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Abstract

Direct optimization [25, 37] is an appealing framework that replaces integration
with optimization of a random objective for approximating gradients in models
with discrete random variables [21]. A? sampling [24] is a framework for opti-
mizing such random objectives over large spaces. We show how to combine these
techniques to yield a reinforcement learning algorithm that approximates a policy
gradient by finding trajectories that optimize a random objective. We call the
resulting algorithms direct policy gradient (DirPG) algorithms. A main benefit of
DirPG algorithms is that they allow the insertion of domain knowledge in the form
of upper bounds on return-to-go at training time, like is used in heuristic search,
while still directly computing a policy gradient. We further analyze their properties,
showing there are cases where DirPG has an exponentially larger probability of
sampling informative gradients compared to REINFORCE. We also show that there
is a built-in variance reduction technique and that a parameter that was previously
viewed as a numerical approximation can be interpreted as controlling risk sensi-
tivity. Empirically, we evaluate the effect of key degrees of freedom and show that
the algorithm performs well in illustrative domains compared to baselines.

1 Introduction

Many problems in machine learning reduce to learning a probability distribution (or policy) over
sequences of discrete actions so as to maximize a downstream utility function. Examples include
generating text sequences to maximize a task-specific metric like BLEU and generating action
sequences in reinforcement learning (RL) to maximize expected return. A main challenge is that
evaluating the objective requires integrating over all possible sequences, which is intractable, and
thus approximations like REINFORCE are needed [40] to learn these policies.

A line of work has emerged in recent years that allows replacing integration and sampling with
optimization of noisy objective functions [29, 12, 38, 24, 21]. While this does not immediately
remove the intractability of the integration problem, casting the problem in terms of optimization
gives access to a different toolbox of ideas, which can provide new perspectives and methods for these
hard problems. For example, Maddison et al. provide a new way of leveraging bounds from convex
duality for use in sampling from continuous probability distributions [24]. Our aim in this work is
the analog for reinforcement learning: we will replace the integral that is typically approximated by
REINFORCE with an alternative that requires only optimization over a noisy objective function. The
benefit is that this opens up techniques from heuristic search for use in reinforcement learning (e.g.,
variants of A? search) and provides an opportunity to express domain knowledge, all while retaining
the conceptual simplicity that comes from optimizing a standard expected return objective function.
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The resulting algorithm is quite different from standard approaches to computing a policy gradient, but
it estimates the same quantity up to one finite difference approximation. We provide a comprehensive
analysis of the new algorithm from both theoretical and empirical perspectives. In total, this work
provides a new perspective on computing a policy gradient and expands the toolbox of techniques
and domain knowledge that can be used to tackle this fundamental problem.

2 Background

Reinforcement learning. We consider a standard problem of RL, in which an agent interacts
with a Markov Decision Process (MDP) for a finite number of steps1 and attempts to maximize its
accumulated reward. At any time t ≥ 0 the environment is in state st ∈ S in the given state space
S; there is a fixed initial state s0 ∈ S. At each time t the agent interacts with the environment by
taking an action at from a finite set of actions at ∈ A according to a policy parameterized by θ ∈ Rd,
πθ (at | st). The environment follows a transition distribution p(rt, st+1 | st, at) over rewards rt and
next states st+1 given previous state st and action at. The agent interacts with the environment in this
way for T > 0 steps generating a sequence of states s = (s1, . . . , sT ), actions a = (a0, . . . , aT−1),
and rewards r = (r0, . . . , rT−1). This corresponds to the following generative model,

at ∼ πθ (· | st) for t ∈ {0, . . . , T − 1}
rt, st+1 ∼ p(·, · | at, st) for t ∈ {0, . . . , T − 1} (1)

given s0 ∈ S. Taken together this defines the following joint distribution,

pθ(a, s, r) =

T−1∏
t=0

πθ (at | st) p(rt, st+1 | st, at). (2)

The sum of rewards rt over an interaction is called the return, and the goal of the agent is to maximize
the expected return over its policy parameters, maxθ∈Rd Ea,s,r∼pθ

[∑T−1
t=0 rt

]
.

