
A Related Work

The dynamic treatment regime literature [41, 36] addressed many early questions around using
observational data for sequential decision making, and developed a rich set of methods adapted for
epidemiological questions. The reinforcement learning (RL) community is increasingly interested in
developing theory and methods for the related problem of batch RL across a broad set of applications,
because of new models and data availability (see e.g. [55, 29, 27, 54, 25, 11, 8]).

The majority of OPE methods for batch reinforcement learning rely on sequential ignorability
(though often unstated). There is an extensive body of work for off-policy policy evaluation and
optimization under this assumption, including doubly robust methods [16, 53] and recent work that
provides semiparametric efficiency bounds [19]; often the behavior policy is assumed to be known.
Notably, Liu et al. [29] highlights how estimation error in the behavioral policy can bias value
estimates, and Nie et al. [37], Hanna et al. [10] provides OPE estimators based on an estimator of the
behavior policy. When sequential ignorability doesn’t hold, the expected cumulative rewards under
an evaluation policy cannot be identified from observable data. All of the above estimators are biased
in the presence of unobserved confounding, since neither the outcome model nor the importance
sampling weights can correct for the effect of the unobserved confounder.

The do-calculus and its sequential backdoor criterion on the associated directed acyclic graph [39]
gives identification results for OPE. Like sequential ignorability, this precludes the existence of
unobserved confounding. Hence, methods that assume the sequential backdoor criterion will be
biased in their presence.

We study the effects of unobserved confounding on OPE in sequential decision making problems,
deriving bounds on the performance of the evaluation policy when sequential ignorability is relaxed.
For problems where only one decision is made, a variety of methods developed in the econometrics,
statistics, and epidemiology literature estimate bounds on treatment effects and expected rewards.
Manski [33] developed bounds that only assume bounded rewards, though they are too conservative
to identify whether one action is superior to another. Then, Manski [33] and other works posit models
that bound the effect of unobserved confounding on the outcome [43, 3], or—like ours—on the
actions taken by the behavior policy [4, 47, 15]. Recent work studied approaches that can apply to
heterogeneous treatment effects [57, 22], policy evaluation [18], and policy optimization [20].

Tennenholtz et al. [52] studied OPE for partially observable Markov decision processes (POMDPs)
and developed an identification strategy based on the independence structure of POMDP, similar to
single decision work of [35]/not assume the existence of such variables or independence structures
and seek to develop a lower bound on OPE. This also distinguishes our work from prior work which
focuses on an algorithmic, scalable approach for when a single, time-invariant confounder is present,
and which does not seek to present bounds on the OPE [30].

In sequential settings, Zhang and Bareinboim [58] derived partial identification bounds on policy
performance with limited restrictions on the influence of the unobserved confounder on observed
decisions, much like the single decision work of Manski [33], which they use to guide online RL
algorithms. Unfortunately, these bounds can be too conservative to guide selection of policies. Robins
et al. [43], Robins [42], Brumback et al. [3] instead posit a model for how confounding in each time
step affects the outcome of interest and derive bounds under this model. Their work is motivated by
potential confounding in the effects of dynamic treatment regimes for HIV therapy on CD4 counts in
HIV-positive men. Our work is complementary to these in that we instead assume limited influence
of the unobserved confounder on the behavior policy’s actions.

Yadlowsky et al. [57] takes a similar approach as ours to bound the effect of confounding on treatment
effects when there is only one action taken. Our approach allows for comparing sequences of actions
derived according to an evaluation policy, by adjusting for the way actions in all time steps depend on
the current states and history, and effect future states and rewards. One notable challenge that only
occurs in sequential problems is adjusting for actions that occur after the confounded decision at
time t

?; these actions depend on the confounded decision through the history generated. A natural
approach is to individually bound the potential outcomes E[Y (Ā1:t?�1, at?:T )] for all at?:T , where
each bound is given by a loss minimization problem. Under this approach—which is analogous to
that of Yadlowsky et al. [57]—computing a lower bound to E[Y (Ā1:T )] requires

Q
T

t=t?
|At| loss

minimization problems, making it statistically and computationally intractable when t
? is small (e.g.

t
? = 1 in our sepsis example). Instead, we consider averaged outcomes E[Y (Ā1:t?�1, at? , Āt?+1:T )]
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in Theorem 2, which allows us to obtain a lower bound on E[Y (Ā1:T )] by solving |At? | loss
minimization problems.

