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A Proofs

Theorem 1. For every game that is at least n-bit communicative, and every antisymmetric win-loss
payoff matrix P ∈ {−1, 0, 1}b2nc×b2nc, there exists a set of b2nc pure strategies {π1, ..., πb2nc} ⊂ Π

such that Pij = f†(πi, πj), and bxc = maxa∈N a ≤ x.

Proof. Let us assume we are given some Pij . We define corresponding strategies πi such that each
starts by transmitting its ID as a binary vector using n bits. Afterwards, strategy πi reads out Pij
based on its own id, as well as the decoded ID of an opponent πj , and since we assumed each
win-draw-loss outcome can still be reached in a game tree, players then play to win/draw or lose,
depending on the value of Pij . We choose πi and πj to follow the first strategy in lexicographic
ordering (to deal with partially observable/concurrent move games) over sequences of actions that
leads to Pij to guarantee the outcome. Ordering over actions is arbitrary and fixed. Since identities
are transmitted using binary codes, there are b2nc possible ones.

Proposition 1. The game of Go is at least 1000-bit communicative and contains a cycle of length at
least 21000.

Proof. Since Go has a resign action, one can use the entire state space for information encoding,
whilst still being able to reach both winning and losing outcomes. The game is played on a 19×19
board – if we split it in half we get 180 places to put stones per side, such that the middle point is
still empty, and thus any placement of players stones on their half is legal and no stones die. These
180 fields give each player the ability to transfer

∑1
i=180 log2(i) = log2(180!) ≈ 1000 bits. and

according to Theorem 1 we thus have a cycle of length 21000 > 10100. Figure 6 provides visualisation
of this construction.

Proposition 2. Modern games, such as StarCraft, DOTA or Quake, when limited to 10 minutes play,
are at least 36000-bit communicative.

Proof. With modern games running at 60Hz, as long as agents can “meet” in some place, and execute
60 actions per second that does not change their visibility (such as tiny rotations), they can transmit
60 · 60 · 10 = 36000 bits of information per 10 minute encounter. Note, that this is very loose lower
bound, as we are only transmitting one bit of information per action, while this could be significantly
enriched, if we allow for use of multiple actions (such as jumping, moving multiple units etc.).

Proposition 3. Fixed-memory size fictitious play initialised with population of strategies P0 ⊂
Π where at iteration t one replaces some strategy in Pt−1 with a new strategy π such that
∀πi∈Pt−1f(π, πi) > 0 converges in layered Games of Skill, if the population is not smaller than the
size of the lowest layer occupied by at least one strategy in the population |P0| ≥ |Largmink:P0∩Lk 6=∅|
and at least one strategy is above z. If all strategies are below z, then required size is that of |Lz|.

Proof. Let’s assume at least one strategy is above z. We will prove, that there will be at most |Pt| − 1
consecutive iterations where algorithm will not improve transitively (defined as a new strategy being
part of Li where i is smaller than the lowest number of all Lj that have non empty intersections with
Pt). Since we require the new strategy πt+1 added at time t+ 1 to beat all previous strategies, it has
to occupy at least a level, that is occupied by the strongest strategy in Pt. Let’s denote this level by Lk,
then πt+1 improves transitively, meaning that there exists i < k such that πt+1 ∈ Li, or it belongs to
Lk itself. Since by construction |Lk| ≤ |Pt|, this can happen at most |Pt| − 1 times, as each strategy
in Pt ∩ Lk needs to be beaten by πt+1 and |Pt ∩ Lk| < |Pt|. By the analogous argument, if all the
strategies are below Lz , one can have at most |maxi |Li| − 1 consecutive iterations without transitive
improvement.

Theorem 2. Nash clustering satisfies RPP(Ci,Cj) ≥ 0 for each j > i.
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Proof. By definition for each A and each B′ ⊂ B we have RPP(A,B′) ≥ RPP(A,B), thus for
Xi := Π \

⋃
k<i Ck and every j > i we have Cj ⊂ Xi and

RPP(Ci,Cj) ≥ RPP(Ci, Xi)

= RPP(supp(Nash(P|Xi)), Xi)

= RPP(Xi, Xi) = 0.