Policy gradients. Policy gradient algorithms are a family of methods for optimizing expected return
by estimating gradients. A common variant is REINFORCE [40], which samples a trajectory a, s, r ∼
pθ, computes the return R =

∑T−1
t=0 rt, and then approximates the gradient as R · ∇θ log pθ(a, s, r).

Gumbel-max reparameterizations. A random variable G ∼ Gumbel(m) is Gumbel-distributed
with location m if p(G ≤ g) = exp(− exp(−g +m)). The Gumbel-max trick is a way of casting
sampling from a softmax as an argmax computation by using the fact that if G(i) are drawn i.i.d. as
Gumbel(mi), then i∗ = argmaxiG(i) ∼ exp(mi)/

∑
i′ exp(mi′). Moreover, G∗ = maxiG(i) ∼

Gumbel(log
∑
i′ expmi′) and i∗ and G∗ are independent random variables. See [10, 24, 23].

Direct optimization. Direct optimization [25, 37, 21] approximates gradients of a loss
function over discrete configurations that are computed as the argmax of a (possibly noisy)
underlying potential function. Following [21] and letting a be a discrete variable, fθ be
a scoring function, ε be an auxiliary variable, G(a) ∼ Gumbel(0) be independent Gum-
bel noise, and r be a negative loss function, the method is based on a direct objective
Dθ(a, G, ε) = fθ(a) + G(a) + ε · ra. The main result is that ∇θ EG

[
rargmaxa fθ(a)+G(a)

]
=

limε→0
1
ε EG [∇θfθ(argmaxaDθ(a, G, ε))−∇θfθ(argmaxaDθ(a, G, 0))].

3 Basic Algorithm, Motivating Example, and Summary of Results

To motivate the approach as simply as possible, we first present a minimal version of our new Direct
Policy Gradient (DirPG) algorithm and an example where it has an exponentially larger probability of
sampling an informative gradient compared to REINFORCE. In later sections we will handle the full
complexity of RL, justify correctness, and describe how to efficiently compute the needed quantities.

DirPG utilizes optimization to find an informative gradient that improves the reward of its policy. In
contrast, REINFORCE samples from its current policy. This inherent difference can allow DirPG

1Technically, everything in the paper works with an unbounded numbers of steps as long as trajectories
terminate with probability 1, but we assume a maximum number of steps to simplify some parts of the exposition.
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to find a policy gradient more efficiently than REINFORCE. In the following we formalize this
difference by considering a simple environment where rewards ra are a function of action sequences
a ∈ AT for a large action space |A|T . Further suppose that we are in a sparse reward regime such
that rb = m > 0 for one trajectory b and ra = 0 for all others. The REINFORCE gradient is
ra∇ log πθ (a) where a ∼ π. Since ra is zero for most a, k samples from a uniform policy πθ (like
would arise at the start of learning) will result in a nonzero gradient with probability roughly k

|A|T .

In this setting DirPG can be described as follows. Let G(a) ∼ Gumbel(0) be independent Gumbel
noise for each trajectory a and ε a hyperparameter. There are two trajectories of interest:

aopt = argmaxa [log πθ (a) +G(a)] (3)
adir = argmaxa [log πθ (a) +G(a) + ε · ra] . (4)

The direct policy gradient is defined as

∇θ Ea∼πθ ra ≈
1

ε
[∇θ log πθ (adir)−∇θ log πθ (aopt)] . (5)

A key benefit of DirPG is that domain knowledge may be inserted to guide a search for adir. Suppose
we have a powerful search heuristic that leads directly to the optimum. Then adir can be computed
at the same cost as a single sample, and the total cost of an update requires only two samples (for
aopt and adir), hence its computational complexity is equivalent to REINFORCE with k = 2. DirPG
computes an informative (non-zero) gradient iff adir = b and aopt 6= b. The probability of aopt 6= b
is large (1− 1

|A|T ), so this mainly comes down to whether adir = b, which is equivalent to the event

log πθ (b) +G(b) + ε ·m > max
a 6=b

[log πθ (a) +G(a)] . (6)

When πθ is uniform, this simplifies to ε ·m+G(b) > maxa6=bG(a), which has the form of sampling
b via Gumbel-max. The RHS has distribution Gumbel(log(|A|T − 1)) and thus the probability of
sampling adir = b is exp(ε·m)

exp(ε·m)+exp(log(|A|T−1))
. If ε scales logarithmically with |A|T , then DirPG has

an exponentially higher chance than REINFORCE to sample an informative gradient in this example.

