
Supplement for “Mixed Hamiltonian Monte Carlo for
Mixed Discrete and Continuous Variables”

Guangyao Zhou
Vicarious AI

Union City, CA 94587, USA
stannis@vicarious.com

1 Algorithm and theory

1.1 Detailed description of a full M-HMC iteration

See Algorithm 1 for a detailed description of a full M-HMC iteration.

1.2 Proof of Theorem 1

1.2.1 Proof of the Theorem

Theorem 1. (Detailed Balance) The M-HMC function in Algorithm 1 satisfies detailed balance w.r.t.
the joint invariant distribution ϕ, i.e. for any measurable sets A,B ⊂ Ω× Σ,∫

Σ

∑
x∈A(Θ)

RT ((x,Θ), B)ϕ((x,Θ))dΘ =

∫
Σ

∑
x∈B(Θ)

RT ((x,Θ), A)ϕ((x,Θ))dΘ

Proof. Use s = (x, qD, pD, qC , pC) and s′ = (x′, qD′, pD′, qC ′, pC ′) to denote two points in Ω× Σ.

Sequence of proposals and probabilistic paths

If we start from s ∈ Ω × Σ, for a given travel time T , a concrete run of the M-HMC function
would involve a finite sequence of random proposals. Assume the length of the sequence is M . The
sequence of random proposals Y can be denoted as

Y = (y(0), y(1), . . . , y(M−1)), y(m) ∈ Ω,m = 0, . . . ,M − 1

This sequence of proposals indicates that, for this particular run of M-HMC, we reach 0 or τ at
individual sites M times, and each time the system makes a proposal to go to the discrete state
y(m) ∈ Ω,m = 0, · · · ,M − 1 from the current discrete state.

If we fix Y , the M-HMC function (without the final accept/reject step) in fact specifies a deterministic
mapping, and would map s to a single point s′ ∈ Ω × Σ. For each such sequence of proposals Y ,
we introduce an associated probabilistic path ω(s, T, Y), which contains all the information of the
system going from s to s′ in time T through the function M-HMC. Formally, ω(s, T, Y) is specified
by

• The sequence of random proposals Y

Y = (y(0), y(1), . . . , y(M−1)), y(m) ∈ Ω,m = 0, . . . ,M − 1

• The indices of the sites for the M site visitations j(0), j(1), . . . , j(M−1) ∈ {1, . . . , ND}

• The times of the M site visitations 0 6 t(0) < t(1) < . . . < t(M−1) 6 T

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Algorithm 1 Core step of M-HMC

Require: U , potential for the target distribution π; Qi, i = 1, . . . , ND, single-site proposals; kD,
kinetic energy for discrete component; I(·, ·, ·|x, U,KC), reversible and volume-preserving
integrator for continuous component; τ , interval length in TND

input x(0), discrete state; qD(0), pD(0), auxiliary location and momentum for discrete state; qC(0),
continuous location; pC(0), auxiliary momentum for continuous state; T , travel time

output x, next discrete state; qD, pD, next auxiliary location and momentum for discrete state; qC ,
next continuous location; pC , next auxiliary momentum for continuous state

1: function M-HMC(x(0), qD(0), pD(0), qC(0), pC(0), T)
2: x← x(0), qD ← qD(0), pD ← pD(0)

3: qC ← qC(0), pC ← pC(0)

4: vi ← (kD)′(pDi), i = 1, . . . , ND

5: ti ← τ(sign(vi)+1)−2qDi
2vi

, i = 1, . . . , ND
6: while T > 0 do
7: j ← argmini{ti, i = 1, . . . , ND}
8: ε = min{tj , T}
9: qDi ← qDi + εvi, i = 1, . . . , ND

10: (qC , pC)← I(qC , pC , ε|x, U,KC)
11: T ← T − ε
12: if ε = tj then
13: ti ← ti − tj , i = 1, . . . , ND
14: x̃ ∼ Qj(·|x)

15: ∆E ← log
e−U(x,qC)Qj(x̃|x)

e−U(x̃,qC)Qj(x|x̃)

16: if kD(pDj) > ∆E then
17: x← x̃, qDj ← τ − qDj
18: pDj ← sign(pDj)(kD)−1(kD(pDj)−∆E)

19: vj ← (kD)′(pDj)
20: else
21: pDj ← −pDj , vj ← −vj
22: end if
23: tj ← τ(sign(vj)+1)−2qDj

2vj

24: end if
25: end while
26: E = U

(
x, qC

)
+KD(pD) +KC(pC)

27: E(0) = U
(
x(0), qC(0)

)
+KD(pD(0)) +KC(pD(0))

28: if Uniform([0, 1]) < e−(E−E(0)) then
29: pD ← −pD, pC ← −pC
30: else
31: x← x(0), qD ← qD(0), pD ← pD(0)

32: qC ← qC(0), pC ← pC(0)

33: end if
34: return x, qD, pD, qC , pC
35: end function

• The discrete states of the system at M site visitations x = x(0), x(1), . . . , x(M−1) ∈ Ω

• Accept/reject decisions for the M site visitations a(m) = 1{y(m)=x(m+1)}, where x(M) = x′

• The evolution of the location variables qD(t), qC(t) and the momentum variables
pD(t), pC(t), 0 6 t 6 T . Note that we might have discontinuities in pD(t). We use
pD(t−) to denote the left limit and pD(t+) to denote the right limit.