(1)

Theorem 3. If at any point in time, the training population Pt includes any full Nash cluster
Ci ⊂ Pt, then training against Pt by finding π such that ∀πj∈Ptf(π, πj) > 0 guarantees transitive
improvement in terms of the Nash clustering ∃k<i π ∈ Ck.

Proof. Lets assume that ∃k>iπ ∈ Ck. This means, that

RPP(Ci,Ck) ≤ max
πj∈Ci

f(πj , π) = max
πj∈Ci

[−f(π, πj)] < 0, (2)

where the last inequality comes from the fact that Ci ⊂ Pt and ∀πj∈Ptf(π, πj) > 0 implies that
∀πj∈Ci

f(π, πj) > 0. This leads to a contradiction with the Nash clustering and thus π ∈ Ck for
some k ≤ i. Finally π cannot belong to Ci itself since ∀πj∈Cif(π, πj) > 0 = f(π, π).

B Computing n in n-bit communicative games

Our goal is to be able to encode identity of a pure strategy in actions it is taking, in such a way,
that opponent will be able to decode it. We focus on fully observable, turn-based games. Note, that
with pure policy, and fully observable game, the only way to sent information to the other player
is by taking an action (which is observed). Consequently, if at given state one considers A actions,
then choosing one of them we can transmit log2(A) bits. We will build our argument recursively, by
considering subtrees of a game tree. Naturally, a subtree is a tree of some game. Since the assumption
of n-bit communicativeness is that we can transmit n bits of information before outcomes become
independent, it is easy to note that a subtree for which we cannot find terminal nodes with both
outcomes (-1, +1) is 0-bit communicative. Let’s remove these nodes from the tree. In the new tree,
all the leaf nodes are still 0-bit communicative, as now they are “one action away” from making the
outcome deterministic. Let’s define function φ per state, that will output how many bits each player
can transmit, before the game becomes deterministic, so for each player j

φj(s) = 0 if s is a leaf.

The crucial element is how to now deal with a decision node. Let’s use notation c(s) to denote set
of all children states, which we assume correspond to taking actions available in this state. If many
actions would lead to the same state, we just pretend only one such action exists. From the perspective
of player j, what we can do, is to select a subset of states that are reachable from s. If we do so, we
will be able to encode log2 |c(s)| bits in this move plus whatever we can encode in the future, which
is simply mins′∈c(s) φj(s

′) as we need to guarantee being able to transmit this number of bits no
matter which path is taken.

φj(s) = max
I⊂c(s)

{log2 |c(s)|+ min
s′∈c(s)

φj(s
′)}

However, our argument is symmetric, meaning that we need to not only transmit bits as player j, but
also our opponent, and to do so we need to consider minimum over players respective communication
channels:

φj(s) = max
I⊂c(s)

{log2 |c(s)|+ min
s′∈c(s)

min
i
φi(s

′)}

It is easy to notice that for a starting state s0 we now have that the game is mini φi(s0)-bit commu-
nicative. The last recursive equation might look intractable, due to iteration over subsets of children
states. However, we can easily compute quantities like this in linear time. Let’s take general form of

max
A⊂B
{g0(|A|) + min

a∈A
g1(a)} =: max

A⊂B
g(A) (3)
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Table 2: Game profiles of empirical game geometries, when sampling strategies in various real world
games, such as Connect Four, Tic Tac Toe and even StarCraft II. The first three rows shows clearly
the Game of Skill geometry, while the last row shows the geometry for games that are not Games of
Skill, and clearly do not follow this geometry. Rows of the payoffs are sorted by mean winrate for
easier visual inspection. The pink curve shows a fitted Skewed Gaussian to show the spinning top
shape, details provided in Supplementary Materials.

and let’s consider Alg. 1. To prove that it outputs maximum of g, let’s assume that at any point
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Algorithm 1 Solver for Eq. 3 in O(|B|).
Input: functions f , g and set B:
begin
C ← ∅
g(X)← g0(|X|) + minx∈X g1(x) {Eq. 3}
sort B in descending order of g1
for b ∈ B do

if g(C ∪ {b}) > g(C) then
C ← C ∪ {b}

end if
end for
return C

t we decided to pick b′ 6= bt. Since bt has highest g at this point, we have g1(b′) < g1(bt), and
consequently g(Ct−1 ∪ {b′}) < g(Ct−1 ∪ {bt}) so we decreased function value and conclude
optimality proof.

