zr
|| ≤ 8τ. (7)

Then,

||(Z −R(M, w̄))(Icn∪Izr)c ||
(a)
≤ ||(Z −R(X, w̄))(Icn∪Izr)c ||+ ||(R(X, w̄)−R(M, w̄))(Icn∪Izr)c ||
(b)
≤ ||(Z −R(X, w̄))Ic

zr
||+ ||(R(N, w̄))Ic

cn
||

(c)
≤ 8τ + τ = 9τ,

here (a) uses triangle inequality, (b) uses Theorem 6 andX−M = N , and finally (c) uses equation (7)
and essential condition (1). �

The next auxiliary lemma relates the L1 norm and spectral norm. Its proof appears in the Appendix G.
Lemma 17. For any rank-r matrix A ∈ Rk×m and weight vectors wf and wb with non-negative
entries

||D 1
2 (wf ) ·A ·D 1

2 (wb)||1 ≤
√
r(
∑
i

wf (i))(
∑
j

wb(j)) · ||A||.
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We will also need the following result.
Lemma 18. The total weight of all rows is at most

∑
i∈[k] w̄

f (i) ≤ 2k and similarly the total weight
of all columns is at most

∑
i∈[k] w̄

b(j) ≤ 2k.

Proof.

w̄f ([k]) =
∑
i∈[k]

w̄f (i) ≤
∑
i∈[k]

1 +
||Xi,∗||1
navg

≤ k +
||X||1
navg

≤ 2k,

since navg is the average number of samples in each row. Similarly it can be shown for columns. �

Next, combining the above result we prove Lemma 14

Proof of Lemma 14. First note that,

||(M − M̂)||1 = ||M −D 1
2 (w̄f ) · Z ·D 1

2 (w̄b)||1 = ||D 1
2 (w̄f )(Z −R(M, w̄))D

1
2 (w̄b)||1,

here we used R(M, w̄) = D−
1
2 (w̄f ) ·M ·D− 1

2 (w̄b). As noted earlier Z has the rank ≤ 2r and M
has the rank ≤ r, therefore the rank of (Z −R(M, w̄)) is at most 3r. Then, using Lemma 17 and
Lemma 15,

||D 1
2 (w̄f )(Z −R(M, w̄))(Icn∪Izr)cD

1
2 (w̄b)||1

≤
√

3r
√

(
∑
j∈[k] w̄

b(j))(
∑
i∈(Icn∪Izr)cw̄b(j)) · 9τ

≤
√

3r
√

(
∑
j∈[k] w̄

b(j))(
∑
i∈[k]w̄

b(j)) · 9τ ≤
√

3r · 2k · 9τ ,

here the last step uses Lemma 18. Combining the last two equations and using τ =
O(
√
navg log(rnavg)) complete the proof. �

To bound the second term in (5), note that

MIzr\Icn = D
1
2 (w̄f ) ·R(M, w̄)Izr\Icn ·D

1
2 (w̄b) (8)

Applying Lemma 17,

||MIzr\Icn ||1 =||D 1
2 (w̄f ) ·R(M, w̄)Izr\Icn ·D

1
2 (w̄b)||1

≤
√
r
√

(
∑
j∈[k] w̄

b(j))(
∑
i∈Izr\Icnw̄

f (i)) · ||R(M, w̄)Izr\Icn ||

≤
√
r
√

(
∑
j∈[k] w̄

b(j))(
∑
i∈Izrw̄

f (i)) · ||R(M, w̄)Ic
cn
||

≤
√

2rk
√
w̄f (Izr) · ||R(M, w̄)Ic

cn
||. (9)

Next,

||R(M, w̄)Ic
cn
|| ≤ ||R(N, w̄)Ic

cn
||+ ||R(X, w̄)Ic

cn
||

≤ τ + ||R(X, w̄)|| ≤ τ + navg,

here we used essential property (1) and equation (4). Combining the last two equations we get

||MIzr\Icn ||1 ≤ O(
√
rk · w̄f (Izr) · (τ + navg)) ≤ O(

√
rk · (log(rnavg) +

√
navg)) (10)

Finally, we bound the last term in (5). Recall that M̂ = D
1
2 (w̄f ) · Z ·D 1

2 (w̄b). Then

||M̂Icn\Izr ||1 = ||(D 1
2 (w̄f ) · ZIcn\Izr ·D

1
2 (w̄b)||1.

Using the fact that Z is truncated SVD of R(XIc
zr
, w̄) and equation (4) we get

||ZIc
zr
|| ≤ ||Z|| ≤ ||R(XIc

zr
, w̄)|| ≤ navg.

Therefore,
||ZIcn\Izr || ≤ navg.
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Then applying Lemma 17,

||D 1
2 (w̄f ) · ZIcn\Izr ·D

1
2 (w̄b)||1 ≤

√
2r
√

(
∑
j∈[k] w̄

b(j))(
∑
i∈Icn\Izrw̄

f (i)) · navg

≤
√

2r
√

2k(
∑
i∈Icnw̄

f (i)) · navg

≤ 2
√
rkWcn · navg = O(k/

√
r),

here in the last step we used Wcn = O(k/(rnavg)2).

By combining equation (5), Lemma 14, equation (10) and the above equations we get

||MIcn − M̂ ||1 ≤ O(k
√
rnavg log(rnavg)) +O(k

√
r · (log(rnavg) +

√
navg)) +O(k/

√
r)

≤ O(k
√
rnavg log(rnavg)).

This completes the proof of the lemma.

D Proof of Theorem 2

Theorem 2 follows immediately from the following theorem.
Theorem 19. Curated SVD runs in polynomial time, and for every k, r, ε > 0, M ∈ Rk×kr , and
X ∼M , returns an estimate M cur(X) s.t. with probability ≥ 1− k−2,

L(M cur(X)) =
||M −M cur(X)||1

||M ||1
≤ O(

√
kr

||M ||1
log(

r||M ||1
k

)).

Proof. Section 4 showed that Curated-SVD always achieves Objective (i). Using the spectral
concentration bound in Theorem 3 it also showed that the essential property required for Curated
SVD holds with probability ≥ 1− 6/k3.

Lemma 12 showed that if essential property hold and Curated SVD is repeatedO(log k) times, on the
same samples, then w.p. > 1− k−O(1), at-least one of the runs find Izr that achieves Objective (ii).