2

Countable number of probabilistic paths and decomposition of RT (s,B)

In order for a probabilistic path ω(s, T, Y) to be valid, the different components of ω(s, T, Y) have
to interact with each other in a way as determined by the M-HMC function. For example, we should
have y

(m)
i = x

(m)
i ,∀i 6= j(m) and

x(m+1) =

 y(m) if kD(pD(t(m)−)) > log
π(x(m),qC(t(m)))Q

j(m) (y(m)|x(m))

π(y(m),qC(t(m)))Q
j(m) (x(m)|y(m))

x(m) otherwise

For s ∈ Ω× Σ and some given travel time T , we say a sequence of proposals Y is compatible with
s, T and M-HMC if we can find a corresponding probabilistic path ω(s, T, Y) that’s valid.

Not all sequences of proposals correspond to valid probabilistic paths. But even if we don’t consider
the compatibility of the sequence of proposals with s, T and M-HMC, the set of all possible such
sequences has only a countable number of elements. This is because we only need to look at
sequences of finite length (because of the fixed travel time T), and all the individual proposals are on
discrete state spaces with a finite number of states.

The above analysis indicates that for some starting point s ∈ Ω× Σ and travel time T , running the
M-HMC function would result in only a countable number of possible destinations s′. Furthermore,
∀s, s′ ∈ Ω × Σ for which RT (s, {s′}) > 0, there are at most a countable number of probabilistic
paths which bring s to s′ in time T through M-HMC.

Formally, given some travel time T and a sequence of proposals Y , define

D(T, Y) = {s ∈ Ω× Σ : Y is compatible with s, T and M-HMC}
Use TT,Y : D(T, Y) → Ω × Σ to denote the deterministic mapping defined by M-HMC (without
the final accept/reject step) for the given Y in time T (so that D(T, Y) represents the domain of the
mapping TT,Y), and use

I(T, Y) = {s′ ∈ Ω× Σ : ∃s ∈ D(T, Y), s.t.TT,Y (s) = s′}
to denote the image of the mapping TT,Y . For a given x ∈ Ω, use

TT,Y,x : {(qD, pD, qC , pC) ∈ Σ : s = (x, qD, pD, qC , pC) ∈ D(T, Y)} → Σ

to denote the deterministic mapping induced by TT,Y on Σ. In other words,

∀s = (x, qD, pD, qC , pC) ∈ D(T, Y), TT,Y,x((qD, pD, qC , pC)) = (qD′, pD′, qC ′, pC ′)

where s′ = (x′, qD′, pD′, qC ′, pC ′) = TT,Y (s). Define

(Ω× Σ)(s, T) = {s′ = (x′, qD′, pD′, qC ′, pC ′) ∈ Ω× Σ : RT (s, {s′}) > 0}
∀s, s′ ∈ Ω× Σ for which RT (s, {s′}) > 0, further define

P(s, s′, T) = {Y a sequence of proposals: s ∈ D(T, Y) and TT,Y (s) = s′}
Then both (Ω× Σ)(s, T) and P(s, s′, T) have at most a countable number of elements.

Proof of detailed balance

First, we note that it’s trivially true that

ϕ(s)RT (s, {s}) = ϕ(s)RT (s, {s}) (1)

Next, we consider s′ 6= s. For a given travel time T and a sequence of proposals Y , ∀s ∈ D(T, Y),
we use rT,Y (s, s′) to denote the probability of going from s to s′ through the probabilistic path
ω(s, T, Y). Since M-HMC (without the final accept/reject step) defines a deterministic mapping
TT,Y for given T and Y , considering all s′ 6= s, the only non-zero term is rT,Y (s, TT,Y (s)) . For all
s′ 6= s, TT,Y (s), we have rT,Y (s, s′) = 0.

3

Using the above notation, ∀s ∈ A and B ⊂ Ω × Σ measurable for which s /∈ B, we can write
RT (s,B) as

RT (s,B) =
∑

s′∈B∩(Ω×Σ)(s,T)

RT (s, {s′})

=
∑

s′∈B∩(Ω×Σ)(s,T)

∑
Y ∈P(s,s′,T)

rT,Y (s, s′)

=
∑

s′∈B∩(Ω×Σ)(s,T)

∑
Y ∈P(s,s′,T)

rT,Y (s, TT,Y (s))

For a given travel time T , ∀s, s′ ∈ Ω × Σ, s 6= s′, if RT (s, {s′}) > 0, then P(s, s′, T) 6= ∅. In
Lemma 3, we prove that ∀Y ∈ P(s, s′, T), the absolute value of the determinant of the Jacobian of
TT,Y,x is |detJ TT,Y,x| = 1, for all x ∈ Ω. Furthermore, the deterministic mapping TT,Y is reversible,
and there exists a sequence of proposals Ỹ ∈ P(s′, s, T), s.t. s = T −1

T,Y (s′) = TT,Ỹ (s′).

