
Batch Normalization Provably Avoids Rank Collapse
for Randomly Initialised Deep Networks

Hadi Daneshmand∗
INRIA Paris, ETH Zurich

seyed.daneshmand@inria.fr

Jonas Kohler∗
Department of Computer Science, ETH Zurich

jonas.kohler@inf.ethz.ch

Francis Bach
INRIA-ENS-PSL, Paris

francis.bach@inria.fr

Thomas Hofmann
Department of Computer Science, ETH Zurich

thomas.hofmann@inf.ethz.ch

Aurelien Lucchi
Department of Computer Science, ETH Zurich

aurelien.lucchi@inf.ethz.ch

Abstract

Randomly initialized neural networks are known to become harder to train with
increasing depth, unless architectural enhancements like residual connections and
batch normalization are used. We here investigate this phenomenon by revisiting the
connection between random initialization in deep networks and spectral instabilities
in products of random matrices. Given the rich literature on random matrices,
it is not surprising to find that the rank of the intermediate representations in
unnormalized networks collapses quickly with depth. In this work we highlight
the fact that batch normalization is an effective strategy to avoid rank collapse for
both linear and ReLU networks. Leveraging tools from Markov chain theory, we
derive a meaningful lower rank bound in deep linear networks. Empirically, we
also demonstrate that this rank robustness generalizes to ReLU nets. Finally, we
conduct an extensive set of experiments on real-world data sets, which confirm that
rank stability is indeed a crucial condition for training modern-day deep neural
architectures.

1 Introduction and related work

Depth is known to play an important role in the expressive power of neural networks [28]. Yet,
increased depth typically leads to a drastic slow down of learning with gradient-based methods, which
is commonly attributed to unstable gradient norms in deep networks [15]. One key aspect of the
training process concerns the way the layer weights are initialized. When training contemporary
neural networks, both practitioners and theoreticians advocate the use of randomly initialized layer
weights with i.i.d. entries from a zero mean (Gaussian or uniform) distribution. This initialization
strategy is commonly scaled such that the variance of the layer activation stays constant across layers
[13, 14]. However, this approach can not avoid spectral instabilities as the depth of the network
increases. For example, [26] observes that for linear neural networks, such initialization lets all but
one singular values of the last layers activation collapse towards zero as the depth increases.

Nevertheless, recent advances in neural architectures have allowed the training of very deep neural
networks with standard i.i.d. initialization schemes despite the above mentioned shortcomings.
∗Shared first authorship

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Among these, both residual connections and normalization layers have proven particularly effective
and are thus in widespread use (see [17, 24, 14] to name just a few). Our goal here is to bridge the
explanatory gap between these two observations by studying the effect of architectural enhancements
on the spectral properties of randomly initialized neural networks. We also provide evidence for a
strong link of the latter with the performance of gradient-based optimization algorithms.

One particularly interesting architectural component of modern day neural networks is Batch Nor-
malization (BN) [17]. This simple heuristics that normalizes the pre-activation of hidden units
across a mini-batch, has proven tremendously effective when training deep neural networks with
gradient-based methods. Yet, despite of its ubiquitous use and strong empirical benefits, the research
community has not yet reached a broad consensus, when it comes to a theoretical explanation for its
practical success. Recently, several alternatives to the original “internal covariate shift” hypothesis
[17] have appeared in the literature: decoupling optimization of direction and length of the parame-
ters [20], auto-tuning of the learning rate for stochastic gradient descent [3], widening the learning
rate range [7], alleviating sharpness of the Fisher information matrix [18], and smoothing the opti-
mization landscape [25]. Yet, most of these candidate justifications are still actively debated within
the community. For example, [25] first made a strong empirical case against the original internal
covariate shift hypothesis. Secondly, they argued that batch normalization simplifies optimization
by smoothing the loss landscape. However, their analysis is on a per-layer basis and treats only the
largest eigenvalue. Furthermore, even more recent empirical studies again dispute these findings, by
observing the exact opposite behaviour of BN on a ResNet20 network [34].

1.1 On random initialization and gradient based training

In light of the above discussion, we take a step back – namely to the beginning of training – to find an
interesting property that is provably present in batch normalized networks and can serve as a solid
basis for a more complete theoretical understanding.

The difficulty of training randomly initialized, un-normalized deep networks with gradient methods
is a long-known fact, that is commonly attributed to the so-called vanishing gradient effect, i.e., a
decreasing gradient norm as the networks grow in depth (see, e.g., [27]). A more recent line of
research tries to explain this effect by the condition number of the input-output Jacobian (see, e.g.,
[32, 33, 23, 7]). Here, we study the spectral properties of the above introduced initialization with a
particular focus on the rank of the hidden layer activations over a batch of samples. The question
at hand is whether or not the network preserves a diverse data representation which is necessary to
disentangle the input in the final classification layer.

As a motivation, consider the results of Fig. 1, which plots accuracy and output rank when training
batch-normalized and un-normalized neural networks of growing depth on the Fashion-MNIST
dataset [31]. As can be seen, the rank in the last hidden layer of the vanilla networks collapses with
depth and they are essentially unable to learn (in a limited number of epochs) as soon as the number
of layers is above 10. The rank collapse indicates that the direction of the output vector has become
independent of the actual input. In other words, the randomly initialized network no longer preserves
information about the input. Batch-normalized networks, however, preserve a high rank across all
network sizes and their training accuracy drops only very mildly as the networks reach depth 32.

The above example shows that both rank and optimization of even moderately-sized, unnormalized
networks scale poorly with depth. Batch-normalization, however, stabilizes the rank in this setting
and the obvious question is whether this effect is just a slow-down or even simply a numerical
phenomenon, or whether it actually generalizes to networks of infinite depth.

In this work we make a strong case for the latter option by showing a remarkable stationarity aspect
of BN. Consider for example the case of passing N samples xi ∈ Rd arranged column-wise in an
input matrix X ∈ Rd×N through a very deep network with fully-connected layers. Ideally, from an
information propagation perspective, the network should be able to differentiate between individual
samples, regardless of its depth [27]. However, as can be seen in Fig. 2, the hidden representation
of X collapses to a rank one matrix in vanilla networks, thus mapping all xi to the same line in Rd.
Hence, the hidden layer activations and along with it the individual gradient directions become

3Computed using torch.matrix_rank(), which regards singular values below σmax × d× 10−7 as zero.
This is consistent with both Matlab and Numpy.

2

0 5 10 15 20 25 30
Number of hidden layers

0

20

40

60

80

100

120

Ra
nk

 o
f l

as
t h

id
de

n
la

ye
r

SGD w/o BN
SGD w/ BN

0 5 10 15 20 25 30
Number of hidden layers

0.2

0.4

0.6

0.8

1.0

Fi
na

l t
ra

in
in

g
ac

cu
ra

cy

SGD w/o BN
SGD w/ BN

Figure 1: Effect of depth on rank and learning, on the Fashion-MNIST dataset with ReLU multilayer
perceptrons (MLPs) of depth 1-32 and width 128 hidden units. Left: Rank3 after random initialization as in
PyTorch [22]. Right: Training accuracy after training 75 epochs with SGD, batch size 128 and grid-searched
learning rate. Mean and 95% confidence interval of 5 independent runs.

independent from the input xi as depth goes to infinity. We call this effect “directional” gradient
vanishing (see Section 3 for a more thorough explanation).

Interestingly this effect does not happen in batch-normalized networks, which yield – as we shall
prove in Theorem 2 – a stable rank for any depth, thereby preserving a disentangled representation of
the input and hence allowing the training of very deep networks. These results substantiate earlier
empirical observations made by [7] for random BN-nets, and also validates the claim that BN helps
with deep information propagation [27].

0 10000 20000 30000 40000 50000
Depth (L)

0

5

10

15

20

25

30

Ra
nk

Linear net
w/o BN
w/ BN

0 10000 20000 30000 40000 50000
Depth (L)

0

5

10

15

20

25

30

Ra
nk

ReLU net

w/o BN
w/ BN

Figure 2: Rank comparison of last hidden activation: Log(rank) of the last hidden layer’s activation
over total number of layers (blue for BN- and orange for vanilla-networks) for Gaussian inputs.
Networks are MLPs of width d = 32. (Left) Linear activations, (Right) ReLU activations. Mean
and 95% confidence interval of 10 independent runs. While the rank quickly drops in depth for both
networks, BN stabilizes the rank above

√
d.

1.2 Contributions

In summary, the work at hand makes the following two key contributions:

(i) We theoretically prove that BN indeed avoids rank collapse for deep linear neural nets under
standard initialization and for any depth. In particular, we show that BN can be seen as a computa-
tionally cheap rank preservation operator, which may not yield hidden matrices with full rank but
still preserves sufficient modes of variation in the data to achieve a scaling of the rank with Ω(

√
d),

where d is the width of the network. Subsequently, we leverage existing results from random matrix
theory [9] to complete the picture with a simple proof of the above observed rank collapse for linear
vanilla networks, which interestingly holds regardless of the presence of residual connections (Lemma
3). Finally, we connect the rank to difficulties in gradient based training of deep nets by showing that
rank collapse makes the directional component of the gradients independent of the input.

(ii) We empirically show that the rank is indeed a crucial quantity for gradient-based learning. In
particular, we show that both the rank and the final training accuracy quickly diminish in depth unless

3

BN layers are incorporated in both simple feed-forward and convolutional neural nets. To take this
reasoning beyond mere correlations, we actively intervene with the rank of networks before training
and show that (a) one can break the training stability of BN by initializing in a way that reduces its
rank-preserving properties, and (b) a rank-increasing pre-training procedure for vanilla networks can
recover their training ability even for large depth. Interestingly, our pre-training method allows vanilla
SGD to outperform BN on very deep MLPs. In all of our experiments, we find that SGD updates
preserve the order of the initial rank throughout optimization, which underscores the importance of
the rank at initialization for the entire convergence behavior.