Finally, when essential property holds, and Curated SVD achieves both the objectives then Lemma
13 showed

||MIccn − M̂ ||1 ≤ O(k
√
rnavg log(rnavg)). (11)

Note that
||M − M̂ ||1 ≤ ||MIccn − M̂ ||1 + ||MIcn ||1.

Therefore, to prove the theorem the only thing remains is to bound the last term.

To bound the last term we use the following lemma. The proof of the Lemma appears in Section E.1.

The lemma upper bounds the sum of the absolute difference between the expected and observed
samples in each row of X .

Lemma 20. With probability ≥ 1− 3k−3,∑
i

|
∑
j

Ni,j | = O(k
√
navg).

Then

||MIcn ||1 =
∑
i∈Icn

∑
j∈[k]

Mi,j

≤
∑
i∈Icn

∑
j∈[k]

Xi,j +

∣∣∣∣∣ ∑
i∈Icn

∑
j∈[k]

(Mi,j −Xi,j)

∣∣∣∣∣
≤
∑
i∈Icn

||Xi,∗||+
∑
i∈Icn

∣∣∣∣∣ ∑
j∈[k]

Ni,j

∣∣∣∣∣
18



≤
∑
i∈Icn

navg · w̄f (i) +O(k
√
navg)

≤ O(k
√
navg),

here the second last step uses ||Xi,∗|| ≤ navg · w̄f (i) and the previous Lemma and the last step uses∑
i∈Icn w̄

f (i) ≤Wcn. Combining this with (11) and letting M cur(X) = M̂ gives

||M −M cur(X)||1 ≤ O(k
√
rnavg log(rnavg)).

Finally, dividing the both sides by ||M ||1 and using navg = ||M ||1/k in the above equation completes
the proof. �

Using ||M ||1 = kr
ε2 · log2 r

ε in the above theorem gives Theorem 2.

The next subsection gives the implication of the above result for collaborative filtering.

D.1 Collaborative filtering

For the same general bounded noise model [BCLS17] derived the mean square error
∑
i,j(Fi,j −

F̂i,j)
2/k2 = O(r2/(pk)2/5). They assume that the mean matrix F is generated by a Lipschitz latent

variable model. Here we show that Curated SVD achieves a better accuracy, in a stronger norm, and
without the additional Lipschitz assumption on F .

Note that since 0 ≤ Fi,j ≤ 1, |Fi,j− F̂i,j | ≥ |Fi,j− F̂i,j |2. Therefore, L1 error
∑
i,j |Fi,j− F̂i,j |/k2

upper bounds mean squared error.

Recall that in collaborative filtering model Mi,j = pFi,j . Since the sampling probability p can
be estimated to very good accuracy hence without loose of generality assume that p is known.
Note that ||M ||1 = p||F ||1 = pk2F avg

i,j , where F avg
i,j = ||F ||1/k2 ≤ 1 as ∀i, j, Fi,j ≤ 1. We let

F cur(X) = M cur(X)/p.

Then using Theorem 19 for this model implies:

||M −M cur(X)||1
||M ||1

=
p||F − F cur(X)||1

pk2F avg
i,j

≤ O

(√
kr

pk2F avg
i,j

log(
r

k
pk2F avg

i,j )

)
.

Therefore,

||F − F cur(X)||1
k2

≤ O

(√
rF avg

i,j

pk
log(r · pkF avg

i,j )

)
≤ O

(√
r

pk
log(rpk)

)
.

We get the following Corollary.
Corollary 21. Curated SVD runs in polynomial time, and for every k, r, ε > 0, sampling probability
p, F ∈ Rk×kr , Fi,j ∈ [0, 1] andX ∼ pF , returns an estimate F cur(X) s.t. with probability≥ 1−k−2,

||F − F cur(X)||1
k2

≤ O

(√
r

pk
log(rpk)

)
.

Note that the above bound on the L1 error norm is strictly better than the previous bound on the mean
square error, and, as we showed, MSE is also a weaker error norm than L1 for this setting.

E Properties of the Noise matrix

Here we give the proof of Theorem 3. We in fact prove a somewhat more general version of the
theorem. Accordingly, we define the generalisation of the weights w̃ and w̄ defined in the paper. For
any Λ > 0, define weights w̃Λ := (w̃fΛ, w̃

b
Λ) such that,

w̃fΛ(i) := max{1, ||Mi,∗||1
Λ } and w̃bΛ(j) := max{1, ||M∗,j ||1Λ }.
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And similarly define w̄Λ = (w̄fΛ, w̄
b
Λ) such that,

w̄fΛ(i) := max{1, ||Xi,∗||1
Λ } and w̄bΛ(j) := max{1, ||X∗,j ||1Λ }.

We obtain the results for the regularization weights w̃fΛ(i) and w̄fΛ(i). Note that the regularization
weights w̃ and w̄, used in the main paper, are a special case of these regularization weights w̃fΛ(i)

and w̄fΛ(i) for Λ = navg.

The next theorem is a generalisation of Theorem 3. This theorem bounds the spectral norm of the
noise matrix regularized by weights w̄Λ, and Theorem 3 can be obtained as a special case of this
theorem for Λ = navg.

Theorem 22. For X ∼ M , any Λ > 0, ε ≥ 1
Λ max

(
log4 k
k , exp−

Λ
8

)
, with probability ≥ 1− 6k−3,

there is a row subset Icn ⊆ [k] of possibly contaminated rows such that
∑
i∈I w̄

f
Λ(i) ≤ εk and

||R(N, w̄Λ)Ic
cn
|| ≤ O

(√
Λ · log 2

ε

)
.

To prove the above theorem we first establish the bound on `∞ → `2 norm of submatrices of the
regularized noise matrix and use a known result, referred as Grothendieck-Pietsch factorization, to
relate this norm to spectral norm. Next we define `∞ → `2 norm and state Grothendieck-Pietsch
factorization.

The `∞ → `2 norm of a matrix A ∈ Rk×m is

||A||∞→2 := max
||v||∞=1

||Av||2 = max
v∈{−1,1}m

||Av||2.