In Lemma 4, we prove that, ∀s′ = TT,Y (s) 6= s,

ϕ(s)rT,Y (s, s′) = ϕ(s)rT,Y (s, TT,Y (s)) = ϕ(s′)rT,Ỹ (s′, TT,Ỹ (s′)) = ϕ(s′)rT,Ỹ (s′, s)

Using the above results, it’s not hard to see that, for the case where A ∩B = ∅,∫
Σ

∑
x∈A(Θ)

RT (s,B)ϕ(s)dΘ

=

∫
Σ

∑
x∈A(Θ)

∑
s′∈B∩(Ω×Σ)(s,T)

∑
Y ∈P(s,s′,T)

rT,Y (s, s′)ϕ(s)dΘ

=

∫
Σ

∑
x∈A(Θ)

∑
s′∈B∩(Ω×Σ)(s,T)

∑
Y ∈P(s,s′,T)

rT,Ỹ (s′, s)ϕ(s′)dΘ

change of variables
=

∫
Σ

∑
x′∈B(Θ′)

∑
s∈A∩(Ω×Σ)(s′,T)

∑
Ỹ ∈P(s′,s,T)

rT,Ỹ (s′, s)ϕ(s′)
1

|detJ TT,Y,x|
dΘ′

=

∫
Θ

∑
x′∈B(Θ′)

RT (s′, A)ϕ(s′)dΘ′

Combining the above reasoning with Equation 1, the same result can be established for the case
where A ∩B 6= ∅. This proves the desired detailed balance property of M-HMC w.r.t. ϕ∫

Σ

∑
x∈A(Θ)

RT ((x,Θ), B)ϕ((x,Θ))dΘ =

∫
Σ

∑
x∈B(Θ)

RT ((x,Θ), A)ϕ((x,Θ))dΘ

1.2.2 Useful Lemmas

In this section, we prove a few useful lemmas to complete the proof of Theorem 1. W.l.o.g. we
assume τ = 1 in this section. The proof can be trivially modified to be applicable to arbitrary τ .

First, we prove two lemmas, similar to Lemma 1 and Lemma 2 in Section 5.1 of [1].
Lemma 1. (Refraction) Let T : TND × RND → TND × RND be a transformation in TND
that takes a unit mass located at qD = (qD1 , . . . , q

D
ND

) and moves it with constant velocity
v = ((kD)′(pD1), . . . , (kD)′(pDND)). Assume it reaches 0 or 1 at site j first. Subsequently qDj
is changed to 1 − qDj , and pDj is changed to sign(pDj)(kD)−1(kD(pDj) − ∆E) (where ∆E is a
constant and satisfies ∆E < kD(pDj)). The move is carried on, with the velocity vj changed to
(kD)′(sign(pDj)(kD)−1(kD(pDj)−∆E)), for the total time period µ till it ends in location qD′ and
momentum pD′, before it reaches 0 or 1 again at any sites. Then T is volume preserving, i.e. the
absolute value of the determinant of its Jacobian |detJ T | = 1.

4

Proof. Following the same argument as in the proof of Lemma 1 of [1], we have

|detJ T | =

∣∣∣∣∣∣det

 ∂qDj ′

∂qDj

∂qDj ′

∂pDj
∂pDj ′

∂qDj

∂pDj ′

∂pDj

∣∣∣∣∣∣
If we define tj =

sign(vj)+1−2qDj
2(kD)′(pDj)

=
sign(pDj)+1−2qDj

2(kD)′(pDj)
, then

pDj ′ = sign(pDj)(kD)−1(kD(pDj)−∆E)

qDj ′ =
1− sign(pDj)

2
+ (kD)′(pDj ′)(µ− tj)

=
1− sign(pDj)

2
+ (kD)′(pDj ′)

(
µ−

sign(pDj) + 1− 2qDj
2(kD)′(pDj)

)
This implies

|detJ T | =

∣∣∣∣∣∣det

 ∂qDj ′

∂qDj

∂qDj ′

∂pDj
∂pDj ′

∂qDj

∂pDj ′

∂pDj

∣∣∣∣∣∣ =

∣∣∣∣∣∣det

 ∂qDj ′

∂qDj

∂qDj ′

∂pDj

0 ∂pDj ′

∂pDj

∣∣∣∣∣∣
=

∣∣∣∣∣∂qDj ′∂qDj

∂pDj ′

∂pDj

∣∣∣∣∣ =

∣∣∣∣∣ (kD)′(pDj ′)

(kD)′(pDj)

(kD)′(pDj)

(kD)′(pDj ′)

∣∣∣∣∣ = 1

Lemma 2. (Reflection) Let T : TND × RND → TND × RND be a transformation in TND
that takes a unit mass located at qD = (qD1 , . . . , q

D
N) and moves it with constant velocity

v = ((kD)′(pD1), . . . , (kD)′(pDND)). Assume it reaches 0 or 1 at site j first. Subsequently pDj is
changed to −pDj . The move is carried on, with the velocity vj changed to −vj , for the total time
period µ till it ends in location qD′ and momentum pD′, before it reaches 0 or 1 at any sites again.
Then T is volume preserving, i.e. the absolute value of the determinant of its Jacobian |detJ T | = 1.