2 Background and Preliminaries

Network description. We consider a given input X ∈ Rd×N containing N samples in Rd. Let
1k ∈ Rk denote the k-dimensional all one vector and H(γ)

` denote the hidden representation of X
in layer ` of a BN-network with residual connections. The following recurrence summarizes the
network mapping

H
(γ)
`+1 = BN0,1d(H

(γ)
` + γW`H

(γ)
`), H

(γ)
0 = X, (1)

where W` ∈ Rd×d and γ regulates the skip connection strength (in the limit, γ = ∞ recovers a
network without skip connection)4. Throughout this work, we consider the network weights W` to be
initialized as follows.
Definition 1 (Standard weight initialization). The elements of weight matrices W` are i.i.d. samples
from a distribution P that has zero-mean, unit-variance, and its density is symmetric around zero5.
We use the notation µ for the probability distribution of the weight matrices.

We define the BN operator BNα,β as in the original paper [17], namely

BNα,β(H) = β ◦ (diag (M(H)))
−1/2

H + α1>N ,M(H) :=
1

N
HH>, (2)

where ◦ is a row-wise product. Both α ∈ Rd and β ∈ Rd are trainable parameters. Throughout this
work we assume the initialization α = 0 and β = 1d, and also omit corrections of the mean activity.
As demonstrated empirically in Fig. 5, and theoretically in App. C this simplification does not change
the performance of BN in our settings.

Rank notions. To circumvent numerical issues involved in rank computations we introduce a soft
notion of the rank denoted by rankτ (H) (soft rank). Specifically, let σ1, . . . , σd be the singular values
of H . Then, given a τ > 0, we define rankτ (H) as

rankτ (H) =
d∑
i=1

1(σ2
i /N ≥ τ). (3)

Intuitively, rankτ (H) indicates the number of singular values whose absolute values are greater than√
Nτ . It is clear that rankτ (H) is less or equal to rank(H) for all matrices H . For analysis purposes,

we need an analytic measure of the collinearity of the columns and rows of H . Inspired by the
so-called stable rank (see, e.g., [29]), we thus introduce the following quantity

r(H) = Tr(M(H))2/‖M(H)‖2F , M(H) = HH>/N. (4)

In contrast to the algebraic rank, r(H) is differentiable with respect to H . Furthermore, the next
lemma proves that the above quantity lower-bounds the soft-rank for the hidden representations.

Lemma 1. For an arbitrary matrix H ∈ Rd×d, rank(H) ≥ r(H). For the sequence {H(γ)
` }∞`=1

defined in Eq. (2), rankτ (H
(γ)
`) ≥ (1− τ)2r(H

(γ)
`) holds for τ ∈ [0, 1].

4For the sake of simplicity, we here assume that the numbers of hidden units is equal across layers. In App. E
we show how our results extend to nets with varying numbers of hidden units.

5Two popular choices for P are the Gaussian distributionN (0, 1) and the uniform distribution U([−1, 1]).
The variance can be scaled with the choice of γ to match the prominent initializations from [14] and [13]. Note
that the symmetry implies that the law of each element [W`]ij equates the law of −[W`]ij .

4

3 Batch normalization provably prevents rank collapse

Since our empirical observations hold equally for both non-linear and linear networks, we here
focus on improving the theoretical understanding in the linear case, which constitutes a growing area
of research [26, 19, 6, 2]. First, inspired by [10] and leveraging tools from Markov Chain theory,
our main result proves that the rank of linear batch-normalized networks scales with their width
as Ω(

√
width). Secondly, we leverage results from random matrix theory [8] to contrast our main

result to unnormalized linear networks which we show to provably collapse to rank one, even in the
presence of residual connections.

3.1 Main result

In the following we state our main result which proves that batch normalization indeed prevents
the rank of all hidden layer activations from collapsing to one. Please see Appendix E for the more
formal version of this theorem statement.
Theorem 2. [Informal] Suppose that the rank(X) = d and that the weights W` are initialized in a
standard i.i.d. zero-mean fashion (see Def. 1). Then, the following limits exist such that

lim
L→∞

1

L

L∑
`=1

rankτ (H
(γ)
`) ≥ lim

L→∞

(1− τ)2

L

L∑
`=1

r(H
(γ)
`) = Ω((1− τ)2

√
d) (5)

holds almost surely for a sufficiently small γ (independent of `) and any τ ∈ [0, 1), under some
additional technical assumptions. Please see Theorem 14 in the Appendix for the formal statement.

Theorem 2 yields a non trivial width-dependency. Namely, by setting for example τ := 1/2, the
result states that the average number of singular values with absolute value greater than

√
N/2 is

at least Ω(
√
d) on average. To put this into context: If one were to replace diag(M)−

1/2 by the full
inverse (M)−

1/2 in Eq. (2), then BN would effectively constitute a classical whitening operation such
that all {H(γ)

` }L`=1 would be full rank (equal to d). However, as noted in the original BN paper [17],
whitening is obviously expensive to compute and furthermore prohibitively costly to incorporate
in back-propagation. As such, BN can be seen as a computationally inexpensive approximation of
whitening, which does not yield full rank hidden matrices but still preserves sufficient variation in the
data to provide a rank scaling as Ω(

√
d). Although the lower-bound in Thm. 2 is established on the

average over infinite depth (i.e., L→∞), Corollary 15 (in App. E) proves that the same bound holds
for all rank(H`) and rankτ (H`).

Necessary assumptions. The above result relies on two key assumptions: (i) First, the input X
needs to be full rank. (ii) Second, the weights have to be drawn according to the standard initialization
scheme. We believe that both assumptions are indeed necessary for BN to yield a robust rank.

Regarding (i), we consider a high input rank a natural condition since linear neural nets cannot
possibly increase the rank when propagating information through their layers. Of course, full rank is
easily achieved by an appropriate data pre-processing. Yet, even when the matrix is close to low rank
we find that BN is actually able to amplify small variations in the data (see Fig. 3.b).6 Notably, we
observed that hidden representations remain full rank ifH(γ)

0 is full-rank andN = O(
√
d). Regarding

(ii), we derive – based on our theoretical insights – an adversarial initialization strategy that corrupts
both the rank robustness and optimization performance of batch-normalized networks, thus suggesting
that the success of BN indeed relies heavily on the standard i.i.d. zero-mean initialization.

Experimental validation. In order to underline the validity of Theorem 2 we run multiple simu-
lations by feeding Gaussian data of dimensionality d = N into networks of growing size and with
different residual strengths. For each network, we compute the mean and standard deviation of the soft
rank rankτ with τ = 0.5. As depicted in Fig. 3, the curves clearly indicate a Ω(

√
d) dependency for

limL→∞
∑L
`=1 rankτ (H`)/L, just as predicted in the Theorem. Although the established guarantee

requires the weight on the parametric branch (i.e., γ) to be small, the results of Fig. 3 indicate that
6Intuitively this means that even if two data points are very close to each other in the input space, their hidden

presentation can still be disentangled in batch-normalized networks (see Appendix E for more details)

5

the established lower bound holds for a much wider range including the case where no residual
connections are used at all (γ =∞).

3 4 5 6 7 8
log2(number of hidden units per layer (d))

2

3

4

5

6

7

8

lo
g 2

(ra
nk

)

= 0.01
= 1
=
d

d

0 20 40 60 80 100
hidden layer ()

10 11

10 9

10 7

10 5

10 3

10 1

101

First ten eigenvalues of M

1

2

3

4

5

6

7

8

9

10

a) b)

Figure 3: a) Result of Theorem 2 for different values of γ, where γ = ∞ depicts networks without skip
connections. Each point is the average rank1/2 over depth (L = 106) of nets of width d ∈ {8, 16, .., 256} an on
x-axis. b) Top 10 singular values of H(γ)

` for increasing values of ` given nearly collinear inputs. As can be
seen, BN quickly amplifies smaller variations in the data while reducing the largest one.

3.2 Comparison with unnormalized networks

In order to stress the importance of the above result, we now compare the predicted rank of H` with
the rank of unnormalized linear networks, which essentially constitute a linear mapping in the form
of a product of random matrices. The spectral distribution of products of random matrices with
i.i.d. standard Gaussian elements has been studied extensively [7, 12, 21]. Interestingly, one can
show that the gap between the top and the second largest singular value increases with the number of
products (i.e., `) at an exponential rate7 [12, 21]. Hence, the matrix converges to a rank one matrix
after normalizing by the norm. In the following, we extend this result to products of random matrices
with a residual branch that is obtained by adding the identity matrices. Particularly, we consider the
hidden states Ĥ` of the following linear residual network:

Ĥ` = B`X, B` :=
∏̀
k=1

(I + γWk). (6)

Since the norm of Ĥ` is not necessarily bounded, we normalize as H̃` = B`X/‖B`‖. The next
lemma characterizes the limit behaviour of {H̃`}.
Lemma 3. Suppose that γ ∈ (0, 1) and assume the weights W` to be initialized as in Def. 1 with
element-wise distribution P . Then we have for linear networks, which follow recursion (6), that:

a. If P is standard Gaussian, then the sequence {H̃`} converges to a rank one matrix.

b. If P is uniform[−
√

3,
√

3], then there exists a monotonically increasing sequence of integers
`1 < `2, . . . such that the sequence {H̃`k} converges to a rank one matrix.

This results stands in striking contrast to the result of Theorem 2 established for batch-normalized
networks.8 Interestingly, even residual skip connections cannot avoid rank collapse for very deep
neural networks, unless one is willing to incorporate a depth dependent down-scaling of the parametric
branch as for example done in [1], who set γ = O(1

L) . Remarkably, Theorem 2 shows that BN layers
provably avoid rank collapse without requiring the networks to become closer and closer to identity.
Remarkably, the remaining direction after rank collapse depends exclusively on the random weights
and it is independent of the input.

7The growth-rate of the i-th singular value is determined by the i-th Lyapunov exponent of the product of
random matrices. We refer the reader to [12] for more details on Lyapunov exponents.

8According to the observations in Fig. 2, the result of part b holds for the usual sequence of indices {`k = k},
which indicates that {H̃k} converges to a rank one matrix even in the case of uniform initialization.

