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A Implicit Bias of Discrepant Learning Rates in Linear Regression

In this part of the appendix, let us use a classical result for underdeterimined linear regression
problem to build up some intuitions behind the implicit bias of gradient descent for our problem
formulation of robust learning problems. The high level message we aim to deliver through the
simple example is that

• Gradient descent implicitly biases towards solutions with minimum `2-norm.
• Discrepant learning rates lead to solutions with minimum weighted `2-norm.

Underdeterimined linear regression. Given observation b ∈ Rn1 and wide data matrix W ∈
Rn1×n2 (n2 > n1), we want to find θ which is a solution to

min
θ∈Rn2

ϕ(θ) =
1

2
‖b−Wθ‖22 . (16)

For n2 > n1 and full row-rank W, the underdetermined problem (16) obviously has infinite many
solutions, which forms a set

S :=
{
θln + n | θln = W†b, n ∈ N (W)

}
,

where W† := W> (WW>)−1 denotes the pseudo-inverse of W, and

N (W) := {n |Wn = 0} , R(W) :=
{
z | z = W>v

}
are the null space and row space of W, respectively. Simple derivation shows that θln is a particular
least `2-norm solution to (16), that minimizes

min
θ∈Rn2

1

2
‖θ‖22 , s.t. Wθ = b.

Gradient descent biases towards θln. Starting from any initialization θ0, gradient descent

θk+1 = θk − τls ·W> (Wθk − b) (17)

with a sufficiently small learning rate9 τls always finds one of the global solutions for (16). Fur-
thermore, it is now well-understood [59] that whenever the initialization θ0 has zero component in
N (W) (i.e., PN (W) (θ0) = 0), one interesting phenomenon is that the iterates θ∞ in (17) implicitly
bias towards the minimium `2-norm solution θln. This happens because once initialized in R(W),
gradient descent (17) implicitly biases towards iterates staying withinR(W), such that

PR(W) (θ∞) = θln, PN (W) (θ∞) = PN (W) (θ0) = 0.

As we can see, a particular algorithm enforces specific regularization on the final solution.

Implicit bias of discrepant learning rates. The gradient update in (17) uses the same learning
rate τls for all coordinates of θ. If we use different learning rates for each coordinate (i.e., Λ is a
diagonal matrix with positive diagonals)

θk+1 = θk − τls ·Λ ·W> (Wθk − b) , (18)

then by following a similar argument we conclude that the gradient update in (18) converges to a
weighted regularized solution for

min
θ∈Rn2

1

2

∥∥∥Λ−1/2θ∥∥∥2
2
, s.t. Wθ = b. (19)

9This is because Wθk+1 − b =
(
I− τlsWW>) (Wθk − b). If we choose τls <

∥∥WW>∥∥−1
, then

‖Wθk − b‖ converges to 0 geometrically.
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Remark 1. Let σi be the i-th diagonal of Λ and θi be the i-th element of θ. Then in (18), σiτls is the
learning rate for the variable θi, which varies for different variables. In words, the relation between
(18) and (19) implies that for one particular optimization variable (e.g., θi) a large learning rate
σiτls in (18) leads to a small implicit regularization effect in (19). From a high-level perspective,
this happens because a larger learning rate allows the optimization variable to move faster away
from its initial point, resulting in a weaker regularization effect (which penalizes the distance of the
variable to the initialization) on its solution path.

An alternative explanation of this is through a change of variable θ = Λ1/2θ̃. Suppose we minimize

min
θ̃∈Rn2

ϕ̃(θ̃) =
1

2

∥∥∥b−WΛ1/2θ̃
∥∥∥2
2

(20)

via standard gradient descent with a single learning rate

θ̃k+1 = θ̃k − τls ·Λ1/2 ·W>
(
WΛ1/2θ̃k − b

)
. (21)

Thus, once initialized in R(WΛ1/2), gradient descent (21) converges to the least `2-norm solution
to (20), i.e., the solution of the following problem

min
θ̃∈Rn2

1

2

∥∥∥θ̃∥∥∥2
2
, s.t. WΛ1/2θ̃ = b. (22)

Finally, plugging θ̃ = Λ−1/2θ into (21) and (22) gives (18) and (19), respectively, also indicating
the gradient update (18) induces implicit weighted regularization towards the solution of (19).

