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Abstract

Diffusion-weighted magnetic resonance imaging (DWI) is the only noninvasive
method for quantifying microstructure and reconstructing white-matter pathways in
the living human brain. Fluctuations from multiple sources create significant addi-
tive noise in DWI data which must be suppressed before subsequent microstructure
analysis. We introduce a self-supervised learning method for denoising DWI data,
Patch2Self, which uses the entire volume to learn a full-rank locally linear denoiser
for that volume. By taking advantage of the oversampled q-space of DWI data,
Patch2Self can separate structure from noise without requiring an explicit model
for either. We demonstrate the effectiveness of Patch2Self via quantitative and
qualitative improvements in microstructure modeling, tracking (via fiber bundle
coherency) and model estimation relative to other unsupervised methods on real
and simulated data.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DWI) [3] is a powerful method for measuring
tissue microstructure [33, 34]. Estimates of the diffusion signal in each voxel can be integrated using
mathematical models to reconstruct the white matter pathways in the brain. The fidelity of those
inferred structures is limited by the substantial noise present in DWI acquisitions, due to numerous
factors including thermal fluctuations. With new acquisition schemes or diffusion-encoding strategies,
the sources and distribution of the noise can vary, making it difficult to model and remove. The
noise confounds both qualitative (visual) and quantitative (microstructure and tractography) analysis.
Denoising is therefore a vital processing step for DWI data prior to anatomical inference.

DWI data consist of many 3D acquisitions, in which diffusion along different gradient directions is
measured. Simple models of Gaussian diffusion are parametrized by a six-dimensional tensor, for
which six measurements would be sufficient, but as each voxel may contain an assortment of tissue
microstructure with different properties, many more gradient directions are often acquired. While
each of these acquired volumes may be quite noisy, the fact that the same structures are represented
in each offers the potential for significant denoising.

The first class of denoising methods used for DWI data were extensions of techniques developed for
2D images, such as non-local means (NL-means [9] and its variants [36, 8]), total variation norm
minimization [24], cosine transform filtering [30], empirical Bayes [2] and correlation based joint
filtering [47]. Other methods take more direct advantage of the fact that DWI measurements have a
special 4D structure, representing many acquisitions of the same 3D volume at different b-values and
in different gradient directions. Assuming that small spatial structures are more-or-less consistent
across these measurements, these methods project to a local low-rank approximation of the data
[37, 31]. The top performing methods are overcomplete Local-PCA (LPCA) [31] and its Marchenko-
Pastur extension [48]. The current state-of-the-art unsupervised method for denoising DWI is the
Marchenko-Pastur PCA, which handles the choice of rank in a principled way by thresholding based
on the eigenspectrum of the expected noise covariance matrix. Note that Marchenko-Pastur PCA,
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like the classical total variation norm and NL-means methods as well, requires a noise model to do
the denoising, either as an explicit standard deviation and covariance as in LPCA, or implicitly in the
choice of a noise correction method [25, 44].

We propose a self-supervised denoising method for DWI data that incorporates the key features of
successful prior methods while removing the requirement to select or calibrate a noise model. Our
method, Patch2Self, learns locally linear relationships between different acquisition volumes on small
spatial patches. This regression framework satisfies the J -invariance property described in [4], which,
as long as the noise in different acquisitions is statistically independent, will guarantee denoising
performance. With thorough comparisons on real and simulated data, we show that Patch2Self
outperforms other unsupervised methods for denoising DWI at visual and modeling tasks.