6

Implications of rank collapse on gradient based learning. In order to explain the severe conse-
quence of rank collapse on optimization performance reported in Fig. 1, we study the effect of rank
one hidden-layer representations on the gradient of the training loss for distinct input samples. Let Li
denote the training loss for datapoint i on a vanilla network as in Eq. (6). Furthermore, let the final
classification layer be parametrized by WL+1 ∈ Rdout×d. Then, given that the hidden presentation
at the last hidden layer L is rank one, the normalized gradients of the loss with respect to weights
of individual neurons k ∈ 1, ..., dout in the classification layer (denoted by ∇WL+1,k

Li, where
‖∇WL+1,k

Li‖ = 1) are collinear for any two datapoints i and j, i.e. ∇WL+1,k
Li = ∓∇WL+1,k

Lj .
A formal statement is presented in Prop. 19 in the Appendix alongside empirical validations on a
VGG19 network (Fig. 10). This result implies that the commonly accepted vanishing gradient norm
hypothesis is not descriptive enough since SGD does not take small steps into the right direction, but
into a random direction that is independent from the input. In other words, deep neural networks are
prone to directional gradient vanishing after initialization, which is caused by the collapse of the
last hidden layer activations to a very small subspace (one line in Rd in the extreme case of rank one
activations).

4 The important role of the rank

The preceding sections highlight that the rank of the hidden representations is a key difference between
random vanilla and BN networks. We now provide three experimental findings that substantiate the
particular importance of the rank at the beginning of training: First, we find that an unsupervised,
rank-increasing pre-training allows SGD on vanilla networks to outperform BN networks. Second,
we show that the performance of BN-networks is closely tied to a high rank at initialization. Third,
we report that SGD updates preserve the initial rank magnitude throughout the optimization process.

Outperforming BN using a pre-training step. As discussed above, batch normalization layers
are very effective at avoiding rank collapse. Yet, this is of course not the only way to preserve rank.
Based upon our theoretical insights, we leverage the lower bound established in Eq. (4) to design
a pre-training step that not only avoids rank collapse but also accelerates the convergence of SGD.
Our proposed procedure is both simple and computationally cheap. Specifically, we maximize the
lower-bound r(H`) (in Eq. (4)) on the rank of the hidden presentation H` in each layer `. Since this
function is differentiable with respect to its input, it can be optimized sufficiently by just a few steps
of (stochastic) gradient ascent (see Section G in the Appendix for more details).

0 50 100 150 200 250
Epochs

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
ai

ni
ng

 lo
ss

10 hidden layers
pre-trained SGD
BatchNorm SGD

0 50 100 150 200 250
Epochs

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

30 hidden layers
pre-trained SGD
BatchNorm SGD

0 50 100 150 200 250
Epochs

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Tr
ai

ni
ng

 lo
ss

50 hidden layers
pre-trained SGD
BatchNorm SGD

Figure 4: Pre-training versus BN: Loss over epochs on CIFAR-10 for MLPs of increasing depth with 128
hidden units and ReLU activation. Trained with SGD (batchsize 64) and grid-searched stepsize. See Fig. 11 for
the corresponding test loss and accuracy as well as Fig. 12 for FashionMNIST results.

Fig. 4 compares the convergence rate of SGD on pre-trained vanilla networks and BN-networks.
As can be seen, the slow down in depth is much less severe for the pre-trained networks. This
improvement is, also, reflected both in terms of training accuracy and test loss (see Fig. 11 in
Appendix). Interestingly, the pre-training is not only faster than BN on deep networks, but it is also
straight-forward to use in settings where the application of BN is rather cumbersome such as for very
small batch sizes or on unseen data [16, 30].

Breaking batch normalization. Some scholars hypothesize that the effectiveness of BN stems
from a global landscape smoothing [25] or a certain learning rate tuning [3], that are thought to be
induced by the normalization. Under these hypotheses, one would expect that SGD converges fast on
BN-nets regardless of the initialization. Yet, we here show that the way that networks are initialized
does play a crucial role for the subsequent optimization performance of BN-nets.

7

0 1 2 3 4 5 6 7 8
Epochs

0.2

0.4

0.6

0.8

1.0
VGG19: Training Accuracy

W U[a, a]
W U[0, 2a]
W U[a, a] no centering

0 1 2 3 4 5 6 7 8
Epochs

0

5

10

15

20

25

30

VGG19: Rank in last hidden layer

W U[a, a]
W U[0, 2a]
W U[a, a] no centering

Figure 5: Breaking Batchnorm: CIFAR-10 on VGG19 with standard PyTorch initialization as well as a
uniform initialization of same variance. (Left) training accuracy, (Right) Rank of last hidden layer computed
using torch.matrix_rank(). Plot also shows results for standard initialization and BN without mean deduction.
Avg. and 95% CI of 5 independent runs. (See Fig. 13 in Appendix for similar results on ResNet-50).

Particularly, we train two MLPs with batchnorm, but change the initialization for the second
net from the standard PyTorch way Wl,i,j ∼ uniform

[
−1/
√
dl, 1/

√
dl
]

[22, 13] to Wl,i,j ∼
uniform

[
0,+2/

√
dl
]
, where dl is the layer size. As can be seen to the right, this small change

reduces the rank preserving quality of BN significantly, which is reflected in much slower learning
behaviour. Even sophisticated modern day architectures such as VGG and ResNet networks are
unable to fit the CIFAR-10 dataset after changing the initialization in this way (see Fig. 5).

Rank through the optimization process. The theoretical result of Theorem 2 considers the rank
at random initialization. To conclude, we perform two further experiments which confirm that the
initial rank strongly influences the speed of SGD throughout the entire optimization process. In this
regard, Fig. 6 reports that SGD preserves the initial magnitude of the rank to a large extent, regardless
of the specific network type. This is particularly obvious when comparing the two BN initializations.
A further noteworthy aspect is the clear correlation between the level of pre-training and optimization
performance on vanilla nets. Interestingly, this result does again not only hold on simple MLPs but
also generalizes to modern day networks such as the VGG-19 (see Fig. 5) and ResNet50 architecture
(see Appendix I).

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Epochs

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 lo
ss

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Epochs

100

101

Lo
we

r b
ou

nd
 o

n
ra

nk

Figure 6: Pretraining: Fashion-MNIST on MLPs of depth 32 and width 128. (Left) Training accuracy, (Right)
Lower bound on rank. Blue line is a ReLU network with standard initialization. Other solid lines are pre-trained
layer-wise with 25 (orange) and 75 (green) iterations to increase the rank. Dashed lines are batchnorm networks
with standard and asymmetric initialization. Average and 95% confidence interval of 5 independent runs.

5 Discussions

In summary, our work highlights a key difference between random vanilla- and BN networks. While
the rank of the hidden representations quickly collapses to one as the depth of vanilla networks
increases, BN is robust against such rank collapse. This intriguing property arises due to the standard
initialization of weights and also it is preserved through the optimization process. Notably, our
theoretical analysis proves this striking difference for linear MLPs and holds empirically across a
wide range of data sets and network architectures. Our experiments further highlight the determining

8

role of the rank quantity in the training speed. Inspired by these observations, we develop a novel pre-
training method that allows previously un-trainable very deep vanilla networks to learn, sometimes
even faster than BN-MLPs of the same size. Thereby our study reveals a key requirement for a proper
initialization of deep neural networks, opening doors to the development of effective initialization
schemes for modern-day architectures.

We thus consider our work a relevant step towards a better understanding of optimization for deep
neural networks. Furthermore, our findings give rise to several interesting follow-up questions: (i)
Can one generalize the analysis of Theorem 2 to ReLU and other non-linear nets to prove the observed
rank robustness (e.g. Fig. 2)? (ii) is it possible to rigorously prove that SGD updates preserve the rank
magnitude throughout optimization, as observed in Fig. 6)? (iii) Is it possible to use the develop a
similarly effective pre-training for convolution and recurrent networks? (iv) How can one theoretically
characterize the connection between the convergence of SGD and the rank quantity (a follow-up on
directional gradient vanishing)? (v) Does rank robustness explain the success of related architectures
such as layer normalization [4], weight normalization [24]) and modern initialization techniques such
as fix up initialization [35]? We believe that these questions will spark an interesting line of future
research towards the goal of fully understanding optimization in deep neural networks.

9

Broader impact

As we only contribute to a better understanding of neural network training in general, we consider
our work fundamental research without any specific application. Hence a broader impact discussion
is not applicable.

Funding

This project is fully supported by ETH-Zurich fellowships.

Acknowledgement

We thank Dr. Aran Raoufi and Dr. Olivier Ledoit as well as Gary Becigneul for their helpful
discussions.

References
[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via

over-parameterization. arXiv preprint arXiv:1811.03962, 2018.

[2] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018.

[3] Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. arXiv preprint arXiv:1812.03981, 2018.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[5] Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through the lens of sum-of-
squares. Course notes: http://www. sumofsquares. org/public/index. html, 2016.

[6] Peter L. Bartlett, David P. Helmbold, and Philip M. Long. Gradient descent with identity
initialization efficiently learns positive-definite linear transformations by deep residual networks.
Neural computation, 31(3):477–502, 2019.

[7] Nils Bjorck, Carla P. Gomes, Bart Selman, and Kilian Q. Weinberger. Understanding batch
normalization, 2018.

[8] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[9] Philippe Bougerol. Products of Random Matrices with Applications to Schrödinger Operators,
volume 8. Springer Science & Business Media, 2012.

[10] Aymeric Dieuleveut, Alain Durmus, and Francis Bach. Bridging the gap between constant step
size stochastic gradient descent and Markov chains. arXiv preprint arXiv:1707.06386, 2017.

[11] Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier. Markov Chains. Springer,
2018.

[12] Peter J. Forrester. Lyapunov exponents for products of complex Gaussian random matrices.
Journal of Statistical Physics, 151(5):796–808, 2013.

[13] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

10

[15] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and
problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 6(02):107–116, 1998.

[16] Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-
normalized models. In Advances in neural information processing systems, pages 1945–1953,
2017.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[18] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. The normalization method for alleviating
pathological sharpness in wide neural networks. In Advances in Neural Information Processing
Systems, pages 6403–6413, 2019.

[19] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural information
processing systems, pages 586–594, 2016.

[20] Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Ming Zhou, Klaus Neymeyr, and Thomas
Hofmann. Exponential convergence rates for batch normalization: The power of length-direction
decoupling in non-convex optimization. arXiv preprint arXiv:1805.10694, 2018.

[21] Dang-Zheng Liu, Dong Wang, and Lun Zhang. Bulk and soft-edge universality for singu-
lar values of products of ginibre random matrices. In Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques, volume 52, pages 1734–1762. Institut Henri Poincaré, 2016.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024–8035, 2019.

[23] Jeffrey Pennington, Samuel S Schoenholz, and Surya Ganguli. The emergence of spectral
universality in deep networks. arXiv preprint arXiv:1802.09979, 2018.