Proof. Following the same argument as in the proof of Lemma 2 of [1], we have

|detJ T | =

∣∣∣∣∣∣det

 ∂qDj ′

∂qDj

∂qDj ′

∂pDj
∂pDj ′

∂qDj

∂pDj ′

∂pDj

∣∣∣∣∣∣
If we define tj =

sign(vj)+1−2qDj
2(kD)′(pDj)

=
sign(pDj)+1−2qDj

2(kD)′(pDj)
, then

pDj ′ = −pDj

qDj ′ =
1 + sign(pDj)

2
− (kD)′(pDj)(µ− tj)

=
1 + sign(pDj)

2
− (kD)′(pDj)

(
µ−

sign(pDj) + 1− 2qDj
2(kD)′(pDj)

)
= 1 + sign(pDj)− (kD)′(pDj)µ− qDj

This implies

|detJ T | =

∣∣∣∣∣∣det

 ∂qDj ′

∂qDj

∂qDj ′

∂pDj
∂pDj ′

∂qDj

∂pDj ′

∂pDj

∣∣∣∣∣∣ =

∣∣∣∣∣det

(
−1 ∂qDj ′

∂pDj
0 −1

)∣∣∣∣∣ = 1

Lemma 3. Given travel time T , ∀s, s′ ∈ Ω×Σ, s 6= s′ for which RT (s, {s′}) > 0, P(s, s′, T) 6= ∅.
∀Y ∈ P(s, s′, T), the absolute value of the determinant of the Jacobian of TT,Y,x is |detJ TT,Y,x| = 1,
for all x ∈ Ω where TT,Y,x is well-defined. Furthermore, the deterministic mapping TT,Y is reversible,
and there exists a sequence of proposals Ỹ ∈ P(s′, s, T), s.t. s = T −1

T,Y (s′) = TT,Ỹ (s′)

5

Proof. Given travel time T , ∀s, s′ ∈ Ω× Σ, if RT (s, {s′}) > 0, then by definition P(s, s′, T) 6= ∅.
∀Y ∈ P(s, s′, Y), for some x ∈ Ω, if the deterministic mapping TT,Y,x is well-defined, then TT,Y,x
can be be written as the composition of a sequence of deterministic mappings

TT,Y,x = T (0)
T,Y,x ◦ T

(1)
T,Y,x ◦ · · · ◦ T

(M−1)
T,Y,x

Each one of the mappings T (m)
T,Y,x,m = 0, . . . ,M − 1 consists of two parts that don’t interact: a

discrete part that operates on qD, pD, and a continuous part that operates on qC , pC . The discrete
part is either a refraction mapping as described in Lemma 1, or a reflection mapping as described in
Lemma 2. The continuous part is given by the integrator I , which is reversible and volume-preserving.
Using Lemma 1 and Lemma 2 and the properties of the integrator I , it’s easy to see that the absolute
value of the determinant of the Jacobian

|detJ TT,Y,x| =
M−1∏
m=0

|detJ T (m)
T,Y,x| = 1

∀Y ∈ P(s, s′, Y), define a new sequence of proposals Ỹ = (ỹ(0), ỹ(1), . . . , ỹ(M−1)) where

ỹ(m) =

{
x(M−m−1) if a(M−m−1) = 1(i.e. y(M−m−1) = x(M−m))
y(M−m−1) otherwise (i.e. y(M−m−1) 6= x(M−m),which means x(M−m−1) = x(M−m))

We claim that Ỹ ∈ P(s, s′, T), and TT,Ỹ (s′) = s. To see Ỹ has these desired properties, we look
at its corresponding probabilistic path ω(s′, T, Ỹ). The corresponding discrete states of the system
at M site visitations x̃(m),m = 0, . . . ,M and the indices of the sites for the M site visitations
j̃(m),m = 0, . . . ,M − 1 are given by simple reversals of the original sequence of discrete states
x(m),m = 0, . . . ,M and the original sequence of indices for visited sites j(m),m = 0, . . . ,M − 1:

j̃(m) = j(M−m−1),m = 0, . . . ,M − 1

x̃(m) = x(M−m),m = 0, . . . ,M

The corresponding sequence of accept/reject decisions ã(m),m = 0, . . . ,M − 1 is also a simple
reversal of the original sequence of accept/reject decisions a(m),m = 0, . . . ,M − 1

ã(m) = 1{ỹ(m)=x̃(m+1)} =

{
1{x(M−m−1)=x(M−m−1)} = 1 if a(M−m−1) = 1

1{y(M−m−1)=x(M−m−1)} = 0 if a(M−m−1) = 0
= a(M−m−1)

It’s straightforward to verify that ω(s′, T, Ỹ) is a valid probabilistic path that brings s′ back to s
in time T through M-HMC. In particular, note the importance of the momentum negating step in
ensuring the existence of such a probabilistic path. This proves our claim.

Lemma 4. ∀s, s′ ∈ Ω× Σ, s 6= s′ for which RT (s, {s′}) > 0, for Y ∈ P(s, s′, T), we have

ϕ(s)rT,Y (s, s′) = ϕ(s)rT,Y (s, TT,Y (s)) = ϕ(s′)rT,Ỹ (s′, TT,Ỹ (s′)) = ϕ(s′)rT,Ỹ (s′, s)

where Ỹ is defined as in Lemma 3.