This example motivates DirPG and also raises a number of questions. In the remainder, we provide a
comprehensive analysis of the new algorithm. Since the algorithm has many facets, we prioritize the
following, leaving developing finely-tuned variants that outperform state of the art to future work:

Full complexity of RL. We show how to handle general stochastic environments (Sec. 4).

Correctness. We show that DirPG computes a policy gradient up to a one-dimensional finite
difference approximation that leads to the appearance of ε (Sec. 4).

Utilizing existing heuristics. We assumed above that a perfect heuristic enables computing adir at
the cost of a single rollout. This elides an important detail, which is that the heuristic must not only
guide search to maximize return, it must also consider the log πθ +G terms in (4). By extending A?
sampling, we show how to convert a heuristic over returns to a heuristic for computing adir (Sec. 5).

Approximate optimization. With imperfect heuristics, exactly computing adir can be intractable.
We define a notion of improvement over aopt and prove (in a restricted setting) that approximate
optimization of adir still leads to learning an optimal policy (Appendix B).

Epsilon. Previous work on direct optimization [25] recognized that ε could be positive (“towards
good”) or negative (“away from bad”) but did not provide a precise analysis of its impact. We provide
a novel interpretation, deriving the objective optimized under different choices of ε and show there is
a precise connection to risk-aware RL (Appendix A.3).

Variance Reduction. We show that DirPG “comes with its own variance reduction,” by providing
an interpretation of the∇θ log πθ (aopt) term in (5) as a control variate (Appendix A.2).

Empirical analysis. We study all of the above in a set of carefully designed experiments that
illustrate how to leverage the large literature on heuristic-guided search in specific domains, and the
effect of key parameters like ε and the approximation of adir (Sec. 6).

4 Direct Policy Gradient

We start by formalizing the full DirPG algorithm in a general stochastic RL environment. Note that
there are two places where stochasticity enters into (2): via the agent’s policy in the πθ (at | st) terms
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and via the environment in the p(rt, st+1 | st, at) terms. Given this factorization, we can separately
reparameterize them. Once this is done, the direct optimization approach follows straightforwardly.
A key requirement of the learning update is that we can explore multiple trajectories for a given
realization of environment noise, so the method requires a simulator in order to compute a gradient.
However, the result of learning is a standard policy that can be sampled from without any search or
simulator, so, e.g., it would be feasible to use in sim-to-real settings.

Reparameterization. The learning rule for DirPG is based on search over trajectories and
thus requires a simulator for computing a gradient. Beyond that, we do not want to restrict the
environments, so we consider a very general reparameterization, which is simply that there is some
source of randomness S that does not depend on a such that there is a deterministic function mapping
S and a sequence of (s0, a0, . . . , st, at) to the next rt, st+1 pair. This implies, for example, that if
S is held fixed and an agent performs the same sequence of actions, then the same environment
transitions and rewards will be produced. We denote the state (reward) resulting from a sequence of
actions a as sa (ra). When clear from context, we omit the explicit dependence on S for brevity.

Now it becomes straightforward to define a per-trajectory Gumbel-max reparameterization. Let the
total log probability that a policy assigns to a sequence of actions be

Πθ (a | S) =

T−1∏
t=0

πθ
(
at | s(a0...at−1)

)
, (7)

and let Γ(a) ∼ Gumbel(0) for each trajectory a. This yields a trajectory-level Gumbel-max trick:
Gθ(a; Γ,S) = log Πθ (a | S) + Γ(a) (8)

a∗ = argmaxaGθ(a; Γ,S). (9)

Gθ are distributed as Gumbels with shifted locations and a∗ is a sample from (7).