Since the vector v in this definition takes value in the finite set ({−1, 1}m), standard probabilistic
techniques are better suited for bounding the `∞ → `2 norm than for bounding the spectral norm
directly. In turn, Grothendieck-Pietsch factorization helps us relate `∞ → `2 and spectral norm.
Theorem 23. (Grothendieck-Pietsch factorization)
For any A ∈ Rk×m there is a vector µ = (µ(1), ..., µ(m)) with µ(j) ≥ 0 and

∑
j µ(j) = 1 such

that

||A ·D− 1
2 (µ)|| ≤

√
π

2
· ||A||∞→2.

The above result can be obtained by combining Little Grothendieck Theorem and Pietsch Factoriza-
tion, and has appeared in [LT13] (Proposition 15.11) and [LLV17] (Theorem 3.1).

To prove the above theorem, therefore, we first bound the `∞ → `2 norm of submatrices ofD−
1
2 (w̄fΛ)·

N . The proof of the lemma is based on standard use of the probabilistic methods. Due to the symmetry,
a similar bound will hold on `∞ → `2 norm of submatrices of (N ·D− 1

2 (w̄bΛ))ᵀ = D−
1
2 (w̄bΛ) ·Nᵀ.

Lemma 24. (`∞ → `2 concentration) With probability ≥ 1 − 3k−3, for every

max( log4 k
Λ , k exp−

Λ
8

Λ ) ≤ ` ≤ k, and every I, J ⊆ [k] of size `,

||(D− 1
2 (w̄fΛ) ·N)I×J ||∞→2 ≤ O(

√
Λ` log(ek/`)).

Proof.

||(D− 1
2 (w̄fΛ) ·N)I×J ||2∞→2 = max

v∈{−1,1}`
||(D− 1

2 (w̄fΛ) ·N)I×J · v||2

= max
v∈{−1,1}`

∑
i∈I

(∑
j∈J

Ni,j√
w̄fΛ(i)

v(j)
)2

= max
v∈{−1,1}`

∑
i∈I

Zi(v)2

w̄fΛ(i)
= max
v∈{−1,1}`

∑
i∈I

Ẑi(v)2,

where

Zi(v) =
∑
j∈J

Ni,jv(j) and Ẑi(v) =
Zi(v)√
w̄fΛ(i)

.
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For a fix v, Zi(v) is the sum of independent zero-mean random variables, the following bound follows
from Bernstein’s inequality, for any t > 0

Pr(|Zi(v)| > t) ≤ 2 exp

(
−t2/2

||Mi,∗||1 + t/3

)
≤ 2 exp

(
−t2/2

Λw̃fΛ(i) + t/3

)
. (12)

Observe that

|Zi(v)| ≤
∑
j∈J
|Ni,j | ≤ ||Ni,∗||1 ≤ ||Xi,∗||1 + ||Mi,∗||1 ≤ (w̄fΛ(i) + w̃fΛ(i))Λ. (13)

Based on the values of w̃fΛ(i) and w̄fΛ(i) we divide the rows into two categories, and let random
variable Ti denote the category of row i,

Ti :=

{
1 if w̄fΛ(i) ≥ w̃f

Λ(i)

2 ,

2 else .

Let ξi := 1{Ti=1} be the indicator random variable corresponding to the event that row i is in the
first category. Hence, ξ̄i := 1− ξi = 1{Ti=2}. Then∑

i∈I
Ẑi(v)2 =

∑
i∈I

(ξi + ξ̄i)Ẑi(v)2.

Next, we bound the contribution of the rows in each categories to the above term.

1. Ti = 1 : w̄fΛ(i) ≥ w̃f
Λ(i)

2 .
To bound the contribution of the rows in category 1, we show for any given v, ξiẐi(v) are
sub-Gaussian random variables with sub-Gaussian norm O(

√
Λ). Then we bound sum of their

squares, which are sub-exponential random variable, by applying Bernstien’s concentration bound.
We first prove that ξiẐi(v) are sub-Gaussian.

From equation (13) and the definition of category 1, we get

|ξiZi(v)| ≤ |Zi(v)| ≤ (w̄fΛ(i) + w̃fΛ(i))Λ ≤ (w̄fΛ(i) + 2w̄fΛ(i))Λ = 3w̄fΛ(i)Λ,

hence

w̄fΛ(i) ≥ |ξiZi(v)|
Λ

.

Then

|ξiẐi(v)| = |ξiZi(v)|√
w̄fΛ(i)

≤ min
{
|
√

ΛZi(v)|, |Zi(v)|√
w̃fΛ(i)/2

}
,

here we used the previous equation, the fact that ξi ≤ 1, and w̄fΛ(i) ≥ w̃fΛ(i)/2, which follows
from the definition of the category 1. Using equation (12) we get

Pr(
|Zi(v)|√
w̃fΛ(i)/2

> t) = Pr(|Zi(v)| > t

√
w̃fΛ(i)

2
) ≤ 2 exp

(
−t2w̃fΛ(i)/4

Λw̃fΛ(i) + t
3 ·
√

w̃f
Λ(i)

2

)
.

For t ≤ 3Λ

√
w̃f

Λ(i)

2 , the above equation gives the following bound

Pr(
|Zi(v)|√
w̃fΛ(i)/2

> t) ≤ 2 exp

(
−t2w̃fΛ(i)/4

Λw̃fΛ(i) + Λ · w̃
f
Λ(i)

2

)
= 2 exp

(−t2
6Λ

)
. (14)

And, similarly

Pr(|
√
Zi(v)Λ| > t) = Pr(|Zi(v)| > t2

Λ
) ≤ 2 exp

( − t4

2Λ2

Λw̃fΛ(i) + t2

3Λ

)
.
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For t ≥ 3Λ

√
w̃f

Λ(i)

2 , the above equation give the following bound

Pr(|
√
Zi(v)Λ| > t) ≤ 2 exp

( − t4

2Λ2

2t2

9Λ + t2

3Λ

)
= 2 exp

(
−t2

10Λ/9

)
.

Combining equation (14) and the above equation we get

Pr(|ξiẐi(v)| > t) ≤ 2 exp
(−t2

6Λ

)
.

This shows that ξiẐi(v) is sub-Gaussian with sub-Gaussian norm ≤
√

3Λ. Therefore, ξiẐ2
i (v) is

sub-exponential with sub-exponential norm ≤ 3Λ. From Bernstein’s inequality, for all ε ≥ 1,

Pr

(∑
i∈I

ξiẐ
2
i (v) > ε`Λ

)
≤ 2 exp−cε` .