B Proof of Theorem 1

In this part of the appendix, we provide the proof to our main technical result (i.e., Theorem 1) in
Section 3. To make this part self-contained, we restate our result as follows.
Theorem 2. Assume that the measurement matrices A1,A2, . . . ,Am are symmetric and com-
mutable, i.e.

AiAj = AjAi, ∀ 1 ≤ i 6= j ≤ m,
and the gradient flows of Ut(γ), gt(γ), and ht(γ) satisfy

U̇t(γ) = lim
τ→0

Ut+τ (γ)−Ut(γ)

τ
= −A∗ (rt(γ))Ut(γ), (23)[

ġt(γ)

ḣt(γ)

]
= lim

τ→0

([
gt+τ (γ)
ht+τ (γ)

]
−
[
gt(γ)
ht(γ)

])
/ τ = − α ·

[
rt(γ) ◦ gt(γ)
−rt(γ) ◦ ht(γ),

]
, (24)

with rt(γ) = A(Ut(γ)U
>
t (γ)) + gt(γ) ◦ gt(γ)− ht(γ) ◦ ht(γ)− y, and they are initialized by

U0(γ) = γI, g0(γ) = γ1, h0(γ) = γ1.

Let Xt(γ) = Ut(γ)U
>
t (γ), and let X∞ (γ), g∞(γ), and g∞(γ) be the limit points defined as

X∞ (γ) := lim
t→+∞

Xt(γ), g∞(γ) := lim
t→+∞

gt(γ), h∞(γ) := lim
t→+∞

ht(γ). (25)

Suppose that our initialization is infinitesimally small such that

X̂ := lim
γ→0

X∞(γ), ĝ := lim
γ→0

g∞(γ), ĥ := lim
γ→0

h∞(γ)

exist and (X̂, ĝ, ĥ) is a global optimal solution to

min
U∈Rn×r′ ,{g,h}⊆Rm

f(U,g,h) :=
1

4

∥∥A (UU>
)
+ (g ◦ g − h ◦ h)− y

∥∥2
2
, (26)

with A(X̂) + ŝ = y and ŝ = ĝ ◦ ĝ− ĥ ◦ ĥ. Then we have ĝ ◦ ĥ = 0, and (X̂, ŝ) is also a global
optimal solution to

min
X∈Rn×n,s∈Rm

‖X‖∗ + λ · ‖s‖1 , s.t. A(X) + s = y, X � 0. (27)

with λ = α−1 and α > 0 being the balancing parameter in (24).
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Proof. From (23), we can derive the gradient flow for Xt(γ) via chain rule

Ẋt(γ) = U̇t(γ)U
>
t (γ) + Ut(γ)U̇

>
t (γ) = −A∗(rt(γ))Xt(γ)−Xt(γ)A∗(rt(γ)). (28)

We want to show that when the initialization is infinitesimally small (i.e., γ → 0), the limit points of
the gradient flows Xt(γ) = Ut(γ)U

>
t (γ) and st(γ) = gt(γ) ◦ gt(γ) − ht(γ) ◦ ht(γ) are optimal

solutions for (27) as t → +∞. Towards this goal, let us first look at the optimality condition for
(27). From Lemma 1, we know that if (X̂, ŝ) with

X̂ = lim
γ→0

X∞(γ), ŝ = ĝ ◦ ĝ − ĥ ◦ ĥ with ĝ := lim
γ→0

g∞(γ), ĥ := lim
γ→0

h∞(γ)

is an optimal solution for (27) then there exists a dual certificate ν such that

A(X̂) + ŝ = y, (I−A∗(ν)) · X̂ = 0, A∗(ν) � I, ν ∈ λ · sign(ŝ), X̂ � 0,

where sign(ŝ) is defined in (32), which is the subdifferential of ‖·‖1. Thus, it suffices to construct a
dual certificate ν such that (X̂, ŝ) satisfies the equation above.