2 Self-Supervised Local Low Rank Approximation

2.1 Approach and Related Work

Among different approaches to denoising, methods based on low-rank approximations have given
the most promising results for DWI denoising. Representing the data as low-rank requires accurate
estimation of a threshold to truncate the basis set, typically constructed via eigen-decomposition of
the data. The only unsupervised approach for doing so in the case of DWI makes use of random-
matrix-theory based Marchenko-Pastur distribution to classify the eigenvalues pertaining to noise [48].
Extending the idea of LPCA, it computes a universal signature of noise, in the PCA domain. However,
this is constrained by the variability in denoising caused by local patch-sizes and assumption of
the noise being homoscedastic. Patch2Self is the first of its kind approach to DWI denoising that
leverages the following two properties:

2.1.1 Statistical Independence of Noise

Since noise is perceived as random fluctuations in the signal measurements, one can assume that the
noise in one measurement is independent of another. Using this, [29] showed that given two noisy
independent images, we could use one measurement to denoise another by posing denoising as a pre-
diction problem. Expanding this idea, [4] laid out a theoretically grounded notion of self-supervision
for denoising signals from the same corrupted image/ signal measurement. Leveraging this idea
of statistical independence, different approaches such as [26] and [27] have shown competitive
performance with varying approximation settings. However, most of these approaches tackle 2D
images typically via CNN-based deep learning methods with the motive of improving the visual
quality of the image (i.e., they do not account for modeling the signal for scientific analysis like
DWI). These approaches are not feasible in 4D DWI data, as the denoising needs to be unsupervised,
fast and clinically viable for downstream image-analysis. In Patch2Self, we delineate how one can
extrapolate the notion of noise independence purely via patches in a 4D volumetric setting via a
regression framework.

2.1.2 Patches and Local Matrix Approximations

Patch-based self-supervision has been used to learn representations that are invariant to distortions
[13, 12], for learning relations between patches [11], for filling in missing data (i.e. image in-painting)
[38], etc. Patch2Self abides by a similar patch-based approach where we learn an underlying clean
signal representation that is invariant to random fluctuations in the observed signal. Inspired by
the local matrix approximation works presented in [28, 7], we formulate a global estimator per 3D
volume of the 4D data by training on local patches sampled from the remaining volumes. This
estimator function, thus has access to local and non-local information to learn the mapping between
corrupted signal and true signal, similar to dictionary learning [18, 42, 45, 20, 6] and non-local block
matching [10]. Due to the self-supervised formulation, Patch2Self can be viewed as a non-parametric
method that regresses over patches from all other volumes except from the one that is held-out for
denoising. Similar to [43], our experiments demonstrate that a simplistic linear-regression model can
be used to denoise noisy matrices using p-neighbourhoods and a class of J -invariant functions.
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Figure 1: Depicts the workflow of Patch2Self in two phases: (A) Is the self-supervised training phase
where the 4D DWI data is split into the training Y∗,∗,−j and target Y∗,0,j sets. p-neighbourhoods are
extracted from each 3D volume from both Y∗,∗,−j and Y∗,0,j . ΦJ is the learnt mapping by regressing
over p-neighbourhoods of Y∗,∗,−j to estimate Y∗,0,j . (B) Depicts the voxel-by-voxel denoising phase
where Φ̂J predicts the denoised volume X̂∗,∗,∗,j from Y∗,∗,−j .

2.2 Denoising via Self-Supervised Local Approximations

Extracting 3D patches In the first phase of Patch2Self, we extract a p-neighbourhood for each
voxel from the 4D DWI data. To do so, we construct a 3D block of radius p around each voxel,
resulting in a local p-neighbourhood of dimension p×p×p. Therefore, if the 4D DWI has n volumes
{v1, . . . , vn} (each volume corresponding to a different gradient direction) and each 3D volume has
m voxels (see Fig. 1), after extracting the p-neighbourhoods, we get a m×p×p×p×n tensor. Next,
we flatten this this tensor along the pth-dimension to obtain a representation: m× (p3 × n). Thus,
we have transformed the data from the original 4D space to obtain m samples of p3 × n dimensional
2D feature matrices, which we use to train the denoiser.
Self-Supervised Regression In the second phase, using the p-neighbourhoods, Patch2Self refor-
mulates the problem of denoising with a predictive approach. The goal is to iterate and denoise each
3D volume of the noisy 4D DWI data (X) using the following training and prediction phases:
(i) Training: To denoise a particular volume, vj , we train the a regression function ΦJ using p-
neighbourhoods of the voxels denoted by the set Y . From the first phase, Y is a set containing m
training samples with dimension: p3 × n. Next, we hold out the dimension corresponding to volume
vj from each of the p-neighbourhoods and use it as a target for training the regressor function ΦJ