Choosing ε = (14/c) log(ek/`), bounds the above probability by (ek/`)−7`. Taking the union
bound over all possible `, v, I , and J , in above equation we get

∑
i∈I ξiẐ

2
i (v) ≤ ε`Λ with

probability at least

1−
k∑
`=1

2`
(
k

`

)2(
ek

`

)−7`

≥ 1− k−3. (15)

2. Ti = 2 : w̄fΛ(i) <
w̃f

Λ(i)

2 .
Note that,

|ξ̄iẐi(v)| ≤ |ξ̄iZi(v)|
(a)
≤ 3

2
w̃fΛ(i)Λ,

where (a) uses equation (13). Then,∑
i∈I

ξ̄iẐi(v)2 ≤
∑
i∈[k]

ξ̄iẐi(v)2 ≤
(

3

2

)2 ∑
i∈[k]

ξ̄i
(
w̃fΛ(i)Λ

)2
. (16)

We bound the above term by showing:

Claim: With probability ≥ 1− 2/k3,∑
i∈I

ξ̄i
(
w̃fΛ(i)

)2 ≤ O( log4 k + ke−
Λ
8

Λ2

)
.

Proof of the claim: Next, once again divide the rows into categories based on the expected count,
and let Si denote the category of row i,

Si :=

{
0 if w̃fΛ(i) ≤ 2

j for j ≥ 1, if w̃fΛ(i) ∈ (2j , 2j+1].

For a given M , category Si of row i is determined and is not a random variable unlike Ti.

Note that

{w̃fΛ(i) > 2w̄fΛ(i)} ≡ {max{1, ||Mi,∗||1
Λ } > max{2, 2||Xi,∗||1

Λ }} ≡ {||Mi,∗||1 > max{2Λ, 2||Xi,∗||1}}.

Next,

Pr
(

2||Xi,∗||1 ≤ ||Mi,∗||1
)

= Pr
(
||Xi,∗||1 − ||Mi,∗||1 ≤ −

||Mi,∗||1
2

)
= Pr

( ∑
j∈[n]

(Xi,j −Mi,j) ≤ −
∑
j∈[n]Mi,j

2

)
≤ e−

||Mi,∗||1
8 ,
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here we used E[Xi,j ] = Mi,j and Chernoff bound. Therefore,

Pr[w̃fΛ(i) > 2w̄fΛ(i)] ≤

{
0, if ||Mi,∗||1 ≤ 2Λ,

e−
||Mi,∗||1

8 = e−
Λw̃

f
Λ

(i)

8 , if ||Mi,∗||1 > 2Λ.

Then from the definitions of Si and w̃fΛ(i), it follows that

Pr[ξ̄i = 1] = Pr[w̃fΛ(i) > 2w̄fΛ(i)] ≤

{
0, if Si = 0,

e−
Λw̃

f
Λ

(i)

8 ≤ e− 2SiΛ
8 , if Si ≥ 1.

(17)

Using the Chernoff bound, for any j ≥ 1,

Pr

( ∑
i:Si=j

ξ̄i ≥ 15 log k + 2
∑
i:Si=j

E[ξ̄i]

)
≤ k−5. (18)

Let τ = blog2
16 ln k

Λ c. For a row i such that Si > τ , using (17) we get

Pr[ξ̄i = 1] ≤ k−4.

Therefore, with probability ≥ 1− {i:Si>τ}
k5 ≥ 1− 1

k3∑
i:Si>τ

ξ̄i = 0. (19)

Then∑
i∈[k]

ξ̄i
(
w̃fΛ(i)

)2 (a)
=
∑
j≥1

∑
i:Si=j

ξ̄i
(
w̃fΛ(i)

)2
(b)
=

τ∑
j=1

∑
i:Si=j

1{Ti=2}
(
w̃fΛ(i)

)2 ≤ τ∑
j=1

max
i:Si=j

{
(
w̃fΛ(i)

)2} ∑
i:Si=j

ξ̄i

(c)
≤

τ∑
j=1

max
i:Si=j

{
(
w̃fΛ(i)

)2}(15 log k + 2
∑
i:Si=j

E[ξ̄i]
)

≤ 15τ log k max
i:Si≤τ

{
(
w̃fΛ(i)

)2}+

τ∑
j=1

max
i:Si=j

{
(
w̃fΛ(i)

)2} max
i:Si=j

{E[ξ̄i]}
(

2|{i : Si = j}|
)

(d)
≤ 15τ log k

(
2τ+1

)2
+

τ∑
j=1

(
|{i : Si = j}|

)
×
(

22j+2 · e− 2jΛ
8

)
≤ O(

log4 k

Λ2
) +O

(
max
j≥1

{(
2jΛ

)2

e−
2jΛ

8

}
· Λ−2 ·

τ∑
j=1

|{i : Si = j}|
)

(e)
≤ O(

log4 k

Λ2
) +O

(
max
j≥1

{
e−

2jΛ
16

}
· k

Λ2

)
≤ O

( log4 k + ke−
Λ
8

Λ2

)
,

with probability 1 − 1/k3 − τ/k5 ≥ 1 − 2/k3. Here (a) follows since Si = 1 implies ξ̄i = 0,
(b) follows from equation (19), (c) uses equation (18), (d) follows from the definition of Si and
equation (17), and (e) follows as total number of rows are k and x2 exp (−x/8)

exp (−x/16) is bounded for
x > 0. This completes the proof of the claim.

Combining the Claim and (16) gives the following bound on the contribution of rows in Ti = 2,∑
i∈I

ξ̄iẐ
2
i ≤ O(log4 k + ke−

Λ
8 ),

with probability ≥ 1− 2/k3.
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Combining this bound and the bound in (15),∑
i∈I

Ẑ2
i =

∑
i∈I

ξ̄iẐ
2
i +

∑
i∈I

ξiẐ
2
i ≤ O(log(ek/`)`Λ + log4 k + k exp−

Λ
8 ),

with probability ≥ 1− 3k−3. Noting that `Λ ≥ max(log4 k, k exp−
Λ
8 ), completes the proof. �

The next lemma combines the bound obtained on `∞ → `2 norm in the above lemma and
Grothendieck-Piesch factorization to obtain bound on the spectral norm.