[24] Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. In Advances in Neural Information Processing
Systems, pages 901–909, 2016.

[25] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization?(no, it is not about internal covariate shift). arXiv preprint
arXiv:1805.11604, 2018.

[26] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[27] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep infor-
mation propagation. arXiv preprint arXiv:1611.01232, 2016.

[28] Matus Telgarsky. Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485, 2016.

[29] Joel A. Tropp. An introduction to matrix concentration inequalities. arXiv preprint
arXiv:1501.01571, 2015.

[30] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 3–19, 2018.

[31] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[32] Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. In
Advances in neural information processing systems, pages 7103–7114, 2017.

[33] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz.
A mean field theory of batch normalization. arXiv preprint arXiv:1902.08129, 2019.

11

[34] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Mahoney. PyHessian: Neural networks
through the lens of the Hessian. arXiv preprint arXiv:1912.07145, 2019.

[35] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning
without normalization. arXiv preprint arXiv:1901.09321, 2019.

12

Appendix

A Preliminaries

Recall that H(γ)
` denotes the hidden representations in layer `. These matrices make a Markov chain

that obeys the recurrence of Eq. (1), which we restate here

H
(γ)
`+1 = BN(H

(γ)
` + γW`H

(γ)
`), Hγ

0 = X, (7)

where we use the compact notation BN for BN0,1d . Let M (γ)
` be second moment matrix of the hidden

representations H(γ)
` , i.e. M (γ)

` := H
(γ)
`

(
H

(γ)
`

)>
/N . Batch normalization ensures that the rows

of H` have the same norm
√
N for ` > 0 –where N is the size of mini-batch. Let H be space of

d× d-matrices that obey this propery. This property enforces two key characteristics on M (γ)
` :

(p.1) its diagonal elements are one (8)
(p.2) the absolute value of its off-diagonal elements is less than one (9)

Property (p.1) directly yields that the trace of M (γ)
` (and hence the sum of its eigenvalues) is equal to

d. We will repeatedly use these properties in our analysis.

Furthermore, the sequence {H(γ)
` }∞`=1 constitute a Markov chain. Under mild assumptions, this chain

admits an invariant distribution that is defined bellow[11].

Definition 2. Distribution ν is an invariant distribution of the hidden representations {H(γ)
` }∞`=1 if

it obeys ∫
BN(H + γWH)µ(dW)ν(dH) =

∫
BN(H)ν(dH) (10)

where µ denotes the probability measure of random weights.

Later, we will see that the above invariance property allows us to determine the commutative behaviour
of the sequence of hidden presentations.

B Lower bounds on the (soft) rank

Recall that we introduced the ratio r(H) = Tr(M(H))2/‖M(H)‖2F in Eq. (4) as a lower bound on
both the rank(H) as well as the soft rank rankτ (H) (stated in Lemma 1). This section establishes
these lower bounds.

Proof of Lemma 1 (part 1). We first prove that rank(H) ≥ r(H). Let M := M(H) = HH>/N .
Since the eigenvalues of H are obtained by a constant scaling factor of the squared singular values of
H , these two matrices have the same rank. We now establish a lower bound on rank(M). Let λ ∈ Rd
contain the eigenvalues of matrix M , hence ‖λ‖1 = Tr(M) and ‖λ‖22 = ‖M‖2F . Given λ, we define
the vector w ∈ Rd as

wi =

{
1/‖λ‖0 : λi 6= 0

0 : λi = 0.
(11)

To proof the assertion, we make use if a straightforward application of Cauchy-Schwartz

|〈λ,w〉| ≤ ‖λ‖2‖w‖2 (12)

=⇒ ‖λ‖1/‖λ‖0 ≤ ‖λ‖2/‖λ‖1/20 (13)

=⇒ ‖λ‖1
‖λ‖2

≤ ‖λ‖1/20 . (14)

Replacing ‖λ‖2 = ‖M‖F and ‖λ‖1 = Tr(M) into the above equation concludes the result. Note
that the above proof technique has been used in the planted sparse vector problem [5].

13

Proof of Lemma 1 (part 2). Now, we prove that rankτ (H
(γ)
`) ≥ (1− τ)2r(H

(γ)
`). Let λ ∈ Rd+ be a

vector containing the eigenvalues of the matrix M (γ)
` = M(H

(γ)
`). Let σ ∈ Rd+ contain the singular

values of H . Then, one can readily check that σ2
i /N = λi. Furthermore, ‖λ‖1 = d due to (p.1) in

Eq. (8). Furthermore, we have by definition that

rankτ (H
(γ)
`) = hτ (λ) :=

d∑
i=1

1(σ2
i /N ≥ τ) =

d∑
i=1

1(λi ≥ τ). (15)

Let us now define a vector w ∈ Rd with entries

wi =

{
1/hτ (λ) : λi ≥ τ
0 : otherwise.

(16)

Then, we use Cauchy-Schwartz to get
|〈λ,w〉| ≤ ‖λ‖2‖w‖2. (17)

It is easy to check that ‖w‖2 = hτ (λ)−
1/2 holds. Furthermore,

hτ (λ)|〈w, λ〉| =
d∑

|λi|≥τ

|λi| (18)

≥ ‖λ‖1 − dτ (19)
≥ (1− τ)‖λ‖1, (20)

where we used the fact that ‖λ‖1 = d in the last inequality. Replacing this result into the bound of
Eq. (17) yields

rankτ (H
(γ)
`) = hτ (λ) ≥ (1− τ)2‖λ‖21/‖λ‖22 = (1− τ)2r(H

(γ)
`), (21)

which conludes the proof.

C Initialization consequences

The particular weight initialization scheme consider through out this work (recall Def. 1), imposes an
interesting structure in the invariant distribution of the sequence of hidden presentations (defined in
Def. 2).

Lemma 4. Suppose that the chain {H(γ)
` }∞`=1 (defined in Eq. 7) admits a unique invariant distribution

νγ and H is drawn from νγ; then, the law of Hi: equates the law of −Hi: where Hi: denotes the ith
row of matrix H .

Proof. Let S be a sign filliping matrix: it is diagonal and its diagonal elements are in {+1,−1}.
Then SW d

= W holds for a random matrix W whose elements are drawn i.i.d. from a symmetric
distribution. Let H be drawn from the invariant distribution of the chain denoted by νγ ; Leveraging
the invariance property, we get

H
d
= H+

d
=
(

diag(H1/2H
>
1/2/N)

)−1/2

H1/2, H1/2 := H + γSWSH (22)

By multiplying both sides with S, we get

SH
d
= SH+

d
=
(

diag
(
H1/2H

>
1/2/N

))−1/2

H̃1/2, H̃1/2 := SH + γWSH (23)

Note that we use the fact that diagonal matrices commute in the above derivation. According to the
definition, S2 = I holds. Considering this fact, we get

diag
(
H1/2H

>
1/2

)
= diag

(
(H + γSWSH) (H + γSWSH)

>
)

(24)

= diag
(

(SSH + γSWSH) (SSH + γSWSH)
>
)

(25)

= diag
(
S (SH + γWSH) (SH + γWSH)

>
S
)

(26)

= diag
(

(SH + γWSH) (SH + γWSH)
>
)

(27)

= H̃1/2H̃
>
1/2 (28)

14

Replacing the above result into Eq. (29) yields

SH
d
= SH+

d
= diag−1/2

(
H̃1/2H̃

>
1/2/N

)
H̃1/2, H̃1/2 := SH + γWSH. (29)

Hence the law of SH is invariant too. Since the invariant distribution is assumed to be unique,
SH

d
= H holds and thus Hi:

d
= −Hi:.

Comment on BN-centering Let νγ be the unique invariant distribution associated with Markov
chain {H(γ)

` }. A straightforward implication of last Lemma is E [Hi] = 0 for H ∼ νγ , hence the
rows of H(γ)

` are mean-zero, hence their average is close to zero 9 and the mean-zero operation in BN
is redundant. Although this theoretical argument is established for linear networks, we empirically
observed that BN without centering also works well on modern neural architectures. For example,
Fig. 7 shows that the centering does not affect the performance of BN on a VGG net when training
CIFAR-10.

0 5000 10000 15000 20000 25000 30000
Iteration

0.2

0.4

0.6

0.8

1.0

VGG19: Training Accuracy

BN
BN w/o centering

0 5000 10000 15000 20000 25000 30000
Iteration

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50
VGG19: Lower bound on rank

BN
BN w/o centering

Training Accuracy r(HL)

Figure 7: Centering for BN. The experiment is conducted on a VGG network. The blue line indicates
the original BN network and the orange line is BN without mean adaption. The vertical axis in the
left plot is training accuracy. In the right plot it is r(HL), where HL is the data representation in the
last hidden layer L. The horizontal axis indicates the number of iterations.

D Main Theorem: warm-up analysis

As a warm-up analysis, the next lemma proves that rank(H
(γ)
`) ≥ 2 holds. Later, we will prove a

stronger result. Yet, this initial results provides valuable insights into our proof technique. Further-
more, we will use the following result in the next steps.
Lemma 5. Suppose that each element of the weight matrices is independently drawn from distribution
P that is zero-mean, unit-variance, and its support lies in interval [−B,B]. If the Markov chain
{H`}`≥1 admits a unique invariant distribution, then

rank(H
(γ)
`) ≥ 2 (30)

holds almost surely for all integers ` and γ ≤ 1/(8d).

Proof. Let the weights {W`} be drawn from the distribution µ, defined in Def. 1. Such a distribution
obeys an important property: element-wise symmetricity. That is, [W`]ij is distributed as −[W`]ij .
Such an initialization enforces an interesting structural property for the invariant distribution νγ that
is stated in Lemma 4. It is easy to check that this implies

E
[
[M(H

(γ)
`)]ij

]
= −E

[
[M(H

(γ)
`)]ij

]
= 0, (31)

for any i 6= j. Recall, M(H) = HH>/N . The above property enforces [M(H)]2ij to be small

and hence ‖M (γ)
` ‖2F is small as well. Now, as rank(H

(γ)
`) is proportional to 1/‖M (γ)

` ‖2F (compare

9When d is sufficiently large and assuming that coordinates in one row are weakly dependent, the central
limit theorem implies that the empirical average of the rows converges to zero.