We provide a pseudocode in Alg. 2 for the two-player, turn-based case with deterministic transitions.
Analogous construction will work for k players, simultaneous move games, as well as games with
chance nodes (one just needs to define what we want to happen there, taking minimum will guarantee
transmission of bits, and taking expectation will compute expected number of bits instead).

Exemplary execution at some state of Tic-Tac-Toe is provided in Figure 5. Figure 6 shows the
construction from Proposition 1 for the game of Go.

We can use exactly the same procedure to compute n-communicativeness over restricted set of
policies. For example let us consider strategies using MinMax algorithm to a fixed depth, between 0
and 9. Furthermore, we restrict what kind of first move they can make (e.g. only in the centre, or in a
way that is rotationally invariant). Each such class simply defines a new “leaf” labelling of our tree or
set of available children. Once we reach a state, after which considered policy is deterministic, by
definition its communicativeness is zero, so we put φ(s) = 0 there. Then we again run the recursive
procedure. Running this analysis on the game of Tic-Tac-Toe (Fig. 4) reveals the Spinning Top like
geometry wrt. class of policies used. As MinMax depth grows, cycle length bound from Theorem 1
decreases rapidly. Similarly introducing more inductive bias in the form of selecting what are good
first moves affect the shape in an analogous way. This example has two important properties. First, it

Figure 4: Visualisation of cycle bound lengths coming from Theorem 1, when applied to the game
of Tic-Tac-Toe over restricted set of policies – y axis corresponds to the depth of MinMax search
(encoding transitive strength); and colour and line style correspond to restricted first move (encoding
better and better inductive prior over how to play this game).

shows cyclic dimensions behaviour over whole policy space, as we do not rely on any sampling, but
rather consider the whole space, restricting the transitive strength and using Theorem 1 as a proxy
of non-transitivity. Second, it acts as an exemplification of the claim of various inductive biases
restricting the part of the spinning top one needs to deal with when developing and AI for the specific
game.
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Algorithm 2 Main algorithm to compute n for which a given fully observable two-player zero-sum
game is n-bit communicative.

Input: Game tree encoded with:
- states: si ∈ S
- value of a state: v(si) ∈ {−1, 0,+1, ∅}
- set of children states c(si) ⊂ S
- set of parent states d(si) ⊂ S
- which player moves p(si) ∈ {0, 1}
begin {Remove states with deterministic outcomes}
si ← {si : ∀o∈{−1,+1}∃path(si,sj) ∧ v(sj) = o}
update c
q = [si : c(si) = ∅] {Init with leaves}
while |q| > 0 do
x← q.pop()
φ(x) = Agg(x) {Alg. 3}
for y ∈ d(x) do

if ∀z ∈ c(p) defined(φ(z)) then
q.enqueue(y) {Enqueue a parent if all its children were analysed}

end if
end for

end while
return minφ(s0)

Algorithm 3 Aggregate (Agg) - helper function for Alg. 2
Input: State x
begin
m← [minφ(z) for z ∈ c(x)] {min over players}
o← [φ(z)[1− p(x)] for z ∈ c(x)] {other player bits}
sort m in decreasing order {Order by decreasing communicativeness}
order o in the same order
b← (0, 0)
for i = 1 to |c(x)| do
t[p(x)]← min(m[: i]) + log2(i)
t[1− p(x)]← min(o[: i])
if t[p(x)] > b[p(x)] then
b = t {Update maximum}

end if
end for
return b

C Cycles counting

In general even the problem of deciding if a graph has a simple path of length higher than some (large)
k is NP-hard. Consequently we focus our attention only on cycles of length 3 (which embed Rock-
Paper-Scissor dynamics). For this problem, we can take adjacency matrix Aij = 1 ⇐⇒ Pij > 0
and simply compute diag(A3), which will give us number of length 3 cycles that pass through each
node. Note, that this technique no longer works for longer cycles as diag(Ap) computes number of
closed walks instead of closed paths (in other words – nodes could be repeated). For p = 3 these
concepts coincide though.