B Proof of basic lemmas

Before we give the proof of our main results, we give a set of essentially standard lemmas that
we build on in the rest of the paper. In the following, we use a notational shorthand for (nested)
expectations under observable distributions: for all 1  t  T and 1  t1  t2  T ,

Et

at
[X] := E[X | Ht, At = at] and (5a)

Et1:t2
at1:t2

[X] := Et1
at1

[Et1+1
at1+1

[· · ·Et2
at2

[X] · · · ]]. (5b)

Similarly, we write for all 1  t0  t1  t2  T

Et2
at1:t2

[X] := E[X | Ht(A1:t1�1, at1:t2�1), At2 = at2 ] and (6a)

Et1:t2
at0:t2

[X] := Et1
at0:t1

[Et1+1
at0:t1+1

[· · ·Et2
at0:t2

[X] · · · ]]. (6b)

The cumulative rewards E[Y (Ā1:T )] under the candidate policy has an alternate representation, which
we draw on heavily in the rest of the proofs. See Section B.1 for a derivation.
Lemma 4. If sequential ignorability (Assumption B) holds for the evaluation policy ⇡̄, we have the
identity

E
⇥
Y (Ā1:T )

⇤
=
X

a1:T

E
"
Y (a1:T )

TY

t=1

⇡̄t(at | H̄t(a1:t�1))

#
.

To ease notation, denote each integrand in the above sum by

Y (a1:T ; ⇡̄) := Y (a1:T )
TY

t=1

⇡̄t(at | H̄t(a1:t�1)). (7)

We will also use the following two identities heavily. Recall that we denote by W := {W (a1:T )}a1:T ,
the tuple of all potential outcomes, which takes values in W . See Section B.2 for a proof of the
following result.
Lemma 5. Let sequential ignorability (Assumption B) hold for the behavioral policy ⇡ in the time
steps t1 : t2, where 1  t1 < t2  T . Then, for any measurable f : W ! R

E[f(W ) | Ht1(a1:t1�1)] = E
h
Et1:t2
a1:t2

[f(W )] | Ht1(a1:t1�1)
i

for any a1:t2 2 A1 ⇥ · · ·⇥At2 .

The following identity—whose proof we give in Section B.3—is a simple consequence of the
definition of conditional expectations, and the tower law.
Lemma 6. For any measurable function f : W ! R, and 1  t1  t2  T ,

Et1:t2
a1:t2

f(W ) = E
"
f(W )

t2Y

t=t1

{AT = at}

⇡t(at | Ht(a1:t�1))
| Ht1(a1:t1�1)

#

B.1 Proof of Lemma 4

Similar to the notational shorthand (5), define

Et

a1:t
[X] := E[X | H̄t(a1:t�1), Āt = at] and Et:T

a1:T
[X] = Et

a1:t
[Et+1

a1:t+1
[· · ·ET

a1:T
[X] · · · ]].

Begin by noting that by definition of conditional expectation

E[Y (Ā1:T ) | H̄1] =
X

a12A1

⇡̄(a1 | H̄1)E[Y (a1, Ā2:T ) | H̄1, Ā1 = a1]

=
X

a12A1

⇡̄(a1 | H̄1)E
1
a1
[Y (a1, Ā2:T )],
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and similarly, conditioning on H̄2(a1) = (S1, Ā1 = a1, S2(a1)) yields

E[Y (a1, Ā2:T ) | H̄2(a1)] =
X

a22A2

⇡̄2(a2 | H̄2(a1))E[Y (a1:2, Ā3:T ) | H̄2(a1), Ā2 = a2]

=
X

a22A2

⇡̄2(a2 | H̄2(a1))E
2
a1:2

[Y (a1:2, Ā3:T )].

From the tower law, the above two equalities yield

E[Y (Ā1:T )] = E
"

X

a12A1

⇡̄1(a1 | H̄1)E
"
X

a22A
⇡̄2(a2 | H̄2(a1)) · E[Y (a1:2, Ā3:T ) | H̄2(a1), Ā2 = a2]

�����H̄1, Ā1 = a1

##

= E
"

X

a12A1

⇡̄1(a1 | H̄1)E
1
a1

"
X

a22A
⇡̄2(a2 | H̄2(a1)) · E

2
a1:2

[Y (a1:2, Ā3:T )]

##
.

Proceeding iteratively as before and expanding each E[Y (a1:t�1, Āt:T ) | H̄t(a1:t�1)], we arrive at

E[Y (Ā1:T )] =

E
"
X

a12A1

⇡̄1(a1 | H̄1)E
1
a1

"
E2
a1:2

"
X

a22A2

⇡̄2(a2 | H̄2(a1))E
3
a1:3

⇥

"
· · ·

X

aT2AT

⇡̄T (aT | H̄T (a1:T�1))E
T

a1:T
[Y (a1:T )]

####
.

Now, we proceed backwards from the inner most expectation to take the outer sum inside the
expectation. By Assumption B, we have

X

aT2AT

⇡̄T (aT | H̄T (a1:T�1))E
T

a1:T
[Y (a1:T )] =

X

aT2AT

⇡̄T (aT | H̄T (a1:T�1)) · E
"
Y (a1:T )

����� H̄T (a1:T�1)

#

= E
"

X

aT2AT

⇡̄T (aT | H̄T (a1:T�1)) · Y (a1:T )

���� H̄T (a1:T�1)

#
.

Noting that E[· | H̄T (a1:T�1)] = E[· | H̄T�1(a1:T�2), ST (a1:T�1), ĀT�1=aT�1], the tower law
and preceding display yield

ET�1
a1:T�1

"
X

aT2AT

⇡̄T (aT | H̄T (a1:T�1)) · E
T

a1:T
[Y (a1:T )]

#
= ET�1

a1:T�1

"
X

aT2AT

⇡̄T (aT | H̄T (a1:T�1)) · Y (a1:T )

#
.

We repeat an identical process for the sum over aT�1. Similarly as above, applying Assumption B
gives

X

aT�12AT�1

⇡̄T�1(aT�1 | H̄T�1(a1:T�2)) · E
T�1
a1:T�1

"
X

aT2AT

⇡̄T (aT | H̄T (a1:T�1)) · Y (a1:T )

#

= E

2

4
X

aT�12AT�1

⇡̄T�1(aT�1 | H̄T�1(a1:T�2))
X

aT2AT

⇡̄T (aT | H̄T (a1:T�1)) · Y (a1:T )

���� H̄T�1(a1:T�2)

3

5 .