15

Eq. (4)), it must consequently stay large. The rest of the proof is based on this intuition. Given
the uniqueness of the invariant distribution, we can invoke Birkhoff’s Ergodic Theorem for Markov
Chains (Theorem 5.2.1 and 5.2.6 [11]) which yields

lim
L→∞

1

L

L∑
`=1

[M
(γ)
`]ij = EH∼νγ [[M(H)]ij] . (32)

This allows us to conclude the proof by a simple contradiction. Assume that rank(H
(γ)
k) is indeed

one. Then, as established in the following Lemma, in the limit all entries of M(H
(γ)
`) are constant

and either −1 or 1.

Lemma 6. Suppose the assumptions of Lemma 5 hold. If rank(H
(γ)
k) = 1 for an integer k, then

M(H
(γ)
`) = M(H

(γ)
k) holds for all ` > k. Furthermore, all elements of all matrices {M(H

(γ)
`)}`≥k

have absolute value one, hence

lim
L→∞

1

L

L∑
`=1

[M(H
(γ)
`)]ij ∈ {1,−1} (33)

holds.

As a result, leveraging the ergodicity established in (61), we get that then

EH∼νγ [[M(H)]ij] ∈ {+1,−1} (34)

must also hold. However, this contradicts the consequence of the symmetricity (Eq. (31)) which
states that for any j 6= i we have EH∼νγ [[M(H)]ij] = −EH∼νγ [[M(H)]ij] = 0. Thus, the rank
one assumption cannot hold, which proves the assertion.

To complete the proof of the last theorem, we prove Lemma 6.

Proof of Lemma 6. For the sake of simplicity, we omit all superscripts (γ) throughout the proof.
Suppose that rank(Hk) = 1, then rank(H`) = 1 for all ` ≥ k as the sequence {rank(H`)} is
non-increasing 10. Invoking the established rank bound from Lemma 1, we get

r(H`) =
Tr(M`)

2

‖M`‖2F
≤ rank(H`) = 1. (35)

The above inequality together with properties (p.1) and (p.2) (presented in Eqs 8 and 9) yield
Tr(M`) = d. Replacing this into the above equation gives that ‖M`‖2F ≥ d2 must hold for the rank
of H` to be one. Yet, recalling property (p.2), this can only be the case if [M`]ij ∈ {+1,−1} for all
i, j. Replacing the definition M(H) = HH>/N into updates of hidden presentation in Eq. 1 obtains

M`+1 = diag
(
M`+ 1

2

)−1/2 (
M`+ 1

2

)
diag

(
M`+ 1

2

)−1/2

(36)

where

M`+ 1
2

= M` + ∆M`, ∆M` := γW`M` + γM`W
>
` + γ2W`M`W

>
` (37)

We now prove that the sign of [M`]ij and [M`+1]ij are the same for [M`]ij ∈ {+1,−1}. The above
update formula implies that the sign of [M`+1]ij equates that of [M`+1/2]ij . Furthermore, it is easy
to check that |[∆M`]ij | ≤ 4γB. For γ ≤ 1/(8Bd), this bound yields |[∆M`]ij | ≤ 1

2 . Therefore,
the sign of [M`+1/2]ij is equal to the one of [M`]ij . Since furthermore [M`+1]ij ∈ {1,−1} holds,
we conclude that all elements of M` remain constant for all ` ≥ k, which yields the limit stated in
Eq. 33 .

10Recall that the updates in Eq. (1) is obtained by matrix multiplications, hence it does not increase the rank.

16

E Main theorem: Proof

In this section, we prove that BN yields an Ω(
√
d)-rank for hidden representation.

Proof sketch for Thm. 2. The proof is based on an application of ergodic theory (as detailed for
example in Section 5 of [11]). In fact, the chain of hidden representations, denoted by H(γ)

` (1),
constitutes a Markov chain in a compact space. This chain admits at least one invariant distribution ν
for which the following holds∫

g(BN0,1d(H + γWH))µ(dW)ν(dH) =

∫
g(H)ν(dH), (38)

for every bounded Borel function g : Rd×d → Rd. The above invariance property provides an
interesting characterization of the invariant measure ν. Particularly, we show in Lemma 13 that∫

r(H)ν(dH) = Ω(
√
d) (39)

holds, where r(H) is the established lower-bound on the rank (see Lemma 1). Under weak assump-
tions, the chain obey Birkhoff’s Ergodicity, which yields that the average behaviour of the hidden
representations is determined by the invariant measure ν:

lim
L→∞

1

L

∑
i=`

r(H
(γ)
`) =

∫
r(H)ν(dH)

(39)
= Ω(

√
d). (40)

Finally, the established lower bound in Lemma 1 allows us to directly extend this result to a lower
bound on the soft rank itself.

Characterizing the change in Frobenius norm Recall the established lower bound on the rank
denoted by r(H), for which

r(H`) =
Tr(M`)

2

‖M`‖2F
=

d2

‖M`‖2F
(41)

holds for all H` defined in Eq. 1.11 Therefore, ‖M`‖2F directly influences rankτ (H`) (and also
rank(H`)) according to Lemma 1. Here, we characterize the change in ‖M(H)‖2F after applying one
step of the recurrence in Eq. 7 to H , i.e. passing it trough one hidden layer. This yields

H+ = (diag(M(Hγ(W)))
−1/2

Hγ(W), Hγ(W) = (I + γW)H. (42)

Let M = M(H) and M+ = M(H+) for simplicity. The next lemma estimates the expectation
(taken over the randomness of W) of the difference between the Frobenius norms of M+ and M .

Lemma 7. If W ∼ µ (defined in Def. 1), then(
EW ‖M+‖2F − ‖M‖2F

)
/(γ2) = 2d2 − 2‖M‖2F − 8Tr(M3) + 8Tr(diag(M2)2)︸ ︷︷ ︸

δF (M)

+O(γ) (43)

holds as long as the support of distribution P (in Def. 1) lies in a finite interval [−B,B].

The proof of the above lemma is based on a Taylor expansion of the BN non-linear operator. We
postpone the detailed proof to the end of this section. While the above equation seems complicated at
first glance, it provides some interesting insights.

Interlude: Intuition behind Lemma 7. In order to gain more understanding of the implications of
the result derived in Lemma 7, we make the simplifying assumption that all the rows of matrix M
have the same norm. We emphasize that this assumption is purely for intuition purposes and is not
necessary for the proof of our main theorem. Under such an assumption, the next proposition shows
that the change in the Frobenius norm directly relates to the spectral properties of matrix M .

11Recall Tr(M`) = d holds due to property (p.2) in Eq. 9

17

Proposition 8. Suppose that all the rows of matrix M have the same norm. Let λ ∈ Rd contain the
eigenvalues of matrix M . Then,

Tr(M3) = ‖λ‖33, Tr(diag(M2))2 = ‖λ‖4/d, ‖M‖2F = ‖λ‖22 (44)

holds and hence

δF (M) = δF (λ) := 2d2 − 2‖λ‖22 − 8‖λ‖33 + 8‖λ‖4/d. (45)

We postpone the proof to the end of this section. This proposition re-expresses the polynomial of
Lemma 7 in terms of the eigenspectrum of M .

Based on the above proposition, we can make sense of interesting empirical observation reported
in Figure 3.b. This figure plots the evolution of the eigenvalues of M(H

(γ)
`) after starting from

a matrix M(H0) whose leading eigenvalue is large and all other eigenvalues are very small. We
observe that a certain fraction of the small eigenvalues of M(H

(γ)
`) grow quickly with `, while the

leading eigenvalue is decreases in magnitude. In the next example, we show that the result of the last
proposition actually predicts this observation.
Example 9. Suppose thatM is a matrix whose rows have the same norm. Let λ1 ≥ λ2, . . . , λd be the
eigenvalues associated with the matrix M such that λd = λd−1 = λ2 = γ2 and λ1 = d− γ2(d− 1).
In this setting, Prop. 8 implies that EW ‖M+‖2F < ‖M‖2F − γ4d2 for a sufficiently small γ. This
change has two consequences in expectation:(i.) the leading eigenvalue of M+ is O(−γ4d) smaller
than the leading eigenvalue of M , and (ii.) some small eigenvalues of M+ are greater than those of
M (see Fig. 3.b).

We provide a more detailed justification for the above statement at the end of this section. This
example illustrates that the change in Frobenius norm (characterized in Lemma 7) can predict the
change in the eigenvalues of M(H

(γ)
`) (singular values of H(γ)

`) and hence the desired rank. Inspired
by this, we base the proof of Theorem 2 on leveraging the invariance property of the unique invariant
distribution with respect to Frobenius norm – i.e. setting g(H) = ‖M(H)‖2F in Def. 2.

An observation: regularity of the invariant distribution We now return to the result derived in
Lemma 7 that characterizes the change in Frobenius norm of M(H) after the recurrence of Eq. (7).
We show how such a result can be used to leverage the invariance property with respect to the
Frobenius norm. First, we observe that the term Tr(M(H)3) in the expansion can be shown to
dominate the term Tr(diag(M(H)2)2) in expectation. The next definition states this dominance
formally.
Definition 3. (Regularity constant α) Let ν be a distribution over H ∈ H. Then the regularity
constant associated with ν is defined as the following ratio:

α = EH∼ν
[
Tr
(
diag(M(H)2)2

)]
/
(
EH∼ν

[
Tr
(
M(H)3

)])
. (46)

The next lemma states that the regularity constant α associated with the invariant distribution νγ is
always less than one. Our analysis will in fact directly rely on α < 1.

Lemma 10. Suppose that the chain {H(γ)
` } admits the unique invariant distribution νγ (in Def. 2).

Then, the regularity constant of νγ (in Def. 3) is less than one for a sufficiently small γ.

Proof. We use a proof by contradiction where we suppose that the regularity constant of distribution
νγ is greater than one. In this case, we prove that the distribution cannot be invariant with respect to
the Frobenius norm.

If the regularity constant α is greater than one, then

EH∼νγ
[
−Tr(M(H)3) + Tr(diag(M(H)2)2)

]
≥ 0 (47)

holds. According to Theorem 5, the rank of M(H) is at least 2. Since the sum of the eigenvalues is
constant d, the leading eigenvalue is less than d. This leads to

‖M(H)‖2F =
∑
i

λ2i ≤ max
i
λi

∑
j

λj

 ≤ dmax
i
λi < d2.