D Nash computation

We use iterative maximum entropy Nash solver for both Nash clustering and RPP [2] computation.
Since we use numerical solvers, the mixtures found are not exactly Nash equilibria. To ensure that
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they are “good enough” we find a best response, and check if the outcome is bigger than -1e-4. If
it fails, we continue iterating until it is satisfied. For the data considered, this procedure always
terminated. While usage of maximum entropy Nash might lead to unnecessarily “heavy” tops of
the spinning top geometry (since equivalently we could pick smallest entropy ones, which would
form more peaky tops) it guaranteed determinism of all the procedures (as maximum entropy Nash is
unique).

E Games/payoffs definition

After construction of each empirical payoff P, we first symmetrise it (so that ordering of players does
not matter), and then standarise it P′ij :=

Pij−Pji

2max |P| for the analysis and plotting to keep all the scales
easy to compare. This has no effect on Nashes or transitive strength, and is only used for consistent
presentation of the results, as P′ ∈ [−1, 1]N×N . For most of the games this was an identity operation
(as for most P we had maxP = −minP = 1), and was mostly useful for various random games
and Blotto, which have wider range of outcomes.

E.1 Real world games

We use OpenSpiel [16] implementations of all the games analysed in this paper, with following
setups:

• Hex 3X3: hex(board_size=3)

• Go 3X3: go(board_size=3,komi=6.5)

• Go 4X4: go(board_size=4,komi=6.5)

• Quoridor 3X3: quoridor(board_size=3)

• Quoridor 4X4: quoridor(board_size=4)

• Tic Tac Toe: tic_tac_toe()

• Misere Tic Tac Toe (a game of Tic Tac Toe where one wins if and onlfy if opponent makes a
line): misere(game=tic_tac_toe())

• Connect Four: connect_four()

E.2 StarCraft II (AlphaStar)

We use payoff matrix of the League of the AlphaStar Final [34] which represent a big population
(900 agents) playing at a wide range of skills, using all 3 races of the game, and playing it without
any simplifications. We did not run any of the StarCraft experiments. Sampling of these strategies is
least controlled, and comes from a unique way in which AlphaStar system was trained.

This heavily skewed strategies sampling means that what we are observing is a study of AlphaStar
induced game geometry, rather then necesarily geometry of the StarCraft II itself. In particular, one
can ask why do we see a spinning top shape, rather than an upper cone, that we might expect given
that AlphaStar agents never try to lose. The answer lies in how these strategies were created [34]
namely – they come from iterative process, where agents are trained to beat all the previous strategies.
In such setup, despite lack of an agent actively seeking to lose, the initial strategies will act as if they
were designed to do so, since every other strategy was trained to beat them, while they were never
trained to defend. The non-transitivies start to emerge, once “League exploiters” and “Exploiters”
are slowly added to the population, and thus building strategic diversity. While these two factors
and dynamics are different from the ones that motivate the geometry in remaining experiments,
it surprisingly shared the self-similarity. From the perspective of the entire game of StarCraft II
however, the shape we are observing is slightly warped, and we would expect to see an upper cone, if
we were given ability to sample weak strategies more uniformly, without every other strategy being
sampled conditionally on beating them.
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E.3 Rock Paper Scissor (RPS)

We use standard Rock-Paper-Scissor payoff of form

P =

[
0 1 −1
−1 0 1
1 −1 0

]
.

This game is fully cyclic, and there is no pure strategy Nash (the only Nash-equilibrium is the uniform
mixture of strategies).

Maybe surprisingly, people do play RPS competitively, however it is important to note, that in
“real-life” the game of RPS is much richer, than its game theoretic counterpart. First, it often involves
repeated trials, which means one starts to reason about the strategy opponent is employing, and try to
exploit it while not being exploited themselves. Second, identity of the opponent is often known, and
since player are humans, they have inherit biases in the form of not being able to play completely
randomly, having beliefs, preferences and other properties, that can be analysed (based on historical
matches) and exploited. Finally, since the game is often played in a physical environment, there
might be various subconscious tells for a given player, that inform the opponent about which move
they are going to play, akin to Clever Hans phenomena.

E.4 Disc Game

We use definition of random game from the “Open-ended learning in symmetric zero-sum games”
paper [2]. We first sample N = 1000 points uniformly in the unit circle Ai ∼ U(S(0, 1)) and then
put

Pij = AT
i

[
0 −1
1 0

]
Aj .