By the tower law, we again get

ET�2
a1:T�2

2

4
X

aT�12AT�1

⇡̄T�1(aT�1 | H̄T�1(a1:T�2))E
T�1
a1:T�1

"
X

aT2AT

⇡̄T (aT | H̄T (a1:T�1)) · Y (a1:T )

#3

5

= ET�2
a1:T�2

2

4
X

aT�12AT�1

⇡̄T�1(aT�1 | H̄T�1(a1:T�2)) ·
X

aT2AT

⇡̄T (aT | H̄T (a1:T�1)) · Y (a1:T )

3

5 .

Iterating the above process over the indices t = T � 2, . . . , 1, we arrive at the desired formula.
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B.2 Proof of Lemma 5

From the tower law and sequential ignorability of ⇡,

E[f(W ) | Ht1(a1:t1�1)] = E[f(W ) | Ht1(a1:t1�1), At1 = at1 ]

= E[E[f(W ) | Ht1+1(a1:t1)] | Ht1(a1:t1�1), At1 = at1 ]

Applying the tower law to the inner expectation, and applying sequential ignorability again, we get

E[f(W ) | Ht1+1(a1:t1)] = E [E[f(W ) | Ht1+2(a1:t1+1)] | Ht1+1(a1:t1), At1+1 = at1+1]

Plugging this back into the original display, we have

E[f(W ) | Ht1(a1:t1�1)] = Et1:t1+1
a1:t1+1 [E[f(W ) | Ht1+2(a1:t1+1)]]

Repeating this argument over t = t1 + 2, . . . , t2, we conclude the result.

B.3 Proof of Lemma 6

From the definition of conditional expectations, we have

E[f(W ) | Ht(a1:t�1), At = at] = E

f(W )

{At = at}

⇡t(at | Ht(a1:t�1))
| Ht(a1:t�1)

�
.

The result follows by applying this equality at t = t2, applying the tower law, and iterating the same
argument over t = t2 � 1, . . . , t1.

C Proof of key identities

C.1 Proof of Lemma 1

Recalling the notation (7), sequential ignorability of ⇡̄ and Lemma 4 gives the following representation

E
⇥
Y (Ā1:T )

⇤
=
X

a1:T

E [Y (a1:T ; ⇡̄)] .

We deal with each term E[Y (a1:T ; ⇡̄)] in the summation separately, for each fixed sequence of actions
a1:T . From sequential ignorability of ⇡ and Lemma 5,

E[Y (a1:T ; ⇡̄)] = E[E1
a1
[· · ·ET

a1:T
[Y (a1:T ; ⇡̄)] · · · ]] = E[E1:T

a1:T
[Y (a1:T ; ⇡̄)]].

Applying Lemma 6, we get

E[Y (a1:T ; ⇡̄)] = E
"
Y (a1:T ; ⇡̄)

TY

t=1

{At = at}

⇡t(at | Ht(a1:t�1))

#
.

Summing the preceeding display over a1:T , we obtain the desired result.

C.2 Proof of Proposition 1

From Lemma 4, we have

E[Y (Ā1:T )] = E
"
X

a1:T

Y (a1:T )
TY

t=1

⇡̄t(at | H̄t(a1:t�1))

#
.

Since sequential ignorability for ⇡ holds at any t < t
?, Lemma 5 implies that the preceeding display

is equal to

E

2

4
X

a1:t?�1

E1:t?�1
a1:t?�1

"
X

at?:T

Y (a1:T )
TY

t=1

⇡̄t(at | H̄t(a1:t�1))

#3

5 .
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Applying Lemma 6 to the inner expectations, we get

E[Y (Ā1:T )] = E

2

4
X

a1:t?�1

t
?�1Y

t=1

{At = at}

⇡t(at | Ht(a1:t�1))

X

at?:T

Y (a1:T )
TY

t=1

⇡̄t(at | H̄t(a1:t�1))

3

5

= E
"
t
?�1Y

t=1

⇡̄t(At | H̄t(A1:t�1))

⇡t(At | Ht)

X

at?:T

Y (A1:t?�1, at?:T )
TY

t=t?

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))

#
.

From the tower law, we arrive at

E[Y (Ā1:T )] = E
"
E
"
t
?�1Y

t=1

⇡̄t(At | H̄t(A1:t�1))

⇡t(At | Ht)

X

at?:T

Y (A1:t?�1, at?:T )
TY

t=t?

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))

����� Ht?