18

Plugging the above inequality together with inequality 47 into the established bound in Lemma 7
yields

EW,H∼νγ
[
‖M(H+)‖2F − ‖M(H)‖2F

]
> 0 (48)

for a sufficiently small γ. Therefore, νγ does not obey the invariance property for g(H) = ‖M(H)‖2F
in Def. 2.

We can experimentally estimate the regularity constant α using the Ergodicity of the chain. Assuming
that the chain is Ergodic12,

lim
L→∞

1

L

L∑
`=1

g(H
(γ)
`) = EH∼νγ [g(H)] (49)

holds almost surely for every Borel bounded function g : H → R. By setting g1(H) = Tr(M(H)3)
and g2(H) = Tr(diag(M(H)2)2), we can estimate EH∼νγ [gi(H)] for i = 1, and 2. Given these
estimates, α can be estimated. Our experiments in Fig. 8 show that the regularity constant of the
invariant distribution νγ is less than 0.9 for d > 10.

0 50 100 150 200 250 300
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0 50 100 150 200 250 300
0.82

0.84

0.86

0.88

0.90

0.92

0.94

γ = 1 γ = 0.1

Figure 8: Regularity constant of the invariant distribution. The vertical axis is the estimated regularity
constant α and the horizontal axis is d. We use L = 105 (in Eq. (49)).

Interlude: intuition behind the regularity We highlight the regularity constant does by itself not
yield the desired rank property in Theorem 2. This is illustrated in the next example that shows how
the regularity constant relates to the spectral properties of M(H).
Example 11. Suppose that the support of distribution ν contains only matrices H ∈ H for which all
rows of M(H) have the same norm. If the regularity constant of ν is greater than or equal to one,
then all non-zero eigenvalues of matrix M(H) are equal.

A detailed justification of the above statement is presented at the end of this section. This example
shows that the regularity constant does not necessarily relate to the rank of H , but instead it is
determined by how much non-zero eigenvalues are close to each other. We believe that a sufficient
variation in non-zero eigenvalues of M(H) imposes the regularity of the law of H with a constant
less than one (i.e. α < 1 in Def. 3). The next example demonstrates this.
Example 12. Suppose the support of distribution ν contains matrices H ∈ H for which all rows of
M(H) have the same norm. Let λ ∈ Rd contain sorted eigenvalues of M(H). If λ1 = Θ(dβ) and
λi = o(dβ) for i > 1 and β < 1,13 then the regularity constant α associated with ν is less than 0.9
for sufficiently large d.

We later provide further details about this example.

Invariance consequence The next lemma establishes a key result on the invariant distribution νγ .

Lemma 13. Suppose that the chain {H(γ)
` } (see Eq. 7) admits the invariant distribution νγ (see

Def. 2). If the regularity constant associated with νγ is α < 1 (defined in Def. 3), then

EH∼νγ
[
‖M(H)‖2F

]
≤ d3/2/

√
1− α (50)

holds for a sufficiently small γ.
12The uniqueness of the invariant distribution implies Ergodicity (see Theorem 5.2.1 and 5.2.6 [11]).
13According to definition, limd→∞ o(d

β)/Θ(dβ) = 0

19

Proof. Leveraging invariance property in Def. 2,

EW,H∼νγ
[
‖M(H+)‖2F − ‖M(H)‖2F

]
= 0 (51)

holds where the expectation is taken with respect to the randomness of W and νγ .14 Invoking the
result of Lemma 7, we get

EH∼νγ
[
2d2 − 2‖M(H)‖2F − 8Tr(M(H)3) + 8Tr(diag(M(H)2)2)

]
+ O(γ) = 0. (52)

Having a regularity constant less than one for νγ implies

0 ≤ 2d2 − EH∼νγ
[
2‖M(H)‖2F − 8(1− α)Tr(M(H)3)

]
(53)

holds for sufficiently small γ. Let λ ∈ Rd be a random vector containing the eigenvalues of the
random matrix M(H).15 The eigenvalues of M3 are λ3, hence the invariance result can be written
alternatively as

0 ≤ 2d2 − E
[
2‖λ‖22 − 8(1− α)‖λ‖33

]
. (54)

The above equation leads to the following interesting spectral property:

E‖λ‖33 ≤ d2/(1− α). (55)

A straightforward application of Cauchy-schwarz yields:

‖λ‖22 =
∑
i

λ2i =
∑
i

λ
1/2
i λ

3/2
i ≤

√∑
i

λi
∑
j

λ3i ≤
√
d‖λ‖33 (56)

Given (i) the above bound, (ii) an application of Jensen’s inequality, (iii) and the result of Eq. (55),
we conclude with the desired result:

EH∼νγ [M(H)] = E
[
‖λ‖22

] (i)
≤ E

√
d‖λ‖33

(ii)
≤
√
dE‖λ‖33

(iii)
≤ d

3/2/
√

1− α (57)

Notably, the invariant distribution is observed to have a regularity constant less than 0.9 (in Fig. 8) for
sufficiently large d. This implies that an upper-bound O

(
d

3/2
)

is achievable on the Frobenius norm.
Leveraging Ergodicity (with respect to Frobenius norm in Eq. (49)), we experimentally validate the
result of the last lemma in Fig. 9.

2 3 4 5 6 7 8
2

4

6

8

10

12

14

|M|_F^2

d**(1.5)

2 3 4 5 6 7 8
2

4

6

8

10

12

14

|M|_F^2

d**(1.5)

γ = 1 γ = 0.1

Figure 9: Dependency of Eνγ‖M(H)‖2F on d. The horizontal axis is log2(d) and the vertical axis
shows log2(1

L

∑L
`=1 ‖M(H

(γ)
`)‖2F) for L = 105. The green dashed-line plots log2(d1.5).

Proof of the Main Theorem Here, we give a formal statement of the main Theorem that contains
all required additional details (which we omitted for simplicity in the original statement).

14This result is obtained by setting g(H) = ‖M(H)‖2F in Def. 2.
15Note that H ∈ H is a random matrix whose law is νγ , hence λ ∈ Rd is also a random vector.

20

Theorem 14 (Formal statement of Theorem 2). Suppose that rank(X) = d, γ is sufficiently small,
and all elements of the weight matrices {W`} are drawn i.i.d. from a zero-mean, unit variance
distribution whose support lies in [−B,B] and its law is symmertic around zero. Furthermore,
assume that the Markov chain {H(γ)

` } (defined in Eq. 1) admits a unique invariant distribution. Then,
the regularity constant α > 0 associated with νγ (see Def. 3) is less than one and the following limits
exist such that

lim
L→∞

1

L

L∑
`=1

rankτ (H
(γ)
`) ≥ lim

L→∞

(1− τ)2

L

L∑
`=1

r(H
(γ)
`) ≥ (1− τ)2(1− α)

1/2
√
d (58)

holds almost surely for all τ ∈ [0, 1]. Assuming that the regularity constant α does not increase with
respect to d, the above lower-bound is proportional to (1− α)

1/2
√
d = Ω(

√
d).

Remarkably, we experimentally observed (in Fig. 8) that the regularity constant α is decreasing with
respect to d. Examples 11 and 12 provide insights about the regularity constant. We believe that it is
possible to prove that the constant α is non-increasing with respect to d.

Proof of Theorem 2 . Lemma 10 proves that the regularity constant α is less than one for the unique
invariant distribution. Suppose that H ∈ H is a random matrix whose law is the one of the unique
invariant distribution of the chain. For H ∈ H, we get Tr(M(H)) = d. A straightforward application
of Jensen’s inequality yields the following lower bound on the expectation of r(H) (i.e. the lower
bound on the rank):

E [r(H)] = E
[
Tr(M(H))2/‖M(H)‖2F

]
= E

[
d2/‖M(H)‖2F

]
≥ d2/E

[
‖M(H)‖2F

]
(59)

where the expectation is taken over the randomness of H (i.e. the invariant distribution). Invoking
the result of Lemma 13, we get an upper-bound on the expectation of the Frobenius norm – in the
right-side of the above equation. Therefore,

E [r(H)] ≥
√

(1− α)d (60)

holds. The uniqueness of the invariant distribution allows us to invoke Birkhoff’s Ergodic Theorem
for Markov Chains (Theorem 5.2.1 and 5.2.6 [11]) to get

lim
L→∞

1

L

L∑
`=1

r(H
(γ)
`) = E [r(H)] ≥

√
(1− α)d. (61)

The established lower bound on rankτ (H
(γ)
`) –in terms of r(H(γ)

`)– in Lemma 1 concludes

lim
L→∞

1

L

L∑
`=1

rankτ (H
(γ)
`) ≥ lim

L→∞

(1− τ)2

L

L∑
`=1

r(H
(γ)
`) ≥ (1− τ)2

√
(1− α)d. (62)

As shown in the following corollary, one can extend the result of Theorem 14 for any finite `.

Corollary 15. Under the setting of Thm. 14, rank(H`) = Ω(
√
d) holds almost surely for all finite

integer `. Assuming that {rankτ (H`)} is a monotonically no-increasing sequence, then rankτ (H`) =

Ω((1− τ)2
√
d) holds almost surely for all finite `.

Proof. The proof is based on the no-increasing property of the rank16. Next lemma presents a
straightforward implication of this property.

Lemma 16. Consider a sequence of non-increasing bounded finite integers {yk}∞k=1. If
limN→∞

∑N
k=1 yk/N exists and is greater than α, then yk ≥ α for all finite k.

The proof of the last lemma is provided at the end of this section. Replacing the result of Thm. 14
into the above lemma concludes the proof of the corollary.

16Recall that the rank does not increases in updates of Eq. (7)

21

A remark on the number of hidden units. The focus of our analysis was networks with the same
number of hidden units in each layer. Yet, this result extends to more general architectures. Most of
modern neural architectures consists of blocks in which the number of hidden units are constant. For
example, VGG19-Nets and ResNets are consist of blocks convolutional layers with 64, 128, 256, and
512 channels where the number channels are equal in each block. An analogy of such an architecture
is an MLP with different blocks of hidden layers where the numbers of hidden units are the same in
each block. According to Cor. 15, the rank preservation property holds in each block after applying
BN. In this way, one can extend the established results of Thm. 14 and Cor. 15 to a general family of
architectures with varying number of hidden units.

22

Postponed proofs.