Similarly to RPS, this game is fully cyclic.

E.5 Elo game

We sample Elo rating [8] per player Si ∼ U(0, 2000), and then put Pij := (1 + e−(Si−Sj)/400)−1,
which is equivalent of using scaled difference in strength Dij = (Si − Sj)/400 squashed through a
sigmoid function σ(x) = (1 + e−x)−1. It is easy to see that this game is monotonic, meaning that
Pij > Pjk → Pik. We use N = 1000 samples.

E.6 Noisy Elo games

For a given noise ε > 0 we first build an Elo game, and then take N2 independent samples from
N (0, ε) and add it to corresponding entries of P, creating Pε. After that, we symmetrise the payoff
by putting P := Pε −PT

ε .

E.7 Random Game of Skill

We put Pij := 1
2 (Wij −Wji) + Si − Sj where each of the random variables Wij , Si comes from

N (0, 1). We use N = 1000 samples.

E.8 Blotto

Blotto is a two-player symmetric zero-sum game, where each player selects a way to place N units
onto K fields. The outcome of the game is simply number of fields, where a player has more units
than the opponent minus the symmetric quantitiy. We choose N=10, K=5, which creates around 1000
pure strategies, but analogous results were obtained for various other setups we tested. One could
ask why is Blotto getting more non-transitive as our strength increases. One simple answer is that
the game is permutation invariant, and thus forces optimal strategy to be played uniformly over all
possible permutations, which makes the Nash support grow. Real world games, on the other hand,
are almost always ordered, sequential, in nature.
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E.9 Kuhn Poker

Kuhn Poker [14] is a two-player, sequential-move, asymmetric game with 12 information states (6
per player). Each player starts the game with 2 chips, antes a single chip to play, then receives a
face-down card from a deck of 3 cards. At each information state, each player has the choice of two
actions, betting or passing. We use the implementation of this game in the OpenSpiel library [16]. To
construct the empirical payoff matrices, we enumerate all possible policies of each player, noting that
some of the enumerated policies of player 1 may yield identical outcomes depending on the policy of
player 2, as certain information states may not be reachable by player 1 in such situations. Due to
the randomness involved in the card deals, we compute the average payoffs using 100 simulations
per pair of policy match-ups for players 1 and 2. This yields an asymmetric payoff matrix (due to
sequential-move nature of the game), which we then symmetrise to conduct our subsequent analysis.

E.10 Parity Game of Skill

Let us define a simple n-step game (per player), that has game of skill geometry. It is a two-player,
fully-observable, turn based game that lasts at most n-steps. Game state is a single bit s with initial
value 0. At each step, player can choose to: 1) flip the bit (a1); 2) guess that bit is equal to 0 (a2);
3) guess the bit is equal to 1 (a3); 4) keep the bit as it is (a4). At (per player) step n the only legal
actions are 2) and 3). If any of these two actions is taken, game ends, and a player wins iff it guessed
correctly. Since the game is fully observable, there is no real “guessing” here, agents know exactly
what is the state, but we use this construction to be able to study the underlying geometry in the
easiest way possible. First, we note that this game is n− 1-bit communicative, as at each turn agents
can transmit log2(|{a1, a3}|) = 1 bits of information, and game lasts for n steps, and the last one
cannot be used to transfer information. According to Theorem 1 this means that every antisymmetric
payoff of size 2n−1×n−1 can be realised. Figure 7 shows that this game with n = 3 has hundreds of
cycles, and Nash clusters of size 40, strongly exceeding lower bounds from Theorem 1. Since there
are just 161 pure strategies, we do not have to rely on sampling, and we can clearly see Spinning Top
like shape in the game profile.

F Other games that are not Games of Skill

Table 3 shows a few Noisy Elo Games, which cause Nashes to grow significantly over the transitive
dimension. We also run analysis on Kuhn-Poker, with 64 pure policies, which seems to exhibit
analogous geometry to Blotto game. Finally, there is also pure Rock Paper Scissor example, with
everything degenerating to a single point.