We emphasize that the reparameterization is equivalent to the standard RL formulation. Specifically,
let P (S) be the distribution over S resulting from different realizations of environment stochasticity
and let the return of a trajectory a be R(a,S) =

∑T−1
t=0 r(a0,...,at−1). Then

Ea,s,r∼pθ

[
T−1∑
t=0

rt

]
= ES∼P

[
Ea∼Πθ(·|S) [R(a,S)]

]
= ES∼P,Γ [R(a∗,S)] . (10)

Direct Policy Gradient. The above reparameterizations allow defining the general DirPG algorithm
and showing its correctness. Define direct objective Dθ and prediction generating function f :

Dθ(a; Γ,S, ε) = Gθ(a; Γ,S) + εR(a,S), (11)

f(θ, ε) = ES∼P,Γ

[
max
a
{Dθ(a; Γ,S, ε)}

]
, (12)

a∗(ε) = argmaxaDθ(a; Γ,S, ε). (13)
When clear from context, we drop the explicit dependence on noise terms S and Γ for brevity.
Differentiating f with respect to ε and θ in either order and evaluating at ε = 0 yields the same value
because f is smooth [21] (or see [37] for an alternative proof):
∂

∂θi
E [R(a∗(0),S)] =

∂2f(θ, ε)

∂θi∂ε

∣∣∣∣
ε=0

=
∂2f(θi, ε)

∂ε∂θi

∣∣∣∣
ε=0

=
∂

∂ε
E
[
∂

∂θi
log Πθ (a∗(ε) | S)

]∣∣∣∣
ε=0

.

(14)

A finite-difference approximation in ε of the RHS of (14) yields the direct policy gradient (DirPG):

∇θ Ea,s,r∼pθ

[
T−1∑
t=0

rt

]
≈ 1

ε
ES∼P,Γ [∇θ log Πθ (a∗(ε) | S)−∇θ log Πθ (a∗(0) | S)] . (15)

Following terminology of [25] we name aopt = a∗(0) as the optimum in Eq. 9, and adir = a∗(ε)
as the trajectory that defines the update direction. Because the LHS of (14) is the gradient of the
expected return, DirPG approaches the standard policy gradient as ε→ 0.

Intuitively, (13) reduces to (9) when ε = 0, so aopt is a trajectory sampled from the current policy.
adir is a trajectory that is close to a sample from the current policy but that has higher or lower return,
where the strength and direction of this pull comes from the magnitude and sign of ε. The gradient
increases the probability of the better trajectory and decreases the worse.
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Algorithm 1 Direct Policy Gradient (General Form)
1: S ∼ P (S)
2: Γ(a) ∼ Gumbel(0) for all a
3: trajectories = TrajectoryGenerator(S,Γ, ε)
4: aopt, dopt ← adir, ddir ← trajectories .next()
5: while budget not exceeded do
6: acur, dcur ← trajectories .next()
7: if dcur > ddir then
8: adir, ddir ← acur, dcur
9: if terminate on first improvement then

10: break
11: end if
12: end if
13: end while
14: return 1

ε
∇θ [log πθ (adir | S)− log πθ (aopt | S)]

Algorithms. The general form of algorithms
we consider is given in Algorithm 1. The ba-
sis is a TrajectoryGenerator (see Sec. 5) that
produces a stream of pairs of trajectories a and
associated direct objectives Dθ(a; ε). The first
step of Algorithm 1 is to find aopt and dopt =
Dθ(aopt; 0) and initialize adir = aopt, ddir =
dopt. The algorithms in Sec. 5 naturally produce
aopt and dopt as the first result, so we assume
that behavior. The algorithm then applies heuris-
tic search to find a trajectory adir with direct
objective ddir better than dopt (lines 5-13). If
no improvement is found before a budget is ex-
ceeded, then aopt is equal to adir and the result
of line 14 is a zero gradient. Given enough
budget and no early termination, the algorithm
exactly implements (15). One variant is to terminate the search upon finding any improvement (line
9). This automatically adapts the search budget as training progresses. At first it is easy to improve
over aopt (a sample from a random policy), but more search is needed after training for longer. In
Appendix B, we prove that this variant still learns an optimal policy (in a restricted setting).