Lemma 25. With probability ≥ 1 − 3k−3, for any max( log4 k
Λ , k exp−

Λ
8

Λ ) ≤ ` ≤ k, and any
I, J ⊆ [k] of size |I|, |J | = `, there exists a subset J ′ ⊆ J such that

∑
j∈J′ w̄

b
Λ(j) ≤ `/2 and

||
(
R(N, w̄Λ)

)
I×J′ || ≤ c

√
Λ log(ek/`).

Proof. Applying Grothendieck-Piesch factorization in Theorem 23 on matrix (D−
1
2 (w̄fΛ)N)I×J ,

implies that there is a vector µ = (µ(1), ..., µ(m)) with µ(j) ≥ 0 and
∑
j µ(j) = 1 such that

||(D− 1
2 (w̄fΛ) ·N)I×J ·D−1/2(µ)|| ≤

√
π

2
||(D− 1

2 (w̄fΛ) ·N)I×J ||∞→2

Then,

||
(
D−

1
2 (w̄fΛ) ·N

)
I×J ·D

− 1
2 (µ)|| = ||

(
D−

1
2 (w̄fΛ) ·N

)
I×J ·D

− 1
2 (µ) ·D− 1

2 (w̄bΛ) ·D 1
2 (w̄bΛ)||

= ||
(
D−

1
2 (w̄fΛ) ·N ·D− 1

2 (w̄bΛ) ·D 1
2

(
w̄bΛ ◦

1

µ

))
I×J ||

= ||
(
R(N, w̄Λ) ·D 1

2

(
w̄bΛ ◦

1

µ

))
I×J ||,

here w̄bΛ ◦ 1
µ := (

w̄b
Λ(1)
µ(1) , ...,

w̄b
Λ(m)
µ(m) ). Let

J ′ := {j ∈ J :
w̄bΛ(j)

µ(j)
≥ `

2
}

and J̄ = J \ J ′. Then

||
(
R(N, w̄Λ) ·D 1

2

(
w̄bΛ ◦

1

µ

))
I×J || ≥ ||

(
R(N, w̄Λ) ·D 1

2

(
w̄bΛ ◦

1

µ

))
I×J′ || ≥

√
`

2
||
(
R(N, w̄Λ)

)
I×J′ , ||

here the last step follows from the definition of J ′. Therefore,

||
(
R(N, w̄Λ)

)
I×J′ || ≤

√
π

`
||(D− 1

2 (w̄fΛ) ·N)I×J ||∞→2 ≤ c
√

Λ log(ek/`).

Next, we bound the weight of the columns that are excluded from J ′.∑
j∈J̄

w̄bΛ(j) ≤ `

2

∑
j∈J̄

µ(j) ≤ `

2

∑
j∈[k]

µ(j) =
`

2
.

�

Applying the above lemma on
(
R(N, w̄Λ)

)ᵀ
, in place of

(
R(N, w̄Λ)

)
), from the symmetry we get:

Lemma 26. With probability ≥ 1 − 3k−3, for any max( log4 k
Λ , k exp−

Λ
8

Λ ) ≤ ` ≤ k, and any
I, J ⊆ [k] of size |I|, |J | = `, there exists a subset I ′ ⊆ I such that

∑
i∈I′ w̄

f
Λ(i) ≤ `/2 and

||
(
R(N, w̄Λ)

)
I′×J || ≤ c

√
Λ log(ek/`).

The next lemma bounds the norm of a matrix using the norm of its sub-matrices. Incorporating the
above bound on the norm of submatrices, this will complete the proof of theorem 3.
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Lemma 27. Let A ∈ Rk×m and I1, I2, I3, ..., It be t disjoint subsets of [k] such that ∪tj=1Ij = [k].

Then ||A|| ≤
√∑t

j=1 ||AIj ||2.

Proof of the above lemma is given in Appendix G.

Proof of theorem 22: Main component in the proof is Lemma 25 and Lemma 26. We need to apply
these lemmas in multiple rounds.

For round j, we apply these Lemmas for some, ` = `j and I = Ij , and J = Jj such that
|Ij |, |Jj | ≤ k/2j−1, where `j , Ij and Jj are defined later.

First applying Lemma 26 we get, a subset I ′j ⊆ Ij such that,

||
(
R(N, w̄Λ)

)
I′j×Jj

|| ≤ O(
√
j · Λ), (20)

and the weight of the excluded rows Ij \ I ′j is at most
∑
i∈Ij\I′j

w̄fΛ(i) ≤ k/2j . Since weight of
each row is at-least 1, this implies that the number of rows excluded in round j are also at most
|Ij \ I ′j | ≤ k/2j .

Similarly, applying Lemma 25 we get, a subset J ′j ⊆ Jj such that
∑
i∈Jj\J′j

w̄bΛ(i) ≤ k/2j ,

||
(
R(N, w̄Λ)

)
Ij×J′j

|| ≤ O(
√
j · Λ). (21)

and
∑
i∈Jj\J′j

w̄bΛ(i) ≤ k/2j and |Jj \ J ′j | ≤ k/2j . Since zeroing out rows from a matrix reduces
the spectral norm, the above equation gives

||
(
R(N, w̄Λ)

)
(Ij\I′j)×J′j

|| ≤ O(
√
j · Λ). (22)

In round j = 1, we start with `1 = k and I1 = J1 = [k]. For round j > 1 we chose, `j :=
`j−1

2 ,
Ij := Ij−1 \ I ′j−1 and Jj := Jj−1 \ J ′j−1. Note that Ij and Jj are the excluded rows and columns in
the concentration bounds of the previous round.

We use this procedure for t = dlog(k/εk)e rounds, so that the weight and the number of excluded
rows, and columns, in the end is at-most εk.

LetMj := Ij × Jj , which is of size k/2j−1 × k/2j−1, Rj := I ′j × Jj and Cj := Ij \ I ′j × J ′j =
Ij+1×J ′j . Note that equation 20 and 22 gives the concentration bound for sub-matrices corresponding
toRj and Cj , respectively. Figure 1 shows this construction.

Figure 1: Construction of submatrices in proof of theorem 3.
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This construction decomposes the submatrix indexed byMj into three submatrices(
R(N, w̄Λ)

)
Mj

=
(
R(N, w̄Λ)

)
Rj

+
(
R(N, w̄Λ)

)
Cj

+
(
R(N, w̄Λ)

)
Mj+1

.