##

= E
"
t
?�1Y

t=1

⇡̄t(At | H̄t(A1:t�1))

⇡t(At | Ht)
E
"
X

at?:T

Y (A1:t?�1, at?:T )
TY

t=t?

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))

����� Ht?

##
.

(9)

Applying the tower law to the inner expectation in the final display, we can write

E
"
X

at?:T

Y (A1:t?�1, at?:T )
TY

t=t?

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))

����� Ht?

#

= E
"
E
"
X

at?:T

Y (A1:t?�1, at?:T )
TY

t=t?

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))

����� Ht? , At?

# ����� Ht?

#

=
X

at? ,a
0
t?

⇡̄t?(at? | H̄t?(A1:t?�1))⇡t?(a
0
t? | Ht?)

⇥ E

2

4
X

at?+1:T

Y (A1:t?�1, at?:T )
TY

t=t?+1

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))

����� Ht? , At? = a
0
t?

3

5

=
X

at? ,a
0
t?

⇡̄t?(at? | H̄t?(A1:t?�1))⇡t?(a
0
t? | Ht?)

⇥ E

2

4L(W ;Ht? , at? , a
0
t?)

X

at?+1:T

Y (A1:t?�1, at?:T )
TY

t=t?+1

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))

����� Ht? , At? = at?

3

5

where in the last equality, we used the definition

L(·;Ht? , at? , a
0
t?) :=

dPW (· | Ht? , At? = a
0
t?)

dPW (· | Ht? , At? = at?)
.

Again, by the tower law,

E

2

4L(W ;Ht? , at? , a
0
t?)

X

at?+1:T

Y (A1:t?�1, at?:T )
TY

t=t?+1

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))

����� Ht? , At? = at?

3

5

= E
"
E
h
L(W ;Ht? , at? , a

0
t?)

X

at?+1:T

Y (A1:t?�1, at?:T )

⇥

TY

t=t?+1

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))
���Ht?+1(A1:t?�1, at?)

i ����� Ht? , At? = at?

#

From sequential ignorability of ⇡ for t > t
? and Lemma 5, the preceeding display is equal to

E

2

4
X

at?+1:T

Et
?+1:T
at?:T

L(W ;Ht? , at? , a
0
t?)Y (A1:t?�1, at?:T )

TY

t=t?+1

⇡̄t(at | H̄t(A1:t?�1, at?:t�1))

����� Ht? , At? = at?

3

5 .
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From Lemma 6, we can rewrite the above expression as

E
"
L(W ;Ht? , at? , a

0
t?)Yt?(at?)

TY

t=t?+1

⇡̄t(At | H̄t(A1:t?�1, at? , At?+1:t))

⇡t(At | Ht(A1:t?�1, at? , At?+1:t))

����� Ht? , At? = at?

#
.

Plugging these expressions back into the equality (9), we obtain the result.

D Proof of bounds under unobserved confounding

D.1 Naive bound

We show the below more general result.
Lemma 7. Let Assumptions B, C, D hold. Then, we have

E[Y (Ā1:T )] � E
"
Y (A1:T )

TY

t=1

⇡̄t(At | H̄t(A1:t�1))

⇡t(At | Ht)(�
�1
t

{Y (A1:T ) < 0}+ �t {Y (A1:T ) > 0})

#
.

Proof of Lemma From an identical argument as the proof of Lemma 1, Assumption C yields

E[Y (Ā1:T )] = E
"
Y (A1:T )

TY

t=1

⇡̄t(At | H̄t(A1:t�1), Ut)

⇡t(At | Ht, Ut)

#
.

From Assumption B, the preceeding display is equal to

E[Y (Ā1:T )] = E
"
Y (A1:T )

TY

t=1

⇡̄t(At | H̄t(A1:t�1))

⇡t(At | Ht, Ut)

#
. (10)

Now, we bound ⇡t(At | Ht, Ut) by ⇡t(At | Ht). Assumption D implies
⇡t(at | Ht, Ut = ut)⇡t(a

0
t
| Ht, Ut = u

0
t
)  �t⇡t(a

0
t
| Ht, Ut = ut)⇡t(at | Ht, Ut = u

0
t
).

Multiplying by pUt(u
0
t
| Ht) on both sides and integrating over u0

t
, we get

⇡t(at | Ht, Ut = ut)⇡t(a
0
t
| Ht)  �t⇡t(a

0
t
| Ht, Ut = ut)⇡t(at | Ht).

Summing over a0
t

on both sides, we conclude that
⇡t(at | Ht, Ut = ut)  �t⇡t(at | Ht).

almost surely, for any t, at, Ht, ut. Using this relation to lower bound expression (10), we obtain the
result.

D.2 Proof of Theorem 2

By rewriting the original infimization problem over L(W ;Ht?) to L(W,At?+1:T ;Ht?), we have
⌘
?(Ht? ; at?) =

inf
L�0

(
E
"
L(W,At?+1:T ;Ht?)Y (A1:T )

TY

t=t?+1

⇢t

��� Ht? , At? = at?