Proof. We can directly calculate the transition probability rT,Y (s, s′). Define

E = U(x, qC) +KD(pD) +KC(pC), E′ = U(x′, qC ′) +KD(pD′) +KC(pC ′)

Then

rT,Y (s, s′) =

M−1∏
m=0

Qj(m)(y(m)|x(m)) min{1, e−(E′−E)}

Correspondingly, we can also calculate the transition probability rT,Ỹ (s′, s).

rT,Ỹ (s′, s) =

M−1∏
m=0

Qj̃(m)(ỹ
(m)|x̃(m)) min{1, e−(E−E′)}

6

Note that

rT,Y (s, s′)

min{1, e−(E′−E)} =

M−1∏
m=0

Qa
(m)

j(m) (y(m)|x(m))

M−1∏
m=0

Q1−a(m)

j(m) (y(m)|x(m))

=
∏

m:a(m)=1

Qj(m)(y(m)|x(m))
∏

m:a(m)=0

Qj(m)(y(m)|x(m))

rT,Ỹ (s′, s)

min{1, e−(E−E′)} =

M−1∏
m=0

Qã
(m)

j̃(m) (ỹ(m)|x̃(m))

M−1∏
m=0

Q1−ã(m)

j̃(m) (ỹ(m)|x̃(m))

=
∏

m:ã(m)=1

Qj̃(m)(ỹ
(m)|x̃(m))

∏
m:ã(m)=0

Qj̃(m)(ỹ
(m)|x̃(m))

=
∏

m:a(M−m−1)=1

Qj(M−m−1)(x(M−m−1)|y(M−m−1))

×
∏

m:a(M−m−1)=0

Qj(M−m−1)(y(M−m−1)|x(M−m))

=
∏

m:a(M−m−1)=1

Qj(M−m−1)(x(M−m−1)|y(M−m−1))

×
∏

m:a(M−m−1)=0

Qj(M−m−1)(y(M−m−1)|x(M−m−1))

=
∏

m:a(m)=1

Qj(m)(x(m)|y(m))
∏

m:a(m)=0

Qj(m)(y(m)|x(m))

By following the probabilistic path ω(s, T, Y) and doing explicit calculations, we can show that

ϕ(s)rT,Y (s, s′) = ϕ(s′)rT,Ỹ (s′, s)

2 Details on implementation with Laplace momentum

Algorithm 2 Definition of GetStepSizesNSteps

1: function GetStepSizesNSteps(ε, T, L,ND, nD)
2: Φ ∼ DirichletND+1(1); Φ1 ← Φ1 + ΦND+1

3: ηt ←
∑nD
s=1 Φ[(t−1)nD+s] mod ND , t = 1, . . . , L; η1 ← η1 − ΦND+1

4: ηt ← Tηt/
∑L
s=1 ηs, t = 1, . . . , L; Mt ← dηt/εe, t = 1, . . . , L; ηt ← ηt/Mt, t = 1, . . . , L

5: return η,M
6: end function

In what follows, line numbers refer to lines in Algorithm 1. Under Laplace momentum, vi =
sign(pDi) ∈ {1,−1}. As a result, different qDi always evolve with a constant speed 1, and we no
longer need the argmin in Line 7. Site visitation order is completely determined by the initial
sampling of qD, pD. Furthermore, we can precompute all the involved step sizes (in Line 8). These
step sizes are in fact differences of neighboring order statistics of ND uniform samples on [0, τ], and
as a result have the Dirichlet distribution as the joint distribution. The initial momentum is given by
p
D(0)
i ∼ ν(p) ∝ e−|p|, which corresponds to the initial kinetic energy kD(p

D(0)
i) ∼ Exponential(1).

The above observations indicate that, using Laplace momentum, we no longer need to keep track of
qD, pD. Instead, at the beginning of each iteration, we can sample the site visitation order as a random
permutation, the step sizes from a Dirichlet distribution, and the kinetic energies from independent
exponential distributions. In each iteration, we simply evolve the system according to the step sizes,
visit each site in order, and keep track of changes in kinetic energies. These simplications results in
the efficient implementation described in Algorithm 1 in the main text. See also Algorithm 2 for the
definition of the function GetStepSizesNSteps in Algorithm 1 in the main text.

7

3 Python function for comparing M-HMC with naive MH within HMC

Code for reproducing the results in the paper is available at https://github.com/StannisZhou/
mixed_hmc. In particular, we include below a illustrative python function for comparing M-HMC
with naive Metropolis updates within HMC. Experimental results using this function can be repro-
duced using the script test_naive_mixed_hmc.py under scripts/simple_gmm.

import numpy as np

import numba
from tqdm import tqdm

def naive_mixed_hmc(x0, q0, n_samples, epsilon, L, pi, mu_list, sigma_list, use_k=True):
"""Function for comparing mixed HMC and naive Metropolis updates within HMC

Parameters

x0 : int

Discrete variable for the mixture component
q0 : float

Continuous variable for the state of GMM
n_samples : int

Number of samples to draw
epsilon : float

Step size
L : int

Number of steps
pi : np.array

Array of shape (n_components,). The probabilities for different components
mu_list : np.array

Array of shape (n_components,). Means of different components
sigma_list : np.array

Array of shape (n_components,). Standard deviations of different components
use_k : bool

True if we use mixed HMC. False if we make naive Metropolis updates within HMC

Returns

x_samples : np.array

Array of shape (n_samples,). Samples for x
q_samples : np.array

Array of shape (n_samples,). Samples for x
accept_list : np.array

Array of shape (n_samples,). Records whether we accept or reject at each step
"""

@numba.jit(nopython=True)
def potential(x, q):

potential = (
-np.log(pi[x])
+ 0.5 * np.log(2 * np.pi * sigma_list[x] ** 2)
+ 0.5 * (q - mu_list[x]) ** 2 / sigma_list[x] ** 2