Proof of Lemma 7. The proof is based on a Taylor expansion of the BN non-linear recurrence func-
tion, which we restate here for simplicity:

H+ = (diag(M(Hγ)))
−1/2

Hγ , Hγ = (I + γW)H (63)

Consider the covariance matrices M = M(H) and M+ = M(H+) which obey

Mγ := M(Hγ) = M + ∆M, ∆M := γWM + γMW> + γ2WMW> (64)

[M+]2ij = gij(Mγ) = [Mγ]2ij/[Mγ]ii[Mγ]jj (65)

For the sake of simplicity, we use the compact notation g := gij for i 6= j. We further introduce the
set of indices S = {ii, ij, jj}. A taylor expansion of g at M yields

EW [g(Mγ)] = g(M) +
∑
pq∈S

(
∂g(M)

∂Mpq

)
EW [∆Mpq]︸ ︷︷ ︸

T1

+
1

2

∑
pq,km∈S

(
∂2g(M)

∂Mpq∂Mkm

)
EW [∆Mpq∆Mkm]︸ ︷︷ ︸

T2

+O(γ3). (66)

Note that the choice of the element-wise uniform distribution over [−
√

3,
√

3] allows us to determinis-
tically bound the Taylor remainder term by O(γ3). Now, we compute the derivatives and expectations
that appear in the above expansion individually. Let us start with the term T1. The first-order partial
derivative term in T1 is computed bellow.

∂g(M)

∂Mpq
=

{
−M2

ij/(M
2
iiMjj) = −g(M) pq = {ii, jj}

2Mij/(MiiMjj) pq = {ij}. (67)

The expectation term in T1 is

EW [∆Mpq] =

{
0 pq = {ij}
γ2
∑d
k=1Mkk = γ2d pq = {ii, jj}.

(68)

Given the above formula, we reach the following compact expression for T1:

T1 = −2γ2dg(M). (69)

The compute T2 we need to compute second-order partial derivatives of g and also estimate the
following expectation:

EW [∆Mpq∆Mkm] = γ2

EW
[
[WM +MW>]pq[WM +MW>]km

]︸ ︷︷ ︸
Kpq,km

+ O(γ3). (70)

We now compute Kpq,km in the above formula

Kα,β =

∑
kM

2
kj +

∑
nM

2
in α = {ij}, β = {ij}

2
∑
kMkjMki α = {ij}, β = {ii}

4
∑
kM

2
ki α = {ii}, β = {ii}

0 α = {ii}, β = {jj}

(71)

The second-order partial derivatives of g reads as

∂2g(M)

∂Mα∂Mβ
=

2 α = {ij}, β = {ij}
−2Mij α = {ij}, β = {ii}
+2M2

ij α = {ii}, β = {ii}
M2
ij α = {jj}, β = {ii}

(72)

23

Now, we replace the computed partial derivatives and the expectations into T2:

T2 =
∑
k

M2
kj +

∑
n

M2
in − 8

∑
k

MkjMijMki + 4
∑
k

M2
ijM

2
ki + 4

∑
k

M2
ijM

2
kj (73)

Plugging terms T1 and T2 into the Taylor expansion yields

EW [gij(M+)− gij(M)] /(γ2)

=
∑
k

M2
kj+

∑
n

M2
in−2dgij(M)−8

∑
k

MkjMijMki+4
∑
k

M2
ijM

2
ki+4

∑
k

M2
ijM

2
kj+O(γ)

(74)

Summing over i 6= j concludes the proof (note that the diagonal elements are one for the both of
matrices M and M+).

Proof of Proposition 8. Consider the spectral decomposition of matrix M as M = Udiag(λ)U>,
then Mk = Udiag(λk)U>. Since Tr(Mk) is equal to the sum of the eigenvalues of Mk, we get

Tr(Mk) =
d∑
i=1

λki = ‖λ‖kk (75)

for k = 2 and k = 3. The sum of the squared norm of the rows in M is equal to the Frobenius norm
of M . Assuming that the rows have equal norm, we get

d∑
k=1

M2
ik =

d∑
i=1

d∑
k=1

M2
ik/d = ‖M‖2F /d = ‖λ‖22/d. (76)

Therefore,

Tr(diag(M2)2) =

d∑
i=1

(
d∑
k=1

M2
ik

)2

= ‖λ‖42/d (77)

holds.

Details of Example 9. Under the assumptions stated in Example 9, we get

‖λ‖22 ≈ d2 − 2γ2d, ‖λ‖33 ≈ d3 − 3γ2d2, ‖λ‖42 ≈ d4 − 4γ2d3 (78)

where the approximations are obtained by a first-order Taylor approximation of the norms at λ′ =
(d, 0, . . . , 0), and all small terms o(γ2) are omitted. Using the result of Proposition 8, we get

E
[
‖M+‖2F

]
− E

[
‖M‖2F

]
≈ γ2δF (λ) ≈ O(−γ4d2). (79)

Let λ+ be the eigenvalues of the matrix M+, then

d∑
i=1

E[λ2+]i − λ2i = O(−γ4d2) (80)

=⇒ max
i

E[λ2+]i − λ21 ≤ O(−γ4d2) +

d∑
i=2

λ2i ≤ O(−γ4d2) + γ4d = O(−γ4d2). (81)

Let j = arg maxi E
[
[λ+]2i

]
. A straight-forward application of Jensen’s inequality yields

E [[λ+]j] ≤
√
E
[
[λ+]2j

]
≤ λ1 − O(γ4d). (82)

Hence the leading eigenvalue of M+ is smaller than the one of M . Since the sum of eigenvalues λ+
and λ are equal, some of the eigenvalues λ+ are greater than those of λ (in expectation) to compensate
E[λ+]j < λ1.

24

Details of Example 11. Invoking Prop. 8, we get

E
[
Tr(M(H)3)

]
= ‖λ‖3, E

[
diag(M(H)2)2

]
= ‖λ‖42/d, (83)

where λ ∈ Rd contains the eigenvalues of M(H). Since H ∈ H, ‖λ‖1 = d. If the regularity constant
is greater than or equal to one, then

‖λ‖33 ≤ ‖λ‖42/d = ‖λ‖42/‖λ‖1. (84)

A straightforward application of Cauchy-Schwartz yields:

‖λ‖42 =

d∑
i=1

d∑
j=1

λ2iλ
2
j =

d∑
i=1

d∑
j=1

(λiλj)
1/2(λiλj)

3/2

≤

√√√√√
∑

i,j

λiλj

∑
i,j

λ3iλ
3
j

 = ‖λ‖1‖λ‖33 (85)

The above result together with inequality 84 yields that

‖λ‖33 = ‖λ‖42/d = ‖λ‖42/‖λ‖1. (86)

Finally, the above equality is met only when all non-zero eigenvalues are equal.

Details of Example 12. Since λ1 = Θ(dβ) and λi>1 = o(dβ), we get

‖λ‖33 = Θ(d3β), ‖λ‖22 = Θ(d2β). (87)

Thus, Prop. 8 yields

E
[
Tr(M3)

]
= Θ(d3β), E

[
Tr(diag(M2)2)

]
= ‖λ‖42/d = Θ(d4β−1) (88)

Therefore,

α = lim
d→∞

E
[
Tr(diag(M2)2)

]
E [Tr(M3)]

= O(dβ−1) = 0. (89)

As a result, α is less than 0.9 for sufficiently large d.

Proof of Lemma 16. The proof is based on a contradiction. Suppose that there exits a finite n such
that yn < α. Since the sequence is non-increasing, ym < α for holds for all m > n. This yields

lim
N→∞

N∑
k=1

yk/N = lim
N→∞

 N∑
k>n

yk/N +
∑
k≤n

yk/N

 (90)

<
(N − n)

N
α+ lim

N→∞

∑
k≤n

yk/N (91)

=
(N − n)

N
α, (92)

where we used the fact that all yk are bounded. The above result contradicts the fact that
limn→∞

∑N
k=1 yk/N > α.

F Analysis for Vanilla Linear Networks.

In this section, we prove Lemma 3 that states the rank vanishing problem for vanilla linear networks.
Since the proof relies on existing results on products of random matrices (PRM) [9], we first shortly
review these results. Let T be the set of d × d matrices. Then, we review two notions for T :
contractiveness and strong irreducibility.

25

Definition 4 (Contracting set [9]). T is contracting if there exists a sequence {Mn ∈ T, n ≥ 0} such
that Mn/‖Mn‖ converges to a rank one matrix.

Definition 5 (Invariant union of proper subspaces [9]). Consider a family of finite proper linear
subspace V1, . . . , Vk ⊂ Rd. The union of these subspaces is invariant with respect to T , if Mv ∈
V1 or V2 or . . . or Vk holds for ∀v ∈ V1 or V2 or . . . or Vk and ∀M ∈ T .

Example 17. Consider the following sets

T =

([
0 1
1 0

])
, V1 =

span([0, 1]︸︷︷︸
v1

)

 , V2 =

span([1, 0]︸︷︷︸
v2

)

 ;

then, union of V1 and V2 is invariant with respect to T because αTv1 ∈ V2 and αTv2 ∈ V1 hold for
α 6= 0.

Definition 6 (Strongly irreducible set [9]). The set T is strongly irreducible if there does not exist a
finite family of proper linear subspaces of Rd such that their union is invariant with respect to T .

For example, the set T defined in Example 17 is not strongly irreducible.

Lemma 18 (Thm 3.1 of [9]). Let W1,W2, . . . be random d× d matrices drawn independently from
a distribution µ. Let Bn =

∏n
k=1Wk. If the support of µ is strongly irreducible and contracting,

then any limit point of {Bn/‖Bn‖}∞n=1 is a rank one matrix almost surely.

This result allows us to prove Lemma 3.