G Empirical Game Strategy Sampling

We use OpenSpiel [16] implementations of AlphaBeta and MCTS players as base of our experiments.
We expand AlphaBeta player to MinMax(d, s), which runs AlphaBeta algorithm up till depth d,
and if it did not succeed (game is deeper than d) then it executes random action using seed s instead.
We also define MaxMin(d, s) which acts in exactly same way, but uses flipped payoff (so seeks to
lose). We also include MinMax’(d, s) and MinMax(d, s) which act in the same way as before,
but if some branches of the game tree are longer than d, then they are assumed to have value of 0 (in
other words these use the value function that is contantly equal to 0). Finally we define MCTS(k, s)
which runs k simulations, and randomness is controlled by seed s. With these 3 types of players, we
create a set of agents to evaluate of form:

• MinMax(d,s) for each combination of

d ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, s ∈ {1, . . . , 50}

• MinMax’(d,s) for each combination of

d ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, s ∈ {1, . . . , 50}
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Table 3: Top row, from left: Noisy Elo games with ε = 0.1, 0.5, 1.0 respectively. Middle row,
from left: Blotto with N,K equal 5, 3; 5, 5, 10, 3 and 10, 5 respectively. Bottom row, from left:
Kuhn-Poker and Rock Paper Scissors.

• MaxMin(d,s) for each combination of

d ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, s ∈ {1, . . . , 50}

• MaxMin’(d,s) for each combination of

d ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, s ∈ {1, . . . , 50}

• MCTS(k,s) for each combination of

k ∈ {10, 100, 1000}, s ∈ {1, . . . , 50}

This gives us 2000 pure strategies, that span the transitive axis. Addition of MCTS is motivated by
the fact that many of our games are too hard for AlphaBeta with depth 9 to yield strong policies. Also
MinMax(0,s) is equivalent to a completely random policy with a seed s, and thus acts as a sort of a
baseline for randomly initialised neural networks. Each of players constructed this way codes a pure
strategy (as thanks to seeding that act in a deterministic way).
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H Empirical Game Payoff computation

For each game and pair of corresponding pure strategies, we play 2 matches, swapping which
player goes first. We report payoff which is the average of these two situations, thus effectively we
symmetrise games, which are not purely symmetric (due to their turn based nature). After this step,
we check if there are any duplicate rows, meaning that two strategies have exactly the same payoff
against every other strategy. We remove them from the game, treating this as a side effect of strategy
sampling, which does not guarantee uniqueness (e.g. if the game has less than 2000 pure strategies,
than naturally we need to sample some multiple times). Consequently each empirical game has a
payoff not bigger than 2000× 2000, and on average they are closer to 1000× 1000.

I Fitting spinning top profile

For each plot relating mean RPP to size of Nash clusters, we construct a dataset

X := {(xi, yi)}ki=1 =


 1
k

k∑
j=1

RPP(Ci,Cj), |Ci|


k

i=1

.

Next, we use Skewed Normal pdf as a parametric model:

ψ(x|µ, σ, α) = σ2[2φ((x− µ)/σ2)Φ(α(x− µ)/σ2)],

where φ is a pdf of a standard Gaussian, and Φ its cdf. We further compose this model with simple
affine transformation since our targets are not normalised and not guaranteed to equal to 0 in infinities:

ψ′(x|µ, σ, α, a, b) = aψ(x|µ, σ, α) + b, ·
and find parameters µ, σ, α, a, b minimising

`(µ, σ, α, a, b) =

k∑
i=1

‖ψ′(xi|µ, σ, α, a, b)− yi‖2.

In general, using probability of data under the MLE skewed normal distribution model could be used
as a measure of “game of skillness”, but its applications and analysis is left for future research.

J Counting pure strategies

For a given 2 player turn-based game we can compute number of behaviourally different pure
strategies by traversing the game tree, and again using a recursive argument. Using notation from
previous sections, and zj to denote number of pure strategies for player j we put, for each state s
such that p(s) = j:

zj(s) =

{
1 , if terminal(s)∑

s′∈c(s)

[∏
s′′∈c(s′) zj(s

′′)
]

, otherwise

where the second equation comes from the fact, that two pure strategies are behaviourally different if
there exists a state, that both reach when facing some opponent, and they take different action there.
So to count pure strategies, we simply sum over all our actions, but need to take product of opponent
actions that follow, as our strategy needs to be defined in each of possible opponent moves, and each
such we multiply in how many ways we can follow from there, completing the recursion. If we now
ask our strategies to be able to play as both players (since in turn-based games are asymmetric) we
simply report z1(s0) · z−1(s0), since each combination of behaviour as first and second player is a
different pure strategy.