)
return potential

@numba.jit(nopython=True)
def grad_potential(x, q):

grad_potential = (q - mu_list[x]) / sigma_list[x] ** 2

8

https://github.com/StannisZhou/mixed_hmc
https://github.com/StannisZhou/mixed_hmc

return grad_potential

@numba.jit(nopython=True)
def take_naive_mixed_hmc_step(x0, q0, epsilon, L, n_components):

Resample momentum
p0 = np.random.randn()
k0 = np.random.exponential()
Initialize q, k
x = x0
q = q0
p = p0
k = k0
Take L steps
for ii in range(L):

q, p = leapfrog_step(x=x, q=q, p=p, epsilon=epsilon)
x, k = update_discrete(x0=x, k0=k, q=q, n_components=n_components)

Accept or reject
current_U = potential(x0, q0)
current_K = k0 + 0.5 * p0 ** 2
proposed_U = potential(x, q)
proposed_K = k + 0.5 * p ** 2
accept = np.random.rand() < np.exp(

current_U - proposed_U + current_K - proposed_K
)
if not accept:

x, q = x0, q0

return x, q, accept

@numba.jit(nopython=True)
def leapfrog_step(x, q, p, epsilon):

p -= 0.5 * epsilon * grad_potential(x, q)
q += epsilon * p
p -= 0.5 * epsilon * grad_potential(x, q)
return q, p

@numba.jit(nopython=True)
def update_discrete(x0, k0, q, n_components):

x = x0
k = k0
distribution = np.ones(n_components)
distribution[x] = 0
distribution /= np.sum(distribution)
proposal_for_ind = np.argmax(np.random.multinomial(1, distribution))
x = proposal_for_ind
delta_E = potential(x, q) - potential(x0, q)
Decide whether to accept or reject
if use_k:

accept = k > delta_E
if accept:

k -= delta_E
else:

x = x0
else:

accept = np.random.exponential() > delta_E
assert k == k0
if not accept:

x = x0

9

return x, k

x, q = x0, q0
x_samples, q_samples, accept_list = [], [], []
for _ in tqdm(range(n_samples)):

x, q, accept = take_naive_mixed_hmc_step(
x0=x, q0=q, epsilon=epsilon, L=L, n_components=pi.shape[0]

)
x_samples.append(x)
q_samples.append(q)
accept_list.append(accept)

x_samples = np.array(x_samples)
q_samples = np.array(q_samples)
accept_list = np.array(accept_list)
return x_samples, q_samples, accept_list

4 Binary HMC Samplers are special cases of M-HMC

Formally, we have the following equivalence between binary HMC and M-HMC:
Proposition 1. Binary HMC is equivalent to a variant of M-HMC (where qD is initialized at the
start and not resampled at each iteration) with τ = 1 and deterministic proposals Qi, i = 1, . . . , ND

Qi(x̃|x) =

{
1, if x̃i = −xi, x̃j = xj ,∀j 6= i

0, otherwise

Gaussian and exponential binary HMC correspond to kD(p) = |p| and kD(p) = |p| 23 respectively.

Since no continuous component is involved in a binary distribution, for notational simplicity, we
drop all the superscript D in the following discussions. We consider the family of kinetic energies
Kβ(p) = |p|β , and define the corresponding distribution to be νβ(p) ∝ e−Kβ(p). We want to show
that the binary HMC samplers are special cases of a variant of M-HMC. In what follows, we use
M-HMC to refer to the variant of M-HMC where q is initialized at the start and not resampled at each
iteration.

In order to establish the equivalence between binary HMC and M-HMC, we need to study:

1. For site j, the distribution on the initial time it takes to visit site j, which we denote by t(0)
j .

• As shown in Algorithm 1, in M-HMC

t
(0)
j =

sign(v
(0)
j) + 1− 2q

(0)
j

2v
(0)
j

where v(0)
j = K

′

β(p
(0)
j) = sign(p

(0)
j)β|p(0)

j |β−1 is the velocity at site j, and

q
(0)
j ∼ U([0, 1]), p

(0)
j ∼ νβ(p

(0)
j)

• For the Gaussian binary HMC sampler,

t
(0)
j =

− arctan

(
q
(0)
j

p
(0)
j

)
if
q
(0)
j

p
(0)
j

6 0

π − arctan

(
q
(0)
j

p
(0)
j

)
if
q
(0)
j

p
(0)
j

> 0

where q(0)
j , p

(0)
j ∼ N(0, 1).

• For the exponential binary HMC sampler,

t
(0)
j = p

(0)
j +

√
(p

(0)
j)2 + 2q

(0)
j

where q(0)
j ∼ exp(1), p

(0)
j ∼ N(0, 1).

10

2. For site j, the distribution on the initial total energy, which we denote by k(0)
j .

• For M-HMC, k(0)
j = Kβ(p

(0)
j), where p(0)

j ∼ νβ(p
(0)
j).

• For the Gaussian binary HMC sampler,

k
(0)
j =

1

2
(q

(0)
j)2 +

1

2
(p

(0)
j)2

where q(0)
j , p

(0)
j ∼ N(0, 1).