Proof of Lemma 3. Recall the structure of the random weight matrices as Ŵk = I + γWk where the
coordinates Wk are i.i.d. from (a.) standard Gaussian, (b.) uniform[−

√
3,
√

3] (i.e. with variance
1). One can readily check that for the Gaussian weights, the contracting and strong irreducibility
hold and one can directly invoke the result of lemma 18 to get part (a.) of Lemma 3. Now, we
prove part (b.). Let m be a random integer that obeys the law p(m = k) = 2−k. Given the
random variable m, we define the random matrix Y =

∏m
k=1 Ŵk and use the notation µ′ for its

law. Let {Yi =
∏mi
j=1 Ŵk}ki=1 be drawn i.i.d. from µ′. Then, Ck := Yk . . . Y2Y1 is distributed as

B`k := Ŵ`k . . . Ŵ2Ŵ1 for `k =
∑k
i=1mi. We prove that every limit point of {Ck/‖Ck‖} converges

to a rank one matrix, which equates the convergence of limit points of {B`k/‖B`k‖} to a rank one
matrix. To this end, we prove that the support of µ′ denoted by Tµ′ is contractive and strongly
contractive. Then, Lemma 18 implies that the limit points of {Ck/‖Ck‖} are rank one.
Contracting. Let e1 ∈ Rd be the first standard basis vector. Since An := (I + γe1e

>
1)n ∈ Tµ′ and

its limit point {An/‖An‖} converges to a rank one matrix, Tµ′ is contractive.
Strong irreduciblity. Consider an arbitrary family of linear proper subspace of Rd as {V1, . . . , Vq}.
Let v be an arbitrary unit norm vector which belongs to one of the subspaces {Vi}qi=1. Given v, we
define an indexed family of matrices {Mα ∈ Tµ′ |α ∈ Rd, |αi| ≤ 1} such that

Mα = I +
γ

d

d∑
i=1

αieiv
> ∈ Tµ′ , (93)

where ei is the i-th standard basis17. Then, we get

Mαv = v +
γ

d

d∑
i=1

αiei. (94)

Therefore, {Mαv||αi| ≤ 1} is not contained in any union of finite proper (m < k)-dimensional
linear subspace of Rd, hence Tµ′ is strongly irreducible.

17Notably, the absolute value of each element of 1
d

∑d
i=1 αieiv

> is less than 1, hence this matrix belongs to
the support of µ.

26

G Details: Pretraining algorithm

In Section 4, we introduced a pre-training method that effectively obtains a better optimization
performance compared ot BN. In this section, we provide more details about the pre-training step.
Recall X ∈ Rd×N is a minibatch of d-dimensional inputs of size N . Let HL(X) ∈ Rd×N be the
hidden representation of input X in the last layer of a MLP. Using gradient descent method, we
optimize r(HL(X)) –with respect to the parameters of networks– over different minibatches X .
Algorithm 1 presents our pretraining method. As can be seen, the procedure is very simple.

Algorithm 1 Pretraining
1: Input: Training set S, a network with parameters Θ and L layers, and constant N,M , and T
2: for k = 1, 2, . . . ,M do
3: Draw minibatch Xk of size N i.i.d. from S
4: for t = 1, 2, . . . , T do
5: Take one GD step on r(HL(Xk)) w.r.t Θ.
6: end for
7: end for
8: return Θ.

H Details: Why the rank matters for gradient based learning.

We now provide an intuitive explanation of why rank one hidden representations prevent randomly
initialized networks from learning. Particularly, we argue that these networks essentially map all
inputs to a very small subspace18 such that the final classification layer can no longer disentangle the
hidden representations. As a result, the gradients of that layer also align, yielding a learning signal
that becomes independent of the input.

To make this claim more precise, consider training the linear network from Eq. (6) on a dataset
X ∈ Rd×N , where xi ∈ Rd with dout targets yi ∈ Rdout , i = 1, . . . , N . Each column Ĥ(γ)

L,i of

the hidden representations in the last hidden layer Ĥ(γ)
L is the latent representation of datapoint i,

which is fed into a final classification layer parametrized by WL+1 ∈ Rdout×d. We optimize L(W),
where W is a tensor containing all weights W1, . . . ,WL+1 and Ĥ(γ)

L,i is a function of W1, . . . ,WL

(as detailed in Eq. (6):

min
W
L(W) =

N∑
i=1

`
(
yi,WL+1Ĥ

(γ)
L,i (W1, ...,WL)

)
︸ ︷︷ ︸

:=Li(W)

, (95)

and ` : Rdout → R+ is a differentiable loss function. Now, if the the hidden representations become
rank one (as predicted by Lemma 3 and Fig. 2), one can readily check that the stochastic gradients of
any neuron k in the last linear layer, i.e.,∇WL,[k,:]

Li(W) = (∇`i)kĤ(γ)
L,i , align for both linear and

ReLU networks.

Proposition 19. Consider a network with rank one hidden representations in the last layer
Ĥ

(γ)
L (W1, ...,WL), then for any neuron k and any two datapoints i, j with non-zero errors Li

and Lj we have

∇WL+1,[k,:]
Li(W) =

c(∇`i)k
(∇`j)k︸ ︷︷ ︸
∈R

∇WL+1,[k,:]
Lj(W) (96)

∀i, j. That is, all stochastic gradients of neuron k in the final classification layer align along one
single direction in Rd.

18A single line in Rd in the extreme case of rank one mappings

27

Proof. The result follows directly from a simple application of the chain rule

∂Li(W)

∂WL+1
=
∂`(yi,WL+1Ĥ

(γ)
L,i)

∂WL+1Ĥ
(γ)
L,i

∂WL+1hL,i
∂WL+1

= ∇
WL+1Ĥ

(γ)
L,i

`(yi,WL+1hL,i)(Ĥ
(γ)
L,i)

ᵀ

=

∇`i,1Ĥ(γ)

L,i,1, . . . ,∇`i,1Ĥ
(γ)
L,i,d

. . .
∇`i,doutĤ

(γ)
L,i,1, . . . ,∇`i,doutĤ

(γ)
L,i,d

 ∈ Rdout×d
(97)

The same holds for j. Now, if Ĥ(γ)
L,i = cĤ

(γ)
L,i , c ∈ R \ {0} then

(
∂Li(W)

∂WL+1

)
k,:

= c
∇`i,k
∇`j,k︸ ︷︷ ︸
∈R

(
∂Lj(W)

∂WL+1

)
k,:

To validate this claim, we again train CIFAR-10 on the VGG19 network from Figure 5 (top).

0 1 2 3 4 5 6 7 8
Epochs

10 1

100
VGG19: Training Accuracy

BN-SGD
SGD
SGD random
SGD 100x

0 1 2 3 4 5 6 7 8
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0
VGG19: avg. pairwise gradient angles

BN
SGD
SGD random
SGD 100x

Figure 10: Directional gradient vanishing CIFAR-10 on a VGG19 network with BN, SGD, SGD with 100x
learning rate and SGD on random data. Average and 95% confidence interval of 5 independent runs.

As expected, the network shows perfectly aligned gradients without BN (right hand side of Fig. 10),
which renders it un-trainable. In a next step, we replace the input by images generated randomly from
a uniform distribution between 0 and 255 and find that SGD takes almost the exact same path on
this data (compare log accuracy on the left hand side). Thus, our results suggest that the commonly
accepted vanishing gradient norm hypothesis is not descriptive enough since SGD does not take small
steps into the right direction- but into a random one after initialization in deep neural networks. As a
result, even a 100x increase in the learning rate does not allow training. We consider our observation
as a potential starting point for novel theoretical analysis focusing on understanding the propagation
of information through neural networks, whose importance has also been highlighted by [7].

28

I Additional Experiments

0 50 100 150 200 250
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Tr

ai
ni

ng
 A

cc
ur

ac
y

10 hidden layers

pre-trained SGD
BatchNorm SGD

0 50 100 150 200 250
Epochs

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
ai

ni
ng

 A
cc

ur
ac

y

30 hidden layers

pre-trained SGD
BatchNorm SGD

0 50 100 150 200 250
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 A
cc

ur
ac

y

50 hidden layers
pre-trained SGD
BatchNorm SGD

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

 lo
ss

10 hidden layers
pre-trained SGD
BatchNorm SGD

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

3.0

3.5

4.0

Te
st

 lo
ss

30 hidden layers
pre-trained SGD
BatchNorm SGD

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

3.0

3.5

Te
st

 lo
ss

50 hidden layers
pre-trained SGD
BatchNorm SGD

Figure 11: CIFAR-10: Same setting as Fig.4 but now showing accuracy and test loss

Outperforming BN The following Figure shows the result of the experiment of Fig. 4 that is
repeated for FashionMNIST dataset. As can be seen, overfitting tends to happen whenever a certain
accuracy is achieved on the training set, regardless of the actual method that is used for optimization.

0 20 40 60 80 100
Epochs

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Tr
ai

ni
ng

 lo
ss

10 hidden layers
pre-trained SGD
BatchNorm SGD

0 20 40 60 80 100
Epochs

0.5

1.0

1.5

2.0
Tr

ai
ni

ng
 lo

ss
50 hidden layers

pre-trained SGD
BatchNorm SGD

0 20 40 60 80 100
Epochs

0.75

0.80

0.85

0.90

0.95

Tr
ai

ni
ng

 A
cc

ur
ac

y

10 hidden layers

pre-trained SGD
BatchNorm SGD

0 20 40 60 80 100
Epochs

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
ai

ni
ng

 A
cc

ur
ac

y

50 hidden layers

pre-trained SGD
BatchNorm SGD

Figure 12: Results of Fig.4 for FashionMNIST

Breaking BN In the following result, we repeated the experiment of Fig. 5 for ResNets.

0 1 2 3 4 5 6 7
Epochs

0.2

0.4

0.6

0.8

1.0
ResNet50: Training Accuracy

W U[a, a]
W U[0, 2a]

0 1 2 3 4 5 6 7
Epochs

0

5

10

15

20

25

30

ResNet50: Rank in last hidden layer

W U[a, a]
W U[0, 2a]

Figure 13: Breaking Batchnorm: CIFAR-10 on a ResNet-50 with standard PyTorch initialization as well as a
uniform initialization of same variance in R+. Average and 95% confidence interval of 5 independent runs. This
plot also shows results for a BN network without mean deduction/adaption, validating our claim from Section 2.

29

	Introduction and related work
	On random initialization and gradient based training
	Contributions

	Background and Preliminaries
	Batch normalization provably prevents rank collapse
	Main result
	Comparison with unnormalized networks

	The important role of the rank
	Discussions
	Preliminaries
	Lower bounds on the (soft) rank
	Initialization consequences
	Main Theorem: warm-up analysis
	Main theorem: Proof
	Analysis for Vanilla Linear Networks.
	Details: Pretraining algorithm
	Details: Why the rank matters for gradient based learning.
	Additional Experiments