#
: E[L(W,At?+1:T ;Ht?) | Ht? , At? = at? ] = 1, and

L(w, at?+1:T ;Ht?) = L(w, a
0
t?+1:T ;Ht?), L(w, at?+1:T ;Ht?)  �L(w0

, a
0
t?+1:T ;Ht?) a.s. all w, at?+1:T , w

0
, a

0
t?+1:T

)
.

Relaxing the equality constraint L(w, at?+1:T ;Ht?) = L(w, a0
t?+1:T ;Ht?), we arrive at

⌘
?(Ht? ; at?) �

inf
L�0

(
E
"
L(W,At?+1:T ;Ht?)Y (A1:T )

TY

t=t?+1

⇢t

��� Ht? , At? = at?

#
:

E[L(W,At?+1:T ;Ht?) | Ht? , At? = at? ] = 1, andL(w, at?+1:T ;Ht?)  �L(w0
, a

0
t?+1:T ;Ht?) a.s. all w, at?+1:T , w

0
, a

0
t?+1:T

)
.
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The preceeding optimization problem is convex, and Slater’s condition holds for L ⌘ 1. By strong
duality [32, Thm. 8.6.1 and Problem 8.7], we obtain the dual formulation

sup
µ

inf
L�0

(
E
"
L(W,At?+1:T ;Ht?)

 
Y (A1:T )

TY

t=t?+1

⇢t � µ

! ��� Ht? , At? = at?

#
+ µ :

L(w, at?+1:T ;Ht?)  �L(w0
, a

0
t?+1:T ;Ht?) a.s. all w, at?+1:T , w

0
, a

0
t?+1:T

)
.

By inspection, the solution to the inner infimum takes the form

L(w, at?+1:T ;Ht?) = c

 
�

(
Y (A1:T )

TY

t=t?+1

⇢t � µ < 0

)
+

(
Y (A1:T )

TY

t=t?+1

⇢t � µ � 0

)!

for some constant c > 0. Let `0�(z) := (z)+ � �(z)�, the derivative of the weighted squared loss
`�(z) =

1
2 (�(z)

2
� + (z)2+). Plugging the preceeding display into the dual formulation, we get
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µ
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c�0
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cE
"
`
0
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#
+ µ

)
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µ

(
µ : E

"
`
0
�
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t=t?+1

⇢t � µ

! ��� Ht? , At? = at?

#
� 0

)
.

Since the function µ 7! E
"
`
0
�

⇣
Y (A1:T )

Q
T

t=t?+1 ⇢t � µ

⌘ ��� Ht? , At? = at?

#
is strictly decreasing,

the optimal solution (and its value) in the preceeding display is given by the unique zero of this
function.

We now show that the solution to our loss minimization problem

(Ht? ; at?) = argmin
f(Ht? )

(
E
"

{At? = at?}

⇡t?(at? | Ht?)
⇥ `�
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E
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! ����� Ht? , At? = at?

##)

is in fact the unique zero of the function µ 7! E
"
`
0
�

⇣
Y (A1:T )

Q
T

t=t?+1 ⇢t � µ

⌘ ��� Ht? , At? =

at?

#
. The (almost sure) uniqueness of the solution follows from strong convexity of `�. Since the

optimization is over all Ht? -measurable functions, the argmin is given by

argmin
f(Ht? )

E
"
`�

 
Y (A1:T )

TY

t=t?+1

⇢t � f(Ht?)

! ����� Ht? , At? = at?

#
.

So long as E[Y (A1:T )2
Q

T

t=t?+1 ⇢
2
t

| At? = at? , Ht? ] < 1 almost surely,
first order optimality conditions of this loss minimization problem is equivalent to

E
"
`
0
�

⇣
Y (A1:T )

Q
T

t=t?+1 ⇢t � f(Ht?)
⌘ ��� Ht? , At? = at?

#
= 0, which gives our result.

D.3 Proof of Theorem 3

Our result is based on epi-convergence theory [24, 44], which shows (uniform) convergence of convex
functions, and solutions to convex optimization problems.
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Definition 2. Let {An} be a sequence of subsets of Rd. The limit supremum (or limit exterior or
outer limit) and limit infimum (limit interior or inner limit) of the sequence {An} are

lim sup
n

An :=
n
v 2 Rd

| lim inf
n!1

dist(v,An) = 0
o

and

lim inf
n

An :=

⇢
v 2 Rd

| lim sup
n!1

dist(v,An) = 0

�
.

The epigraph of a function h : Rd
! R [ {+1} is epih := {(x, t) 2 Rd

⇥ R | h(x)  t}. We say
limn A = A1 if lim sup

n
An = lim infn An = A1 ⇢ Rd. We define a notion of convergence for

functions in terms of their epigraphs.

Definition 3. A sequence of functions hn epi-converges to a function h, denoted hn

epi
! h, if

epih = lim inf
n!1

epihn = lim sup
n!1

epihn. (11)

If h is proper (domh 6= ?), epigraphical convergence (11) is characterizaed by pointwise convergence
on a dense set.
Lemma 8 (Theorem 7.17, Rockafellar and Wets [44]). Let hn : Rd

! R, h : Rd
! R be closed,

convex, and proper. Then hn

epi
! h is equivalent to either of the following two conditions.