5 Generating trajectories using A? sampling

A? sampling provides a starting point for computing aopt and adir, but it is inefficient in its use of
environment interactions. Here, we develop a new variant tailored to the RL setting that uses a lazier
sampling strategy that minimizes the number of environment interactions. Despite aopt being an
argmax over |A|T trajectories, the algorithm produces an exact solution in T steps. Computing adir
is more challenging, but DirPG can leverage heuristics to guide the search, and it benefits relative to
REINFORCE by actively searching for an informative gradient.

a0=1 a0=2
a0=3

a1=1
a1=2

a1=3

-3.1 .19 1.3

… …

1.3

1.1

a0=1 a0={2,3}

a1={1,2} a1=3

1.3

.19 1.3

(a) Gumbels for trajectories (b) Gumbels for regions

Figure 1: Example search tree and associated values.
(a) Gumbel values Gθ(a; Γ,S) associated with each
trajectory a. The trajectory with maximum value (under-
lined) is aopt. (b) State of the search tree after sampling
aopt. Nodes on the queue are drawn with double outline.

Search Space. The search over S for aopt and
adir is structured into a search tree over sets of
action sequences that share a common prefix
that we refer to as regions. Region R(ã,B;S)
is the set of trajectories that start with prefix
ã = (a0, . . . , at−1) and then take a next action
from B ⊆ A. The root region R(∅,A) is the
set of all trajectories. An example search tree
is shown in Fig. 1 (b). The root (top) is the set
of all trajectories and its right child is the set of
trajectories {a : a0 ∈ {2, 3}}.
A search queue is initialized with the root region,
and then the search tree is repeatedly expanded
by choosing a regionR = R(ã,B;S) from the
queue and a next action at ∈ B. R is split into
two child regions. The first appends at to the prefix and allows any next action to follow; i.e.,
R1 = R(ã⊕ at,A) where ⊕ denotes concatenation. The second leaves the prefix unchanged and
eliminates at as a possible next action; i.e., R2 = R(ã,B\{at}). If sã⊕at is a terminal state then
R1 contains a single trajectory and is not expanded further. If B\{at} is empty, then R2 can be
discarded. An interaction with the environment is generated only for the first new region, and the
resulting state is stored so that it can be re-used by all other nodes sharing the same prefix. In Fig. 1
(b), the first split chose a0 = 1 and created regionsR1 = R((1),A) andR2 = R(∅,A\{1}).

Optimal completions. For any region R(ã,B;S) popped from the queue, it is possible to
optimally complete it with respect to Gθ without any backtracking in the search. That is, letting
ã = a0, . . . , at, we can compute argmaxat+1,...,aT |at+1∈BGθ(ã⊕ (at+1, . . . , aT ); Γ,S) using only
T − t interactions with the environment. The key idea is to define random variables Gθ(a; Γ,S)
not only for full trajectories a but also for every region in the search tree. The random variable
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for a region is assigned to be the max over Gθ of all trajectories in the region: Gθ(R; Γ,S) =
maxa∈RGθ(a; Γ,S). Since the marginal distributions of the region random variables can be
computed efficiently,2 the top-down algorithm [24] can be applied to sample child region random
variables conditional on the parents. By always following the search tree downwards towards the
child with maximum Gθ(R; Γ,S), we descend straight to the optimal completion. Notably, if we
follow this strategy starting at the root region, we sample aopt using only T environment interactions.

Algorithm 2 Top-Down Sampling a

1: In: environment env, actions A, ε.
2: Out: Stream of (a, Dθ(a)) pairs.
3: Q,S ← Queue, StateRewardTree
4: Q.push(∅,A,Gumbel(0))
5: while Q is not empty do
6: ã,B, G← Q.pop()
7: a← Sample πθ (a | sã) 1{a ∈ B}
8: sã⊕a, rã⊕a ← env. step(a, sã)
9: if B\{a} is not empty then

10: µ← log Πθ (R(ã,B\{a}) | S)
11: G′ ← TruncGumbel(µ,G)
12: Q.push(ã,B\{a}, G′)
13: end if
14: if sã⊕a is terminal then
15: yield (ã⊕ a,G+ εR(ã⊕ a,S))
16: else
17: Q.push(ã⊕ a,A, G)
18: end if
19: end while