For Tic-Tac-Toe z1(s0) ≈ 10124 and z−1(s0) ≈ 10443 so in total we have approximately 10567 pure
strategies that are behaviourally different. Note, that behavioural difference does not imply difference
in terms of payoff, however difference in payoff implies behavioural difference. Consequently this is
an upper bound on number of size of the minimal payoff describing Tic-Tac-Toe as a normal form
game.
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K Deterministic strategies and neural network based agents

Even though neural network based agents are technically often mixed strategies in the game theory
sense (as they involve stochasticity coming either from Monte Carlo Tree Search, or at least from the
use of softmax based parametrisation of the policy), in practise they were found to become almost
purely deterministic as training progresses [19], so modelling them as pure strategies has empirical
justification. However, study and extension of presented results to the mixed strategies regime is an
important future research direction.

L Random Games of Skill

We show that random games also exhibit a spinning top geometry and provide a possible model for
Games of Skill, which admits more detailed theoretical analysis.
Definition 4 Random Game of Skill. We define a payoff of a Random Game of Skill as a random
antisymmetric matrix, where each entry equals:

f(πi, πj) := 1
2 (Qij −Qji) = 1

2 (Wij −Wji) + Si − Sj

where Qij = Wij + Si − Sj , and Wij , Si are iid of N (0, σ2
W ) and N (0, σ2

S) respectively, where
σ = max{σW , σS}.

The intuition behind this construction is that Si will capture part of the transitive strength of a
strategy πi. If all the Wij components were removed then the game would be fully monotonic. It
can be seen as a linear version of a common Elo model [8], where each player is assigned a single
ranking, which is used to estimate winning probabilities. On the other hand, Wij is responsible for
encoding all interactions that are specific only to πi playing against πj , and thus can represent various
non-transitive interactions (i.e. cycles) but due to randomness, can also sometimes become transitive.

Let us first show that the above construction indeed yields a Game of Skill, by taking an instance of
this game of size n× n.
Proposition 4. If maxi,j |Wij | < α

2 then the difference between maximal and minimal Si in each
Nash cluster Ca is bounded by α:

∀a max
πi∈Ca

Si − min
πj∈Ca

Sj ≤ α.

Proof. Let us hypothesise otherwise, so we have a Nash with strategy πa and πb such that Sa−Sb > α.
Let us show that πa has to achieve better outcome against each strategy πc than πb

f(πa, πc)− f(πb, πc)

= 1
2 (Wac −Wca −Wbc +Wcb) + (Sa − Sb)

> 1
2 (Wac −Wca −Wbc +Wcb) + α

≥ 0

(4)

consequently πb cannot be part of the Nash, contradiction.

Furthermore Nashes supports will be highest around 0 transitive strength, where most of the probabil-
ity mass of Si distribution is centred, and go towards 0 as they go to ±∞.

First, let us note that as the ratio of σS to σW grows, this implies that the number of Nash clusters
grows as each of them has upper bounded difference in Si by α that depends on magnitude of σW ,
while high value of σS guarantees that there are strategies πi with big differences in corresponding
Si’s. This constitutes of the transitive component of the random game. To see that the clusters sizes
are concentrated around zero, lets note that because of the zero-mean assumption of Si, this is where
majority of Si’s are sampled from. As a result, there is a higher chance of Wij forming cycles there,
then it is in less densely populated regions of Si scale. With these two properties in place . Figure 8
further visualises this geometry. This shape can also be seen by considering the limiting distribution
of mean strengths.
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Proposition 5. As the game size grows, for any given k ∈ [n] the average payoff 1
n

∑n
i=1 f(πk, πi)

behaves like N (Sk,
2σ2

n ).

Proof.

1
n

n∑
j=1

f(πk, πj) = Sk + 1
n

n∑
j=1

Wkj − 1
n

n∑
j=1

Sj .

Using the central limit theorem and the fact that E[Wij ] = E[Sj ] = 0 , 1 ≤ j ≤ n and that these
variables have a variance bounded by σ2.