(i) There exists a dense set A ⇢ Rd such that hn(v) ! h(v) for all v 2 A.

(ii) For all compact C ⇢ domh not containing a boundary point of domh,

lim
n!1

sup
v2C

|hn(v)� h(v)| = 0.

The last characterization of epigraphical convergence is powerful as it gives convergence of solution
sets.

Lemma 9 (Theorem 7.31, Rockafellar and Wets [44]). Let hn : Rd
! R, h : Rd

! R satisfy hn

epi
!

h and �1 < inf h < 1. Let Sn(") = {✓ | hn(✓)  inf hn+"} and S(") = {✓ | h(✓)  inf h+"}.
Then lim sup

n
Sn(") ⇢ S(") for all " � 0, and lim sup

n
Sn("n) ⇢ S(0) whenever "n # 0.

From Lemmas 8, 9, it suffices to show that the expected loss function and its empirical counterpart
satisfies appropriate regularity conditions (proper and closed), and show that our empirical loss
pointwise converges to the population loss almost surely. Recall that Dn is the split of data used to
estimate b⇡, and let D1 be the �-algebra defined by Dn as n ! 1. Our subsequent argument will be
conditional on D1, and the event

E :=
�
b⇡t ! ⇡t pointwise, b⇢t  2C, and b⇡t?(at? | Ht?) 2 [(2C)�1

, 1]
 
.

We assume w.l.o.g. (increasing C if necessary) that c  (2C)�1. Note that P(E) = 1 by assumption.

First, note that since ✓ 7! f✓ is linear, ✓ 7! `�(Y (A1:T )
Q

T

t=t?+1 b⇢t � f✓(Ht?)) is convex. Both the
empirical and population loss
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⇢t � f✓(Ht?)

!#
=: h(✓),

are proper since they are nonnegative, and finite a.s. at ✓ = 0. Since the functions

✓ 7!
{At? = at?}

b⇡t?(at? | Ht?)
`�

 
Y (A1:T )

TY

t=t?+1

b⇢t � f✓(Ht?)

!
,

✓ 7!
{At? = at?}

⇡t?(at? | Ht?)
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Y (A1:T )

TY

t=t?+1

⇢t � f✓(Ht?)

!
,
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are continuous by linearity of ✓ 7! f✓, dominated convergence shows continuity of both the empirical
loss bhn(✓) (a.s.) and population loss h(✓).

Next, we show that the empirical plug-in loss converges pointwise to its population counterpart
almost surely. Since S(0) = {✓

?
} by hypothesis, Lemmas 8, 9 will give the final result. Defining the

function

hn(✓) := E
"

{At? = at?}

b⇡t?(at? | Ht?)
`�

 
Y (A1:T )

TY

t=t?+1

b⇢t � f✓(Ht?)

!#
,

we write
|bhn(✓)� h(✓)|  |hn(✓)� h(✓)|+ |bhn(✓)� hn(✓)|,

and show that each term in the right hand side converges to 0 almost surely.

To show that the first term goes to zero, note that since b⇡t? ! ⇡t? a.s., we have ⇡t?(at? | Ht) �
(2C)�1 a.s. for all at? . This gives

|hn(✓)� h(✓)| 

�����hn(✓)� E
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which has an integrable envelope function under our assumptions and conditional on E . By dominated
convergence, we have the result since b⇡t ! ⇡t almost surely (and hence b⇢t

a.s.
! ⇢t).

To show that the second term converges to zero, we use the following strong law of large numbers for
triangular arrays.
Lemma 10 (Hu et al. [14, Theorem 2]). Let {⇠ni}ni=1 be a triangular array where Xn1, Xn2, . . . are
independent random variables for any fixed n. If there exists ⇠ such that |⇠ni|  ⇠ and E[⇠2] < 1,
then 1

n

P
n

i=1(⇠ni � E[⇠ni])
a.s.
! 0.

The random variable
{At? = at?}

b⇡t?(at? | Ht?)
`�

 
Y (A1:T )

TY

t=t?+1

b⇢t � f✓(Ht?)

!

are i.i.d. for each trajectory, conditional on D1. By convexity, the below random variable upper
bounds the preceeding display

⇠ = 16�(2C)2T
�
f✓(Ht?)

2 + Y (A1:T )
2
�

on the event E . From hypothesis, we have E[⇠2 | D1, E ] < 1. Applying Lemma 10 conditional on
D1 and E , we conclude

|bhn(✓)� hn(✓)|
a.s.
! 0.

Applying Lemmas 8, 9, we conclude that for any "n # 0, lim infn!1 dist(✓?, S"n)
p

! 0 conditional
on D1 and E . Now, note that for any � > 0,

P
⇣
| lim inf

n!1
dist(✓?, S"n)| � �

⌘
= P

⇣
| lim inf

n!1
dist(✓?, S"n)| � � | E

⌘

= E
h
P
⇣
| lim inf

n!1
dist(✓?, S"n)| � � | D1, E

⌘
| E

i

= E
h
P
⇣
| lim inf

n!1
dist(✓?, S"n)| � � | D1, E

⌘i

where the first and the last equality used since P(E) = 1. By dominated convergence, the preceeding
display goes to 0 as n ! 1.
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(a) Our approach (b) Naive approach
Figure 2. Sepsis simulator design sensitivity. Data generation process with level of confounding
�? = 1.0. Estimated lower and upper bound of two policies (with and without antibiotics) under (a) our
approach with sensitivity 1.7 (b) naive approach with sensitivity 1.23.
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Figure 3: Sepsis simulation with �? = 2.0. Dashed lines represent 95% bootstrap quantiles.