• For the exponential binary HMC sampler,

k
(0)
j = q

(0)
j +

1

2
(p

(0)
j)2

where q(0)
j ∼ exp(1), p

(0)
j ∼ N(0, 1).

3. For site j, after we reach 0 or 1, if we have total energy k, the time it takes to hit a boundary
again at this site. We denote this time by tj(k).

• For M-HMC, tj(k) = 1

βk
1− 1

β

• For the Gaussian binary HMC, tj(k) = π

• For the exponential binary HMC, tj(k) = 2
√

2k

Since different dimensions are independent of each other, we only need to look at one particular
dimension j. We can prove the corresponding propositions if we can establish suitable equivalence
concerning the joint distribution on (t

(0)
j , k

(0)
j), and the function tj(k).

4.1 Proof of Proposition 1 for Gaussian binary HMC

In order to prove Proposition 1 for Gaussian binary HMC, we first prove a lemma
Lemma 5. Assume q, p ∼ N(0, 1) are two independent standard normal random variables. Then q

p

and q2+p2 are independent. Furthermore, arctan
(
q
p

)
follows the uniform distributionU

([
−π2 , π2

])
,

and q2+p2

2 follows the exponential distribution exp(1).

Proof. We calculate the characteristic function of the random vector
(
q
p , q

2 + p2
)

:

Eq,p∼N(0,1)

[
ei[t1

q
p+t2(q2+p2)]

]
=

1

2π

∫
R2

eit1
q
p+it2(q2+p2)e−

q2+p2

2 dqdp

=
1

2π

∫ +∞

0

∫ 2π

0

eit1 tan θeit2r
2

e−
r2

2 rdrdθ

=

[∫ 2π

0

eit1 tan θ 1

2π
dθ

] [∫ +∞

0

eit2r
2− r22 rdr

]
=

[∫ π
2

−π2
eit1 tan θ 1

π
dθ

] [∫ +∞

0

eit2x
1

2
e−2xdx

]
=

[∫ +∞

−∞
eit1x

1

π(1 + x2)
dx

] [∫ +∞

0

eit2x
1

2
e−2xdx

]
= Ex∼Cauchy(0,1)[e

it1x]Ex∼exp(2)[e
it2x]

This calculation implies that qp and q2 + p2 are independent, and that qp ∼ Cauchy(0, 1), q2 + p2 ∼
exp(2). Since the cumulative distribution function (CDF) of Cauchy(0, 1) is given by

1

π
arctan(x) +

1

2

11

we have 1
π arctan

(
q
p

)
+ 1

2 ∼ U([0, 1]), which implies that arctan
(
q
p

)
∼ U

([
−π2 , π2

])
. From

q2 + p2 ∼ exp(2), it’s easy to deduce that q
2+p2

2 ∼ exp(1).

Proof. (Proposition 1 for Gaussian binary HMC) For the Gaussian binary HMC sampler, using
Lemma 5 and the expressions we derived in Section 4, given a dimension j, it’s easy to see that t(0)

j

and k(0)
j are independent, and that t(0)

j ∼ U([0, π]), k(0)
j ∼ exp(1). For M-HMC with β = 1 , it’s

easy to see that we also have t(0)
j and k(0)

j are independent, and that t(0)
j ∼ U([0, 1]), k

(0)
j ∼ exp(1).

This implies that the random vector
(
t
(0)
j

π , k
(0)
j

)
from the Gaussian binary HMC sampler has the

same joint distribution as the random vector (t
(0)
j , k

(0)
j) from M-HMC with β = 1.

For the Gaussian binary HMC sampler, tj(k) = π, which is a constant function and is independent
of the value of k. For M-HMC with β = 1, it’s easy to see that tj(k) = 1, which is also a constant
function. This implies that ∀k, tj(k)

π for the Gaussian binary HMC sampler is equivalent to tj(k) for
M-HMC with β = 1.

The above equivalences imply that the Gaussian binary HMC has exactly the same behavior as
M-HMC with β = 1. In fact, the Gaussian binary HMC sampler behaves like scaling the time of
M-HMC with β = 1 by π.

4.2 Proof of Proposition 1 for exponential binary HMC

Proof. (Proposition 1 for exponential binary HMC) Using the expressions we derived in Section
4, we can see that, at a given site j,

• For the exponential binary HMC sampler, the joint distribution of the random vector
(t

(0)
j , k

(0)
j) is the same as the random vector

(
p+

√
p2 + 2q, q + 1

2p
2
)

, where q ∼
exp(1), p ∼ N(0, 1) are independent. For a given total energy level k, tj(k) = 2

√
2k.

• For M-HMC with β = 2
3 , the joint distribution of the random vector (t

(0)
j , k

(0)
j) is the same

as the random vector
(

3
2q|p|

1
3 , |p| 23

)
, where q ∼ U([0, 1]), p ∼ G

(
0, 1, 2

3

)
are independent.

For a given total energy level k, tj(k) = 3
2

√
k.