Now, let us focus our attention on training in such a game, given access to a uniform improvement
oracle, which given a set of m opponents returns a uniformly selected strategy from strategy space,
among the ones that beat all of the opponents, we will show probability of improving average
transitive strength of our population at time t, denoted as S̄t.
Theorem 4. Given a uniform improvement oracle we have that, S̄t+1 > S̄t −W, where W is a
random variable of zero mean and variance σ2

m4 . Moreover, we have E[S̄t+1] > E[S̄t].

Proof. Uniform improvement oracle, given a set of index of strategies It ⊂ [n] (the current members
of our population) returns an index it such that,

∀i∈Itf(πit , πi) > 0 i.e. πit beats any πi , i ∈ It
and creates It+1 that consists in replacing a randomly picked i ∈ It by it. If the oracle cannot return
such index then the training process stops. What we care about is the average skill of the population
described by It, S̄t := 1

m

∑
i∈It Si, where m := |It|. By the definition of a uniform improvement

oracle we have,
∀i∈Itf(πit , πi) > 0 (5)

Thus, if we call a := it and b is the index of the replaced strategy we get

1
m

∑
i∈It+1

Si = 1
m

∑
i∈It

Si +
1

m
(Sa − Sb) (6)

= 1
m

∑
i∈It

Si +
1

m
(Qab − W̃ab) (7)

> 1
m

∑
i∈It

Si −
1

m
W̃ab. (8)

where W̃ij := 1
2 (Wij −Wji). This concludes the first part of the theorem. For the second part we

notice that since the strategy in It is replaced uniformly and W̃ij , 1 ≤ i < j ≤ n are independent of
variance bounded by σ2, we have,

Var
[
1
mWaj

]
= 1

m2E

 1
m

∑
j∈It

Waj

 = σ2

m4 (9)

Finally taking the expectation conditioned on It, we get

E

 1
m

∑
i∈It+1

Si|It

 > 1
m

∑
i∈It

Si. (10)

The theorem shows that the size of the population, against which we are training, has a strong effect
on the probability of transitive improvement, as it reduces the variance of W at a quartic rate. This
result concludes our analysis of random Games of Skill, we now follow with empirical confirmation
of both the geometry and properties predicted made above.
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Figure 5: Partial execution of the n-communicativeness algorithm for Tic-Tac-Toe. Black nodes
represent states that no longer can reach all possible outcomes. Green ones last states before all
the children nodes would be either terminating or are coloured black. The selected children states
(building subset A) are encoded in green (for crosses) and blue (for circles), with the edge captioned
with number of bits transmitted (logarithm of number of possible children), minimum number of bits
one can transmit afterwards, and minimum number of bits for the other player (because it is a turn
based game). n at each node is minimum of φx and φo, while for a player p making a move in state s,
we have φp = maxA⊂c(s){log2 |A|+ mins′∈A minp′ φp′(s

′)}. Red states are the one not selected in
the parent node by maximisation over subsets.
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Figure 6: Visualisation of construction from Proposition 1. Left) split of the 19 x 19 Go board into
regions where black stones (red), and white stones (blue) will play. Each player has 180 possible
moves. Centre) Exemplary first 7 moves, intuitively, ordering of stones encodes a permutation
over 180, which corresponds to

∑180
i=1 log2(i) = log2(

∏180
i=1 i) = log2(180!) ≈ 1000 bits being

transmitted. Right) After exactly 360 moves, board will always look like this, at which point
depending on Pid(black),id(white) black player will resign (if it is supposed to lose), or play the centre
stone (if it is supposed to win).

Figure 7: Game profile of Parity Game of Skill with 3 steps. Note that its Nash clusters are of size 40,
and number of cycles exceeds 140, despite being only 2-bit communicative.
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Figure 8: Game profile of the random Game of Skill. Upper left: payoff matrix; Upper right: relation
between fraction of strategies beaten for each strategy and number of RPS cycles it belongs to (colour
shows which Nash cluster this strategy belongs to); Lower left: payoff between Nash clusters in
terms of RPP [2]; Lower right: relation between fraction of clusters beaten wrt. RPP and the size of
each Nash cluster. Payoffs are sorted for easier visual inspection.
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