E Experimental details

This section provides implementation details for the experiments presented in the main text.

E.1 Management of sepsis patients

We refer the reader to https://github.com/clinicalml/gumbel-max-scm for more informa-
tion on the sepsis simulator developed by Oberst and Sontag [38].

Simulator Oberst and Sontag [38]’s simulator state space consists of a binary indicator for diabetes,
and four vital signs {heart rate, blood pressure, oxygen concentration and glucose level} that take
values in a subset of {very high, high, normal, low, very low}; size of the state space is |St| = 1440.
There are three binary treatment options {antibiotics, vasopressors, and mechanical ventilation}
(|At| = 23). In our experiments, simulation continues either until at most T = 5 (horizon) time steps,
death (reward -1), or discharge (reward +1). Patients are discharged when all vital signs are in the
normal range without treatment. Patients die if at least three vitals are out of the normal range. We
refer the reader to https://github.com/clinicalml/gumbel-max-scm for details regarding
the simulator.

The optimal policy Recall that we assume that the decisions are made near-optimally. To learn the
optimal policy, we generate 2000 samples for each transition and constructed the transition matrix
P (s, a, s0) and the reward matrix R(s, a, s0) of the MDP. Similar to Oberst and Sontag [38] we used
policy iteration to learn the optimal policy. We create a near-optimal (soft optimal) policy by having
the policy take a random action with probability 0.05, and the optimal action with probability 0.95.
The value function (for the optimal policy) was computed using value iteration. The horizon is T = 5
and the discount factor � = 0.99, which results in soft optimal policy having an average value (over
the possible distribution of state states) of 0.14.
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Confounding We injected confounding in the first decision of this simulation by defining two
different policies: “with antibiotics" and “without antibiotics". “with antibiotics" which is identical to
the soft optimal policy except that the probability mass of actions without antibiotics is moved to the
corresponding action with antibiotics. For example, if the probability of the action a1 =(antibiotics
on, vasopressors off, ventilation on) in the soft optimal policy is p1, and a

0
1 =(antibiotics off,

vasopressors off, ventilation on) is p01, then in the “with antibiotics" a1 has probability p1 + p
0
1 and a

0
1

has probability zero in this new policy. The “without antibiotics" does the opposite: moves probability
mass of actions with antibiotics to the corresponding action without antibiotics. In our confounding
scenario, for healthy patients we administer antibiotics (i.e. follow the “with antibiotics”) policy with
a higher probability (w.p.

p
�

1+
p
�

). For unhealthy patients, we administer antibiotics with a lower
probability (w.p. 1

1+
p
�

).

Concretely, to compute the transition from a state conditional on an action, we do inverse transform
sampling: we generate a uniform random variable Ut on [0, 1], and use this to index into the transition
probability distribution for the next state, sorted by the states’ value function and current reward. This
coupling ensures that if Ut is large, then the next state will have a high value, and if Ut is small, then
the next state will have a low value. The hidden variable U used for confounding in the first decision
is U =

P
T

t=1 Ut, which serves as a surrogate for the health of patient, because the larger U is, the
more likely the patient is to have improving state values. We choose a threshold u0, and if U > u0,
the behavior policy follows the action with antibiotics, and if U  u0, the behavior policy follows
the action without antibiotics, thus introducing confounding.

After the first decision, the behaviour policy is a mixture of two policies: 85% the soft optimal policy
and 15% of a sub-optimal policy that is similar to the soft optimal but the vasopressors action is
flipped. For example, if probability of the action a1 =(antibiotics on, vasopressors off, ventilation
on) is p1, and a

0
1 =(antibiotics on, vasopressors on, ventilation on) in p

0
1 in the soft optimal policy,

then the sub-optimal has probability p
0
1 and p1 for action a1 and a

0
1, respectively.

Loss minimization Since the state and action space are discrete, we learn the tabular value (s, a)
for each state action pair separately to minimize the empirical loss. Additionally, in order to compute
the upper bound of both ours and the naive method, we compute the negative of the lower bound on
the negative of return (cost).

Behaviour Policy We estimate the behaviour policies from the data in two parts: the first time
step and time steps t = 2 through t = 5. By the assumptions stated above, each of these policies
depends only on the previous state, and we learn the tabular probability of each state action pair
⇡t(a|s) separately.

Design Sensitivity We present another design sensitivity experiment, with �
?

= 1.0. Figure 2 (a,b)
shows design sensitivity of our method (1.7) versus the naive method (1.23).