Top-down sampling of trajectories. Putting
the above two sections together and simplifying
expressions results in Algorithm 2, a new vari-
ant of top-down sampling. Note that the algo-
rithm produces an endless stream of (a, Dθ(a))
pairs (line 15) and does not specify the order in
which nodes are popped from the queue (various
choices are discussed below). The algorithm be-
gins by sampling Gθ(R) for the root region R
that contains all trajectories (line 4). Line 6 pops
a node from the queue and line 7 samples the
action at associated with the child region with
maximum Gθ. Line 8 queries the environment
for the st+1 and rt that result from taking at as
the next action, and the result is stored until S
is reset. Then regions are divided as described
above (line 17 corresponds to R1; lines 9-13
correspond to R2), and upon creation of new
regions, their Gθ values are sampled conditional
upon the parent’s Gθ value (lines 11, 17).

If Q is a priority queue with priority Gθ(R), then the algorithm will yield pairs in descending order
of Gθ(a), which also means that aopt will be found after T node expansions. We assume regions are
prioritized this way until the first yield so that line 4 in Algorithm 1 produces (aopt, Dθ(aopt; ε)). We
are then free to change the priority function as in the next subsection and reorder the queue. However
if we do not, then this can generate “Gumbel Top-K” [17] by running Algorithm 2 with priority
Gθ(R) and return the first K results. Algorithm 2 is better for RL than other A? sampling algorithms
[24, 15], because the others would roll-out an entire trajectory for each region expanded and thus
make inefficient use of interactions with the environment. We expand on these details in Appendix C.

Searching for large Dθ using A? sampling. The final algorithm prioritizes regions on the queue
using the return achieved so far and (if available) an upper bound on the return-to-go. It is the
same as Algorithm 2, except before pushing a region on the queue (lines 4, 12, 17), we compute a
priority for a region based on all the terms in (11). Let L(R) =

∑t−1
t′=0 r(a0,...,at′−1) be the reward

accumulated so far by the prefix and U(R) ≥
∑T
t′=t r(a0,...,at′−1) be an upper bound on the return-

to-go for any trajectory in regionR. Recall the Gθ(R) computed during the search is the maximum
Gθ for any trajectory in the region. We can then upper bound Dθ(R; ε) = maxa∈RDθ(a; ε) ≤
Gθ(R)+ε · (L(R)+U(R)). We can also prune regions from the search if their upper bound is worse
than Dθ(a; ε) for the best a found so far. Using the upper bound as a priority yields a stochastic
version of A? search (i.e., it is A? Sampling). In practice, there is a large literature on heuristic
search methods that relax optimality guarantees of A? search in order to arrive at good solutions
faster (see, e.g., [30, 11]). We have found benefit to adapting these methods to the search for adir.
In particular, we adapt static weighted A? search [32] to our setting by modifying the priority to be
Gθ(R) + ε · (L(R) + αU(R)) for 0 ≤ α < 1, though we expect other methods to also be fruitful.

2By properties of Gumbel distributions, the marginals are Gθ(R; Γ,S) ∼ Gumbel(log Πθ (R | S)) where
Πθ (R | S) =

∑
a∈RΠθ (a | S). It can efficiently be computed by pushing the sum inwards through the

shared prefix: Πθ (R(ã,B;S) | S) =
∏t−1
t′=0 πθ

(
at′ | s(a0,...,at′−1)

)∑
a∈B πθ (a | sã) .

6



(a) (b) (c)
Figure 2: Bandits and risk sensitivity. (a) Average return vs # of interactions. (b) Number of steps
needed to find adir. (c) DeepSea results showing learned Π(LLLL) (safe) and Π(RRRR) (risky) vs ε.