Since (X̂, ĝ, ĥ) is a global optimal solution to (26), we automatically have A(X̂) + ŝ = y and
X̂ � 0. On the other hand, given that {Ai}mi=1 commutes and (28) and (24) hold for Xt, gt and ht,
by Lemma 2, we know that

Xt(γ) = exp (A∗(ξt(γ))) ·X0(γ) · exp (A∗(ξt(γ))) , (29)
gt(γ) = g0(γ) ◦ exp (αξt(γ)) , ht(γ) = h0(γ) ◦ exp (−αξt(γ)) , (30)

where ξt(γ) = −
∫ t
0

rτ (γ)dτ . Let ξ∞(γ) := limt→+∞ ξt(γ), by Lemma 3 and Lemma 4, we can
construct

ν(γ) =
ξ∞(γ)

log (1/γ)
,

such that

lim
γ→0
A∗ (ν(γ)) � I, lim

γ→0
[I−A∗ (ν(γ))] · X̂ = 0,

and

lim
γ→0

ν(γ) ∈ α−1 · sign(ŝ), lim
γ→0

g(γ) ◦ h(γ) = 0.

This shows the exists of the dual certificate ν(γ) such that the optimality condition holds for (X̂, ŝ).
Hence, (X̂, ŝ) is also a global optimal solution to (27).

Lemma 1. (X̂, ŝ) is an optimal solution for (27) if there exists a dual certificate ν ∈ Rm such that
the following conditions hold:

A(X̂) + ŝ = y, (I−A∗(ν)) · X̂ = 0, ν ∈ λ · sign(ŝ), I � A∗(ν), X̂ � 0, (31)

where sign(s) is the subdifferential of ‖s‖1 with each entry

sign(s) :=

{
s/ |s| s 6= 0,

[−1, 1] s = 0.
(32)

Proof. The Lagrangian function of the problem can be written as

L (X, s,ν,Γ) = trace (X) + λ ‖s‖1 + ν
> (y −A(X)− s)− 〈X,Γ〉 ,

with ν ∈ Rm and Γ ∈ Rn×n being the dual variables, where Γ � 0. Thus, we can derive the
Karush-Kuhn-Tucker (KKT) optimality condition for (27) as

0 ∈ ∂L : I− Γ−A∗(ν) = 0, ν ∈ λ · ∂ ‖s‖1 = λ · sign (s) ,
feasibility : A(X) + s = y, X � 0, Γ � 0,

complementary slackness : Γ ·X = 0,
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where ∂(·) denotes the subdifferential operator and sign(s) is the subdifferential of ‖s‖1 with each
entry

sign(s) =

{
s/ |s| s 6= 0,

[−1, 1] s = 0.

Thus, we know that
(
X̂, ŝ

)
is global solution to (27) as long as there exists a dual certificate ν such

that (31) holds, where we eliminated Γ by plugging in Γ = I−A∗(ν).

Lemma 2. Suppose that {Ai}mi=1 commutes. Suppose (14) and (24) hold for Xt, gt and ht, then

Xt = exp (A∗(ξt)) ·X0 · exp (A∗(ξt)) (33)
gt = g0 ◦ exp (αξt) , ht = h0 ◦ exp (−αξt) , (34)

where ξt = −
∫ t
0

rτdτ .

Proof. From (24), we know that

dgt
dt

= −αrt ◦ gt,

where the differentiation dgt

dt is entrywise for gt. Thus, we have∫ t

0

dgτ
gτ

= −α
∫ t

0

rτdτ =⇒ log gt − log g0 = αξt =⇒ gt = g0 ◦ exp (αξt) ,

where all the operators are entrywise. Similarly, ht = h0 ◦ exp (−αξt) holds.

For (33), by using (28) and the fact that {Ai}mi=1 commutes, we can derive it with an analogous
argument.

Lemma 3. Under the settings of Theorem 2 and Lemma 2, for any γ > 0 there exists

ν(γ) =
ξ∞(γ)

log (1/γ)
, (35)

such that

lim
γ→0
A∗ (ν(γ)) � I, lim

γ→0
[I−A∗ (ν(γ))] · X̂ = 0,

where ξ∞(γ) = limt→0 ξt(γ) with ξt(γ) = −
∫ t
0

rτ (γ)dτ .