WIS bootstrap We showed in Section 2 that in existence of an unobserved confounding OPE
estimates that (falsely) assume sequential ignorability will be biased. Figure 3 is the same plot as
figure 1(a) where here we include 95% bootstrap quantiles of weighted importance sampling (WIS)
instead of its point estimate. While the bootstrap sampling does not account for the influence of
estimating the nuisance parameters (the importance sampling weights) on the evaluation policy value
estimate or the bias introduced by using WIS instead of IS, it provides inference conditional on these
nuisance parameter estimates, providing a surrogate for the statistical uncertainty. They suggest
that quantifying uncertainty in WIS does not fully capture the bias introduced by the unobserved
confounder.

E.2 Autism

In the autism experiments, our data generation process (simulator) is adopted from Lu et al. [31, Ap-
pendix B]. Each individual has a set of covariates X , consisting of six mean-centered features:
{age, gender, indicator of African American, indicator of Caucasian, indicator

of Hispanic, indicator of Asian}. The Autism SMART trial [23] simulator specifies a set of
300 individuals: to obtain a sample size N , we sample with replacement from this set. For details on
the simulator, we refer to Appendix B of Lu et al. [31]. At the first timestep there are two actions
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available A1 2 {�1, 1}, where A1 = 1 denote BLI, and A1 = �1 denote AAC. At the second
timestep there are three actions A2 2 {�1, 0, 1}, where A2 = 1 denote assigning intensified BLI to
slow responders, A2 = �1 denote assigning AAC to slow responder and A2 = 0 denote continuing
with the same action for fast responders.

Confounding The original simulator did not have confounding. We now describe how we introduce
confounding in this setting.

Lu et al. [31, Appendix B] specifies the effect of the second action (whether to augment BLI with
AAC) on the reward outcome Y as follows:

Y = ⌘
T

31X + ⌘22Y0 + ⌘
T

33A1 + ⌘34Y12 � 2✓(1�R)(A1 + 1)A2 + ✏.

A1 is either �1 or 1. Therefore the final term (outside of the noise ✏) is non-zero only when A1 = 1,
and we can interpret ✓ as the effect size of the adaptive policy (which always takes A1 = 1); for exact
definition of the effect size refer to Lu et al. [31]. For those more familiar with the RL literature, it
is related to the advantage function. In the original paper, Figure 7 in Lu et al. [31] were generated
using 4 different values of ✓. The parameters used in these simulations are in the range reported by
Lu et al. [31].

We introduce confounding by varying ✓ (thereby impacting the potential outcome) and then altering
the behavioral treatment decisions according to the knowledge of that ✓. More precisely, given a ✓0,
for each individual, we randomly set ✓0 + �✓ or ✓0 � �✓. The second action is 1 with probabilityp

�
1+

p
�

if ✓ � ✓0 and 1 with probability 1
1+

p
�

if ✓  ✓0. In our experiments, we take �✓ = 5.

Loss minimization To estimate (Ht? ; at?) in the loss minimization problem, we used a neural
network with 3 hidden layers of size {128, 128, 128, 64} with Relu activations, followed by
a single linear output layer. We initialize the layers with Xavier initialization and used the Adam
optimizer with learning rate 10�3. The input Ht is 10-dimensional consisting of 6 covariates,
indicator of slow responder, initial action A1, number of speech utterances after the initial action, and
an interaction term between A1 and the slow responder indicator.

Behaviour Policy We use logistic regression to estimate the behaviour policy from the observed
data: note that this is not the true behavior policy, because that depends on the (latent) confounding.
Different models were fit for the first and second time steps. For the first timestep the learned model is
⇡1(A1|H1), where H1 contains the observed X (6 covariates), and A1 2 {�1, 1}. For the estimated
behavior policy in the second timestep ⇡2(A2|H2), H2 includes X (6 covariates), the action A1,
indicator of slow responder, the interaction term between A1 and the indicator, and the number of
speech utterances after the initial action.

(a) (b)

Figure 4. (a) Autism simulation. Outcome of two different policies, confounded adaptive policy
(BLI+AAC) and un-confounded non-adaptive policy (AAI). Data generation process with the level of
confounding �? = 2.0. (b) Autism simulation design sensitivity. Data generation process with the level
of confounding �? = 1.0. True value of adaptive (BLI+AAC) and non-adaptive (AAC) policies along
with estimated lower bound on outcome using our and naive approach

Extra Experiments In the second setting (Case II), the BLI+AAC policy is better than the AAC
policy; we again use �? = 2.0 to generate data. Standard OPE estimates again overestimate the
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outcome for the BLI+AAC policy (Figure 4(b)). The naïve lower bound results in a conservative
lower bound that again indicate no conclusions can be drawn about the relative performance of
BLI+AAC versus AAC. Our method certifies the superiority of the BLI+AAC policy up to � = 4.2,
providing useful certificates under nontrivial levels of confounding.

Figure 4 (c) plots the design sensitivity of our method against the naïve approach (3), when there is in
fact no confounding in the data generation process (�? = 1). Compared to the naive approach (design
sensitivity is � = 1.32), our method allows certifying robustness of the finding—that the adaptive
policy is advantageous—up to realistic levels of confounding (design sensitivity is � = 2.78).

26