6 Experiments

Combinatorial Bandits. We experiment with combinatorial bandits and compare DirPG to Upper
Confidence Bound (UCB) algorithms [2, 5]. The environment is defined by a graph G = (V,E)
where V = {1, . . . , n} is the set of nodes and E ⊆ V × V is the set of undirected edges. For each
edge e ∈ E a parameter µe determines per-edge rewards as re ∼ Uniform(0, 2µe). An agent queries
the environment with tree T and receives reward rT =

∑
e∈T re. Fresh realizations of re are drawn

for each episode. UCB algorithms end an episode after a single interaction, while DirPG uses multiple
interactions per episode (at the cost of seeing fewer realizations). We compare to a "semi-bandit"
version of UCB that observes more information (per-edge contributions to rewards) and a "full bandit"
version that receives the same observations as DirPG, the total reward rT after producing a full tree.
Note the similarity of the full bandit version to, e.g., CUCB [7].

To apply DirPG, we let a be a sequence of |E| binary decisions of whether to include each edge in the
spanning tree. Learnable parameters θe determine the probability of inclusion via σ(θe) where σ is the
sigmoid function. The environment presents a legal set of actions at each step (see Appendix D.1 for
details). To compute adir, we give a budget of 100 interactions and use priority Gθ(a) in the search,
enabling the early termination option in Algorithm 1. Results appear in Fig. 2 (a), which shows the
moving average return versus number of interactions, averaged over 10 runs. The DirPG curve is for
samples of aopt, which is noisier due to there being fewer realizations. DirPG is competitive with a
UCB variant using more information, and it outperforms the comparable variant. Fig. 2 (b) shows the
number of steps taken to find an improvement. Aside from initial noise due to the moving average,
the number of interactions used in the search automatically grows as learning progresses.

DeepSea. Previously ε was considered a nuisance parameter, but we show that it controls an
agent’s preference for risk-seeking (positive ε) versus risk-avoiding (negative ε) behavior. Analysis
making this claim precise and a further experiment appears in Appendix A.3.

We use an adaptation of the DeepSea environment that was used by [28] to study risk sensitivity.
The environment is a 5x5 grid where the agent starts from the top-left cell and the goal is in the
bottom-right. The agent has a choice of left (L) or right (R) at each step. If the agent chooses L, it
gets 0 reward and moves down and left. If it chooses R, it gets a reward sampled from N (1, 1) if
transitioning to the bottom-right corner and otherwise − 1

3 . This is interesting because any policy
that is a mixture of LLLL and RRRR has optimal return (mixture of 0, N (0, 1) respectively), but the
policies have different variance and thus we expect the choice of ε to affect what the agent learns.

In Fig. 2 (c) we train policies with a range of ε values for 400, 000 episodes to ensure convergence
and plot the probability assigned to trajectories LLLL and RRRR in the learned policy. For ε < 0,
most mass is put on LLLL, which has no variance and is thus favorable to a risk-avoiding agent. For
ε > 0, mass is split evenly, which has highest “controllable risk” (see Appendix A.3).

MiniGrid. In our final experiments we use the MiniGrid-MultiRoom-N6-v0 environment [8] to
study how to prioritize nodes within the search for adir. MiniGrid is a partially observable grid-world
where the agent observes an egocentric 7× 7 grid around its current location and has the choice of 7
actions including moving right, left, forward, or toggling doors. We use environments of 25 × 25
grids with a series of 6 connected rooms separated by doors that need to be opened. Intermediate
rewards are given for opening doors and reaching a final goal state. As baselines we compare to

7



(a) (b) (c)
Figure 3: Minigrid results. (a) Return vs number of interactions. (b) Direct objective of adir and aopt vs
iteration. (c) Histograms showing quality-vs-quantity tradeoff for various search priorities.

REINFORCE and the cross entropy method. In all of the methods we utilized the simulator to reset
the environment so that multiple trajectories could be sampled starting from the same environment
seed. In all cases, we use a total of 3000 interactions per environment seed (episode). In our method,
we use 100 interactions to sample aopt (the trajectory length) and 2900 interactions to search for
adir. In REINFORCE and in the cross entropy method we sample 30 independent trajectories, where
each is 100 interactions long. Details on their implementation are in Appendix D.3.