Applying the above equation recursively,(
R(N, w̄Λ)

)
=
(
R(N, w̄Λ)

)
M1

=

t∑
j=1

(
R(N, w̄Λ)

)
Rj

+

t∑
j=1

(
R(N, w̄Λ)

)
Cj

+
(
R(N, w̄Λ)

)
Mt+1

=
(
R(N, w̄Λ)

)
∪t

j=1Rj
+
(
R(N, w̄Λ)

)
∪t

j=1Cj
+
(
R(N, w̄Λ)

)
Mt+1

,

where the last equality follows asRj’s and Cj’s are disjoint. Then

||
(
R(N, w̄Λ)

)
([k]×[k])\Mt+1

|| = ||R(N, w̄Λ)−
(
R(N, w̄Λ)

)
Mt+1

||

= ||
(
R(N, w̄Λ)

)
∪t

j=1Rj
+
(
R(N, w̄Λ)

)
∪t

j=1Cj
||

(a)
≤ ||

(
R(N, w̄Λ)

)
∪t

j=1Rj
||+ ||

(
R(N, w̄Λ)

)
∪t

j=1Cj
||

(b)
≤
√∑t

j=1

(
R(N, w̄Λ)

)
Rj

+
√∑t

j=1

(
R(N, w̄Λ)

)
Cj

(c)
≤ 2 · O(

√∑t
j=1 j · Λ) ≤ O(t

√
Λ) = O(log(k/εk)

√
Λ),

where (a) follows from triangle inequality, (b) follows from Lemma 27, and (c) follows from
inequalities (20) and (22). Note that

∑
i∈It+1

w̄fΛ(i) =
∑
i∈It\I′t

w̄fΛ(i) ≤ k/2t ≤ εk and, similarly,∑
i∈Jt+1

w̄bΛ(i) ≤ εk.

Recall thatMt+1 = It+1 × Jt+1, therefore zeroing out rows It+1 from ([k]× [k]) \Mt+1 results
in ([k] \ It+1 × [k]). Since zeroing out rows of a matrix reduces the spectral norm, from the above
equation we get

||
(
R(N, w̄Λ)

)
([k]\It+1×[k])

|| ≤ ||
(
R(N, w̄Λ)

)
([k]×[k])\Mt+1

|| ≤ O(log(k/εk)
√

Λ),

where
∑
i∈It+1

w̄fΛ(i) =
∑
i∈It\I′t

w̄fΛ(i) ≤ k/2t ≤ εk. Letting It+1 to be the set of contaminated
rows completes the proof of the theorem. �

In the next subsection, we derive a useful implication of Lemma 24.

E.1 Proof of Lemma 20

The lemma upper bounds the sum of the absolute difference between the expected and observed
samples in each row of X . We restate the lemma.
Lemma. With probability ≥ 1− 3k−3,∑

i

|
∑
j

Ni,j | = O(k
√
navg).

Proof. To prove the above Lemma we use Lemma 24, for Λ = navg, ` = k and I = J = [k]. The
lemma implies that w.p. ≥ 1− 3/k3,

max
v∈{−1,1}k

||D− 1
2 (w̄f ) ·N · v|| = ||D− 1

2 (w̄f ) ·N ||∞→2 ≤ O(
√
navgk).

From the definition of `∞ → `2 norm,

max
v∈{−1,1}k

||D− 1
2 (w̄f ) ·N · v|| = ||D− 1

2 (w̄f ) ·N ||∞→2.

In the above equation choosing v = (1, 1, ..., 1) and taking the square on the both side, we get∑
i

(∑
j

Ni,j√
w̄f (i)

)2

≤ ||D− 1
2 (w̄f ) ·N ||2∞→2 ≤ O(navgk).
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The above equation can be rewritten as,∑
i

|
∑
j Ni,j |2

w̄f (i)
≤ O(navgk).

Then∑
i

|
∑
j

Ni,j | =
∑
i

|
∑
j Ni,j |√
w̄f (i)

·
√
w̄f (i) ≤

(∑
i

|
∑
j Ni,j |2

w̄f (i)

) 1
2 ·
(∑

i

w̄f (i)
) 1

2

= O(k
√
navg).

here we used the Cauchy-Schwarz inequality, the previous equation, and Lemma 18 that states∑
i w̄

f (i) ≤ 2k. �

F Counterexample

The authors of [LLV17] posed the following question, whose affirmative answer may have simplified
low-rank matrix recovery. They posed the question for Bernoulli-parameter matrix.

Let M ∈ Rk×k be a Bernoulli-parameter matrix where ∀i, j ∈ [k], ||M ||i,∗, ||M ||∗,j ≤ nmax, for
some nmax.

Let X = [Xi,j ], where Xi,j ∼ Ber(Mi,j), be the observation matrix of M , and let X0 be the
matrix obtained by zeroing-out the rows and columns of X whose total count is > 2nmax. Does X0

converges to M w.h.p. as

||X0 −M || = O(
√
nmax)?

Unfortunately, the following counterexample answers this question in negative. Therefore additional
work, such as presented in this paper, is needed to recover low-rank matrices.

For any k, choose any nmax ≤
√

log k/8 that grows with k, and consider the block diagonal matrix

M =


B1

B2

. . .
B( k

2nmax
−1)

B k
2nmax


consisting of k/(2nmax) (for simplicity assume it is an integer) identical blocks Bi = B, each a
submatrix of size 2nmax × 2nmax whose entries are all 1/2. Except for the blocks Bi’s, all the other
entries of M are zero. Then M satisfies ∀i, j ∈ [n], ||M ||i,∗ = ||M ||∗,j = nmax.

Note that, for the above matrix navg = ||M ||1/k = nmax.

The observation matrix of M is

X =


B̂1

B̂2

. . .
B̂( k

2nmax
−1)

B̂ k
2nmax

 .

Note that X has non-zero entries only in locations corresponding to the diagonal blocks B. Also,
∀i, j ∈ [k], ||X||i,∗, ||X||∗,j < 2nmax. Therefore zeroing out rows and columns of X with more than
nmax ones would not affect it and X0 = X . From Theorem 6,

||X −M || ≥ max
i
||B̂i −Bi||.

Since B̂i is the observation matrix for the 2nmax × 2nmax block Bi whose entries are all 1/2, and
nmax = o(

√
log k),

Pr
(
B̂i = 0

)
= (1/2)4n2

max > 1/
√
k.
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The probability that the whole 2nmax × 2nmax block B̂i is 0, is (1/2)4n2
max , which since nmax =

o(
√

log k), is > 1/
√
k. Hence w.h.p., at least one of the block j ∈ [ k

2nmax
] in X is zero. Hence w.h.p.,

||X −M || ≥ ||Bj || = nmax � Ω(
√
nmax).