Proof. Given U0 = γI, we have X0 = U0U
>
0 = γ2I. By the expression for Xt in (29), we have

X∞(γ) = γ2 · exp (2A∗ (ξ∞(γ))) (36)

where ξ∞(γ) = limt→∞ ξt(γ). Because {Ai}mi=1 are symmetric and they commute, we know that
they are simultaneously diagonalizable by an orthonormal basis Ω = [ω1, . . . ,ωn] ∈ Rn×n, i.e.,

ΩAiΩ
> = Λi, Λi diagonal , ∀ i = 1, 2, . . . ,m,

and so is A∗(b) for any b ∈ Rm. Therefore, we have

λk (X∞(γ)) = γ2 · exp (2λk (A∗ (ξ∞(γ)))) = exp (2λk (A∗ (ξ∞(γ))) + 2 log γ) , (37)

where λk(·) denotes the k-th eigenvalue with respect to the k-th basis ωk. Moreover X∞(γ) and its
limit X̂ have the same eigen-basis Ω. Since we have X∞(γ) converges to X̂ when γ → 0, then we
have the eigenvalues

λk (X∞(γ)) → λk(X̂), ∀ k = 1, 2, . . . , n, (38)

whenever γ → 0.
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Case 1: λk(X̂) > 0. For any k such that λk(X̂) > 0, from (37) and (38), we have

exp (2λk (A∗ (ξ∞(γ))) + 2 log γ) → λk(X̂),

so that

2λk (A∗ (ξ∞(γ))) + 2 log γ − log λk(X̂) → 0,

which further implies that

λk

(
A∗
(
ξ∞(γ)

log(1/γ)

))
− 1− log λk(X̂)

2 log(1/γ)
→ 0.

Now if we construct ν(γ) as (35), so that we conclude

lim
γ→0

λk (A∗(ν(γ))) = 1, (39)

for any k such that λk(X̂) > 0.

Case 2: λk(X̂) = 0. On the other hand, for any k such that λk(X̂) = 0, similarly from (37) and
(38), we have

exp (2λk (A∗ (ξ∞(γ))) + 2 log γ) → 0,

when γ → 0. Thus, for any small ε ∈ (0, 1), there exists some γ0 ∈ (0, 1) such that for all γ < γ0,

exp (2λk (A∗ (ξ∞(γ))) + 2 log γ) < ε,

which implies that

λk

(
A∗
(
ξ∞(γ)

log(1/γ)

))
− 1 <

log ε

2 log (1/γ)
< 0.

Thus, given the construction of ν(γ) in (35), we have

λk (A∗(ν(γ))) < 1, ∀ γ < γ0,

which further implies that for any k with λk(X̂) = 0, we have

lim
γ→0

λk (A∗(ν(γ))) < 1. (40)

Putting things together. Combining our analysis in (39) and (40), we obtain

lim
γ→0
A∗(ν(γ)) � I.

On the other hand, per our analysis, we know that there exists an orthogonal matrix Ω ∈ Rn×n,
such that A∗(ν(γ)) and X̂ can be simultaneously diagonalized. Thus, we have

[I−A∗(ν(γ))] · X̂ = Ω ·
(
I−ΛA∗(ν(γ))

)
·ΛX̂ ·Ω

>,

where ΛA∗(ν(γ)) and ΛX̂ are diagonal matrices, with entries being the eigenvalues ofA∗(ν(γ)) and
ΛX̂, respectively. From our analysis for Case 1 and Case 2, we know that limγ→0

(
I−ΛA∗(ν(γ))

)
·

ΛX̂ = 0. Therefore, we also have

lim
γ→0

[I−A∗(ν(γ))] · X̂ = 0,

as desired.

Lemma 4. Under the settings of Theorem 2 and Lemma 2, for any γ > 0 there exists

ν(γ) =
ξ∞(γ)

log (1/γ)
, (41)

such that

lim
γ→0

ν(γ) ∈ α−1 · sign(ŝ), lim
γ→0

g(γ) ◦ h(γ) = 0, (42)

where ŝ = ĝ ◦ ĝ − ĥ ◦ ĥ, and ξ∞(γ) = limt→0 ξt(γ) with ξt(γ) = −
∫ t
0

rτ (γ)dτ .
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Proof. Let gi∞(γ) and hi∞(γ) be the ith coordinate of g∞(γ) and h∞(γ) defined in (25), respec-
tively. It follows from (30) that

gi∞(γ) = γ · exp
(
α · ξi∞(γ)

)
, hi∞(γ) = γ · exp

(
−α · ξi∞(γ)

)
, ∀ i = 1, 2, . . . ,m.

When γ → 0, we have
gi∞(γ) · hi∞(γ) = γ2 → 0, ∀ i = 1, 2, . . . ,m,

so that limγ→0 g(γ) ◦ h(γ) = 0. This also implies that either gi∞(γ) or hi∞(γ) for any i =
1, 2, . . . ,m.