We explore variations on how to set the priority of nodes in the search for adir. First, in the “Gumbel
only” priority, we use justGθ(R) as a region’s priority. In the others, we useGθ(R;S, g)+ε(L(R)+
αU(R)), where U is based on the Manhattan distance to the goal and the number of unopened doors.
Setting α = 0 trades off enumerating by descending order of Gθ(R;S, g) with favoring prefixes that
have already achieved high return. Setting α = 1 yields A? search. Fig. 3 (a) shows average return
versus training episode. α = 0 provides good results, and increasing α up to α = 0.3 gives improved
performance. Beyond that, performance degrades, with α = 1 performing worst.

To better understand this, we partially trained a model for 1.2M interactions and then froze the
parameters and ran several searches for the same number of interactions but with different priority
functions. Fig. 3 (c) shows the results. For smaller α, more trajectories are finished to completion
but the returns achieved are worse. As α increases, fewer full trajectories are found but they have
better returns, but past α = 0.4 not enough full trajectories are found, and both the quality and the
quantity shrink. Thus, setting α too high leads to “breadth-first behavior” where too much time is
spent exploring prefixes and not completing trajectories. In Fig. 3 (b), we show the relationship
between Dθ(adir) and Dθ(aopt) over the course of learning. This shows that adir does not need to
find a trajectory with the optimal return in order to provide signal for the policy to improve.

7 Related Work

Similarities can be drawn to the body of work casting RL as probabilistic inference, in particular in
Expectation-Maximization (EM) Policy Search methods [31, 39, 34, 20, 19, 26, 6, 1, 4]. Broadly,
these methods alternate a step akin to posterior inference that improves a trajectory distribution with
an update to the policy parameters using in an EM formulation. In this context our work would be
most similar to an incremental variant [27] of Monte Carlo EM [18], though DirPG has significant
differences, including the use of A? sampling to guide the sampling and the use of direct optimization,
which can be interpreted as a variance reduction strategy. We discuss this in detail in Appendix A.

The initial DirPG reparameterization is similar to [13], but the setting and approach are very different.
The most prominent example of search in RL is Monte Carlo Tree Search (MCTS) [16, 3]. MCTS is
quite different because—unlike DirPG—it uses search and a simulator at test time, but it becomes
closer when search results are distilled into a policy as in [36]. However, we are not aware of
results showing that MCTS can be used to directly compute a policy gradient. One can imagine an
MCTS-style algorithm that explores k trajectories under a fixed realization of environment noise and
chooses the one with highest return, then distills into a policy via a gradient update to increase the
probability assigned to the chosen trajectory. As k →∞, this will approach the optimal DirPG update
with ε → ∞. Bbased on risk sensitivity results in Appendix A.3, we can see that this algorithm
will be very risk-seeking. Thus, DirPG offers a degree of control via ε that isn’t available to this
MCTS-style counterpart.
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Another related use of search trees is the vine method from [35], which leverages a simulator’s ability
to reset to previous states to construct a tree over trajectories. Multiple roll-outs are created from tree
nodes, and common random numbers are used across the roll-outs to reduce variance.

8 Discussion

We have presented a new method for computing a policy gradient and studied its properties from
theoretical and empirical perspectives. This also provides new understandings of direct loss opti-
mization in terms of variance reduction and risk-sensitivity. One limitation is that in its current
form, the algorithm only learns in an episodic framework and from complete trajectories. We are
currently exploring how this limitation could be removed. Our experiments so far have been geared
towards understanding the algorithm and its important degrees of freedom. We are eager to take these
learnings and apply them to real-world applications where search and heuristics (upper bounds) have
traditionally been successful like navigation, combinatorial optimization, and program synthesis.

Broader Impact

This work presents a general theoretical and algorithmic contribution to reinforcement learning
(RL) research. One contribution (Appendix A.3) is an analysis of the risk-sensitive behavior of the
algorithm as parameter ε is varied. This provides an axis of control beyond simply maximizing
expected future reward, which is likely a beneficial analysis to perform (though far-removed from
well-defined impacts). We’ll refrain from commenting on the future societal consequences of general
advances in RL research, because this work is more theoretical and conceptual in nature, and it is a
complex topic that is better covered in the context of work that is closer to specific impacts.
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