This counterexample answers the question raised by the authors of [LLV17] in negative.

We note that the same counterexample works for the regularization R(X −M, w̄) used in this paper.
Because if block B̂j of X is zero, from the definition of w̄, it is easy to see that for the rows and
columns corresponding to the block B̂j , the regularization weights are 1, which implies that

||R(X −M, w̄)|| ≥ ||Bj || = nmax,

extending the counterexample for the regularization R(X −M, w̄) as well.

G Linear Algebra Proofs

G.1 Proof of Lemma 4

Lemma. For any rank-r matrix A ∈ Rk×kr , matrix B ∈ Rk×k, and weights w,

||A−B(r,w)||1 ≤
√
r · (

∑
iw

f (i))(
∑
j w

b(j)) · ||R(A−B,w)||.

Proof. Recall that
B(r,w) := D

1
2 (wf ) ·R(B,w)(r) ·D 1

2 (wb),

where R(B,w) = D−
1
2 (wf ) · B · D− 1

2 (wb) is regularized matrix B and R(B,w)(r) is its rank
r-truncated SVD.

We first upper bound the spectral norm of R(A,w)− R(B,w)(r) in terms of the spectral norm of
R(A−B,w). By Weyl’s Inequality 7, and the rank r of A,

σr+1(R(B,w)) ≤ σr+1(R(A,w)) + ||R(A,w)−R(B,w)|| = ||R(A−B,w)||.

Hence by the triangle inequality and the salient property of truncated SVD’s,

||R(A,w)−R(B,w)(r)|| ≤ ||R(B,w)(r) −R(B,w)|| + ||R(A,w)−R(B,w)||
= σr+1(R(B,w)) + ||R(A−B,w)|| ≤ 2||R(A−B,w)||.

Since A−BSVD
r is the difference of two rank-r matrices, it has rank ≤ 2r. Then applying Lemma 17

for matrix (R(A,w)−R(B,w)(r)), and noting that A = D
1
2 (wf ) ·R(A,w) ·D 1

2 (wb) completes
the proof. �

G.2 Proof of Lemma 9

Lemma. For any matrix A and weight vectors wf and wb with positive entries

||D− 1
2 (wf ) ·A ·D− 1

2 (wb)|| ≤

√
max
i

||Ai,∗||1
wf (i)

×max
j

||A∗,j ||1
wb(j)

.

Proof. For a unit vector v = (v(1), . . . ,v(m)) ∈ Rm,

||D− 1
2 (wf ) ·A ·D− 1

2 (wb) · v||2 =
∑
i

(∑
j

Ai,jv(j)√
wf (i) · wb(j)

)2

≤
∑
i

(∑
j

|Ai,j ||v(j)|√
wf (i) · wb(j)

)2

=
∑
i

(∑
j

√
|Ai,j |
wf (i)

√
|Ai,j |
wb(j)

|v(j)|
)2
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(a)
≤
∑
i

((∑
j

|Ai,j |
wf (i)

)(∑
j

|Ai,j |
wb(j)

v(j)2
))
≤ max

i′

||Ai′,∗||1
wf (i′)

∑
i

∑
j

( |Ai,j |
wb(j)

v(j)2
)

= max
i′

||Ai′,∗||1
wf (i′)

∑
j

(
v(j)2

∑
i

|Ai,j |
wb(j)

)
≤ max

i′

||Ai′,∗||1
wf (i′)

∑
j

v(j)2 ||A∗,j ||1
wb(j)

≤ max
i′

||Ai′,∗||1
wf (i′)

×max
j′

||A∗,j′ ||1
wb(j′)

∑
j

v(j)2 = max
i′

||Ai′,∗||1
wf (i′)

×max
j′

||A∗,j′ ||1
wb(j′)

,

where (a) uses the Cauchy-Schwarz inequality. Observing that above is true for arbitrary unit vector
v completes the proof. �

G.3 Proof of Lemma 10

Lemma. Let A be an k ×m matrix such that σ1(A) ≤ α and σr+1(A) ≤ β. Then the number of

disjoint row subsets I ⊂ [k] such that ||AI || > 2β is at most
(
rα
β

)2

.

Proof. Let A =
∑min{k,m}
i=1 σi(A)uivi

ᵀ be the SVD decomposition of A. Recall that A(r) =∑r
i=1 σi(A)uivi

ᵀ and let B = A−A(r).
Note that ||A(r)|| = σ1(A) ≤ α and the matrix A(r) has rank r i.e. σr+1(A(r)) = 0. And
||B|| = σ1(B) = σr+1(A) ≤ β.
To prove the lemma we upper bound the number of disjoint subsets I ⊂ [k] such that ||AI || > 2β.
Let I ⊂ [k] be one such subset such that ||AI || > 2β. Then

||AI ||
(a)
≤ ||A(r)

I ||+ ||BI ||
(b)
≤ ||A(r)

I ||+ ||B|| ≤ ||A
(r)
I ||+ β,

where inequality (a) follows from the triangle inequality and (b) follows from Theorem 6. Hence,

||A(r)
I || ≥ β.

Note that since row span of A(r), and hence A(r)
I is span{v1, v2, ..., vr}, therefore there exists a

unit vector, v =
∑r
i=1 aivi (here

∑r
i=1 a

2
i = 1, since v is a unit vector), such that ||A(r)

I v|| ≥ β.
Therefore,

β ≤ ||A(r)
I v|| = ||A(r)

I

r∑
i=1

aivi|| ≤
r∑
i=1

|ai| ||A(r)
I vi|| ≤

r∑
i=1

||A(r)
I vi||. (23)

Let I1, I2, ...., It be the t disjoint blocks such that ||AIj || > 2β, ∀j ∈ [t]. Next,

r∑
i=1

||A(r)vi|| ≥
r∑
i=1

||A(r)

∪t
j=1Ij

vi|| =
r∑
i=1

||
t∑

j=1

A
(r)
Ij
vi||

(a)
=

r∑
i=1

√√√√ t∑
j=1

||A(r)
Ij
vi||2

(b)
≥

r∑
i=1

∑t
j=1 ||A

(r)
Ij
vi||

√
t

(c)
≥
√
tβ.