In order to establish the equivalence between these two samplers, we calculate the characteristic
functions of two random vectors. We first calculate the characteristic function of the random vector(
p+

√
p2 + 2q, q + 1

2p
2
)

, where q ∼ exp(1), p ∼ N(0, 1) are independent:

Eq∼exp(1),p∼N(0,1)

[
e
i
[
t1
(
p+
√
p2+2q

)
+t2(q+ 1

2p
2)
]]

=
1√
2π

∫ +∞

0

∫
R
e
it1
(
p+
√
p2+2q

)
+it2

(
q+ p2

2

)
e−qe−

p2

2 dpdq

=
1

2
√

2π

∫
R2

e
it1
(
p+
√
p2+2|q|

)
+it2

(
|q|+ p2

2

)
e−|q|e−

p2

2 dpdq

p=r cos θ,q=sign(sin θ) r
2 sin2 θ

2=
1

2
√

2π

∫ +∞

0

∫ 2π

0

eit1r(1+cos θ)+it2
r2

2 e−
r2

2 r2 sin θdθdr

12

Next we calculate the characteristic function of the random vector
(

2
√

2q|p| 13 , |p| 23
)

, where q ∼
U([0, 1]), p ∼ G

(
0, 1, 2

3

)
are independent:

Eq∼U([0,1]),p∼G(0,1, 23)

[
e
i
(
t12
√

2q|p|
1
3 +t2|p|

2
3

)]
=

2
3

2Γ
(

3
2

) ∫ 1

0

∫
R
eit12

√
2q|p|

1
3 +it2|p|

2
3 e−|p|

2
3 dpdq

=
2

3
√
π

∫ 1

0

∫
R
eit12

√
2q|p|

1
3 +it2|p|

2
3 e−|p|

2
3 dpdq

=
4

3
√
π

∫ 1

0

∫ +∞

0

eit12
√

2qp
1
3 +it2p

2
3 e−p

2
3 dpdq

q= 1+cos θ
2 ,p= r3

2
3
2

=
4

3
√
π

∫ π

0

∫ +∞

0

eit1r(1+cos θ)+it2
r2

2 e−
r2

2
3

2
5
2

r2 sin θdrdθ

=
1√
2π

∫ +∞

0

[∫ π

0

eit1r(1+cos θ) sin θdθ

]
eit2

r2

2 −
r2

2 r2dr

=
1

2
√

2π

∫ +∞

0

[∫ 2π

0

eit1r(1+cos θ) sin θdθ

]
eit2

r2

2 −
r2

2 r2dr

=
1

2
√

2π

∫ +∞

0

∫ 2π

0

eit1r(1+cos θ)+it2
r2

2 e−
r2

2 r2 sin θdθdr

The above calculations indicate that the joint distribution of (t
(0)
j , k

(0)
j) for the exponential binary

HMC sampler is equivalent to the joint distribution of
(

4
√

2
3 t

(0)
j , k

(0)
j

)
for M-HMC with β = 2

3 .

Furthermore, if we multiply the tj(k) function of M-HMC with β = 2
3 by 4

√
2

3 , we get the function
2
√

2k, which is exactly the tj(k) function for the exponential binary HMC sampler.

The above equivalences imply that the exponential binary HMC has exactly the same behavior as
M-HMC with β = 2

3 . In fact, the exponential binary HMC sampler behaves like scaling the time of
M-HMC with β = 2

3 by 3
4
√

2
.

5 Some more details on numerical experiments

5.1 Exact parameter values for different samplers for 24D GMM

NUTS and NwG require no manual tuning. We favor HwG and DHMC by doing a parameter grid
search and pick the setting with best MRESS for x, resulting in step size 1.1 and number of steps 80
for HwG, and a step-size range (0.8, 1.0) and a number-of-steps range (30, 40) for DHMC. We tune
M-HMC by conducting short trial runs and inspecting the acceptance probabilities and traceplots,
resulting in ε = 1.7, L = 80, T = 136, nD = 1.

5.2 Some additional CTM results

We also inspect traceplots and samples histograms of posterior samples for ηd1 on a document where
Gibbs agrees with the other 3 samplers (Figure 1. NwG is excluded since it behaves similarly to HwG
but is less efficient). The conclusions are similar to those in Section 3.3 of the main text: M-HMC
clearly mixes the fastest, with HwG also outperforming Gibbs. Moreover, HwG and M-HMC explore
the state space much more thoroughly.

References
[1] Hadi Mohasel Afshar and Justin Domke. Reflection, refraction, and hamiltonian monte carlo. In

C Cortes, N D Lawrence, D D Lee, M Sugiyama, and R Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 3007–3015. Curran Associates, Inc., 2015.

13

−7.5

−5.0

−2.5

0.0

V
al

ue
of

η
d1

Gibbs sampler, traceplot and histogram

−7.5

−5.0

−2.5

0.0

V
al

ue
of

η
d1

HMC-within-Gibbs, traceplot and histogram

−7.5

−5.0

−2.5

0.0

V
al

ue
of

η
d1

M-HMC, traceplot and histogram

Figure 1: Traceplots and samples histograms of posterior samples of ηd1 on a document where Gibbs
agrees with HwG, NwG&M-HMC in posterior means for ηd1

14

	Algorithm and theory
	Detailed description of a full M-HMC iteration
	Proof of Theorem 1
	Proof of the Theorem
	Useful Lemmas

	Details on implementation with Laplace momentum
	Python function for comparing M-HMC with naive MH within HMC
	Binary HMC Samplers are special cases of M-HMC
	Proof of Proposition 1 for Gaussian binary HMC
	Proof of Proposition 1 for exponential binary HMC

	Some more details on numerical experiments
	Exact parameter values for different samplers for 24D GMM
	Some additional CTM results