On the other hand, let us define
s∞(γ) = g∞(γ) ◦ g∞(γ) − h∞(γ) ◦ h∞(γ),

and let si∞(γ) be the ith coordinate of s∞(γ) with
si∞(γ) = γ2 · exp

(
2α · ξi∞(γ)

)
− γ2 · exp

(
−2α · ξi∞(γ)

)
. (43)

Correspondingly, we know that ŝ = limγ→0 s∞(γ) and let si be the ith coordinate of ŝ = ĝ ◦ ĝ −
ĥ ◦ ĥ. In the following, we leverage on these to show that our construction of ν(γ) satisfies (42).
We classify the entries ŝi of ŝ (i = 1, 2, . . . ,m) into three cases and analyze as follows.

• Case 1: ŝi > 0. Since limγ→0 s
i
∞(γ) = ŝi > 0, from (43) we must have ξi∞(γ) → +∞ when

γ → 0, so that exp
(
2α · ξi∞(γ)

)
→ +∞ and exp

(
−2α · ξi∞(γ)

)
→ 0. Therefore, when γ → 0,

we have
γ2 exp

(
2α · ξi∞(γ)

)
→ ŝi =⇒ 2α · ξi∞(γ)− 2 log (1/γ)− log ŝi → 0,

=⇒ νi(γ) =
ξi∞(γ)

log (1/γ)
→ 1

α
. (given log (1/γ)→ +∞)

• Case 2: ŝi < 0. Since limγ→0 s
i
∞(γ) = ŝi < 0, from (43) we must have ξi∞(γ) → −∞ when

γ → 0, so that exp
(
2α · ξi∞(γ)

)
→ 0 and exp

(
−2α · ξi∞(γ)

)
→ +∞. Therefore, when γ → 0,

we have
−γ2 exp

(
−2α · ξi∞(γ)

)
→ ŝi =⇒ −2α · ξi∞(γ) + 2 log (1/γ)− log ŝi → 0,

=⇒ νi(γ) =
ξi∞(γ)

log (1/γ)
→ − 1

α
.

• Case 3: ŝi = 0. Since limγ→0 s
i
∞(γ) = ŝi = 0, from (43) we must have γ2 ·exp

(
2α · ξi∞(γ)

)
→

0 and γ2 · exp
(
−2α · ξi∞(γ)

)
→ 0, when γ → 0. Therefore, for any small ε ∈ (0, 1), there exists

some γ0 > 0, such that for all γ ∈ (0, γ0), we have
γ2 ·max

{
exp

(
2α · ξi∞(γ)

)
, exp

(
−2α · ξi∞(γ)

)}
≤ ε

=⇒ 2α ·max

{
ξi∞(γ)

log (1/γ)
,− ξi∞(γ)

log (1/γ)

}
− 2 <

log ε

log (1/γ)
< 0,

which further implies that

|νi(γ)| = max

{
ξi∞(γ)

log (1/γ)
,− ξi∞(γ)

log (1/γ)

}
<

1

α
.

Therefore, combining the results in the three cases above we obtain that

lim
γ→0

νi(γ) =
1

α
sign(ŝi) =

{
ŝi
α|ŝi| ŝi 6= 0,

[−1/α, 1/α] ŝi = 0,

so that we have (42) holds.

C Extra Experiments

Due to limited space in the main body, we here provide extra results for our experiments on robust
image recovery presented in Section 4.2.

Varying corruption levels. In Figure 5, we display results of our method for robust image recovery
with varying levels of salt-and-pepper corruption.
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PSNR = 26.19 PSNR = 36.15 PSNR = 34.91

PSNR = 20.15 PSNR = 33.64 PSNR = 34.39

PSNR = 16.46 PSNR = 29.06 PSNR = 31.60

PSNR = 13.91 PSNR = 24.80 PSNR = 26.99

Input DIP DIP-L1 DOP (Ours)

Figure 5: Robust image recovery with 10%, 30%, 50%, and 70% salt-and-pepper noise. PSNR of the
results is displayed below the images. For our method, all cases use the same network width, learning rate, and
termination condition. For DIP and DIP-`1, case-dependent early stopping is used which is essential for their
good performance. Despite that, our method achieves the highest PSNRs and best visual quality.
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