Here equality (a) follows since A(r)
Ij
vi’s for j ∈ [t] and fixed i are orthogonal. Inequality (b) follows

from the AM-GM inequality (c) follows from (23).

We also have
∑r
i=1 ||A(r)vi|| =

∑r
i=1 σi(A) ≤ rσ1(A) ≤ rα. Therefore we get, t ≤

(
rα
β

)2

. �

G.4 Proof of Lemma 16

Lemma. LetA = B+C andA =
∑
i σi(A)uivi

ᵀ be the SVD decomposition ofA. And σr+1(B) ≤
β and ||Cvi|| ≤ 2β for i ∈ [2r]. Then σ2r(A) ≤ 4β.
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Proof. Let A(2r) =
∑2r
i=1 σi(A)uivi

ᵀ be rank 2r truncated SVD of A, then

σi(A
(2r)) = σi(A), ∀ i ≤ 2r (24)

and

A(2r) =

2r∑
i=1

Avivi
ᵀ =

2r∑
i=1

(B + C)vivi
ᵀ = B̂ + Ĉ. (25)

Here B̂ =
∑2r
i=1Bvivi

ᵀ and Ĉ =
∑2r
i=1 Cvivi

ᵀ.

Since vi’s are orthogonal unit vector,
∑2r
i=1 vivi

ᵀ is a projection matrix for subspace S =
span{v1, v2, .., v2r}. And for any Projection matrix P we have, ||Pu|| ≤ ||u||. Therefore,

||B̂ᵀu|| = ||(
2r∑
i=1

vivi
ᵀ)Bᵀu|| ≤ ||Bᵀu||. (26)

Next, using Courant-Fischer theorem, ∀ i ≤ min{k,m}, there exists a subspace S∗i with dimension
dim(S∗i ) = i, such that

σi(B̂
ᵀ) = min

u∈S∗i ,||u||=1
||B̂ᵀu||

(a)
≤ min
u∈S∗i ,||u||=1

||Bᵀu||

≤ max
S:dim(S)=i

min
u∈S,||u||=1

||Bᵀu||

(b)
= σi(B

ᵀ) = σi(B),

where inequality (a) uses (26) and (b) again from Courant-Fischer theorem. Therefore,

σi(B) ≥ σi(B̂), ∀ i ≤ min{k,m}. (27)
Using (24), (25), Weyl’s inequality 7 and (27):

σ2r(A) = σ2r(A
(2r)) ≤ σr+1(B̂) + σr(Ĉ) ≤ σr+1(B) + σr(Ĉ) ≤ β + σr(Ĉ). (28)

Now

ĈĈᵀ =

2r∑
i=1

(Cvi)(Cvi)
ᵀ =

2r∑
i=1

ûj ûj
ᵀ.

Here ûj = Cvi, hence ||ûj || ≤ 2β. Note that ĈĈᵀ and ûj ûjᵀ’s are Hermitian matrices. Let λi(.)
denotes the ith largest eigenvalue of the matrix. Then

λi(ĈĈ
ᵀ) = σ2

i (Ĉ).

For rank-1 matrices ûj ûjᵀ,

λ1(ûj ûj
ᵀ) = ||ûj ||2 ≤ 4β2 and λi(ûj ûj

ᵀ) = 0, ∀j ∈ [2r], i ≥ 2.

Then using Lidskii’s theorem [Bha13], leads to
r∑
i=1

λi
( 2r∑
i=1

ûj ûj
ᵀ) ≤ r∑

i=1

λi
( 2r−1∑
i=1

ûj ûj
ᵀ)+

r∑
i

λi
(
û2rû2r

ᵀ)
≤

r∑
i=1

λi
( 2r−1∑
i=1

ûj ûj
ᵀ)+ 4β2.

By repeated application of Lidskii’s theorem, we get
r∑
i=1

λi
( 2r∑
i=1

ûj ûj
ᵀ) ≤ 8rβ2.

Since λi’s are decreasing, it follows

rλr
( 2r∑
i=1

ûj ûj
ᵀ) ≤ 8rβ2 ⇒ λr(ĈĈ

ᵀ) = σ2
r(Ĉ) ≤ 8β2. (29)

Combining (28) and (29) we get the statement of the lemma. �
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G.5 Proof of Lemma 17

Lemma. For any rank-r matrix A ∈ Rk×m and weight vectors wf and wb with non-negative entries

||D 1
2 (wf ) ·A ·D 1

2 (wb)||1 ≤
√
r(
∑
i w

f (i))(
∑
j w

b(j)) · ||A||.

Proof.

||A||1 =
∑
i

∑
j

√
wf (i) · wb(j)|Aij |

(a)
≤
∑
i

√
wf (i)

√
(
∑
jA

2
ij)(
∑
jw

b(j))

=
√∑

jw
b(j)

∑
i|
√
wf (i)|

√
(
∑
jA

2
ij)

(b)
≤
√∑

jw
b(j)

√
(
∑
iw

f (i))(
∑
i

∑
jA

2
ij),

(c)
=
√∑

jw
b(j)

√
(
∑
iw

f (i))||AI×J ||F
(d)
≤
√
r(
∑
j w

b(j))(
∑
i∈Iw

f (i)) · ||AI×J ||,

where (a) and (b) follow from the Cauchy-Schwarz Inequality, (c) from the definition of the Frobenius
norm

||A||F :=
√∑

i,jA
2
ij ,

and (d) as
||A||F ≤

√
rank(A)||A||. �

G.6 Proof of Lemma 27

Lemma. Let A ∈ Rk×m and I1, I2, I3, ..., It be t disjoint subsets of [k] such that ∪tj=1Ij = [k].

Then ||A|| ≤
√∑t

j=1 ||AIj ||2.

Proof. Let v ∈ Rm be a unit vector. Then,

Av =

t∑
j=1

AIjv =

t∑
j=1

wj .

Here wj = AIjv. Since Ij’s are disjoint, wj’s are orthogonal.

||Av|| =

√√√√ t∑
j=1

||wj ||2 ≤

√√√√ t∑
j=1

max
||v∗||=1

||AIjv∗||2 =

√√√√ t∑
j=1

||AIj ||2.

Noting that the above bound holds for any unit vector v ∈ Rm completes the proof. �
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