(shown in Fig. 1A). Therefore our training set Y∗,∗,−j has dimension: m× p3 × (n− 1), where j
indexes the held out dimension of the p-neighbourhoods set. Using the regressor function ΦJ , we

3



use the training set Y∗,∗,−j to only predict the center voxel of the set of p-neighbourhoods in the
corresponding target set of dimension Y∗,0,−j . The target set, is therefore only an m-dimensional
vector of the center voxels of the corresponding p-neighbourhoods of volume vj . In summary, we use
the localized spatial neighbourhood information around each voxel of the set of volumes v−j , to train
ΦJ for approximating the center voxel of the target volume vj . To do so, we propose minimizing the
self-supervised loss over the described p-neighbourhood sets as follows:

L(ΦJ) = E‖ΦJ(Y∗,∗,−j)− Y∗,0,−j‖2 (1)

Where, ΦJ : Rp3×n 7→ R1, is trained on m samples of p-neighbourhoods.
(ii) Predict: After training for m samples, we have now constructed a J -invariant regressor Φ̂J that
can be used to denoise the held out volume vj . To do so, p-neighbourhoods from the set Y∗,∗,−j are
simply fed into Φ̂J to obtain the denoised p-neighbourhoods corresponding to the denoised volume
Ŷ∗,0,−j . After doing so, for each j ∈ {1 . . . n}, we unravel the p-neighbourhoods for each volume
vj ∈ {v1 . . . vn} (in Fig. 1 as X̂∗,∗,∗,j) and append them to obtain the denoised 4D DWI data X̂ .

Algorithm: Patch2Self
Input 4D data X of dimension l× w × h× n
for volume j = 1, 2, . . . n do [where n is the number of volumes]

for voxel k = 1, 2, . . .m do [where m = lwh is the number of voxels]
Extract a p× p× p neighbourhood of voxel k

Flatten and concatenate the p-neighbourhood of each voxel into a feature vector of length p3×n.
Stack feature vectors into a matrix of size m× (p3 × n).
for volume j = 1, 2, . . . n do

Hold-out features from volume j to get a feature matrix Y∗,∗,−j of dimension m×p3×n−1
Select the central pixels from volume j to get a target vector Y∗,0,j of dimension m.
Train a linear regressor Φ : Y∗,∗,−j 7→ Y∗,0,j .
Set the denoised volume X̂∗,∗,∗,j to the unraveled output Φ̂(Y∗,∗,−j).

return Denoised 4D data X̂

J -Invariance The rea-
son one might expect the
regressors learned using
the self-supervised loss
above to be effective de-
noisers is the theory of J -
invariance introduced in
[4]. Consider the partition
of the data into volumes,
J = {v1, . . . , vn}. If the
noise in each volume is in-
dependent from the noise
in each other volume, and
a denoising function Φ satisfies the property that the output of Φ in volume vj does not depend
on the input to Φ in volume vj , then according to Proposition 1 of [4], the sum over all volumes
of the self-supervised losses in equation 1 will in expectation be equal to the ground-truth loss of
the denoiser Φ, plus an additive constant. This means that J -invariant functions minimizing the
self-supervised loss will also minimize the ground-truth loss. This holds by construction for our
denoiser Φ = (Φ1, . . . ,Φn). Intuitively, each ΦJ only has access to the signal present in the volumes
other than vj , and since the noise in those volumes is irrelevant for predicting the noise in vj , it
will learn to suppress the fluctuations due to noise while preserving the signal. Note that, if linear
regression is used to fit each ΦJ , then the final denoiser Φ is a linear function. Unlike methods which
work by thresholding the singular values obtained from a local eigen-decomposition [31, 48], which
produce denoised data that are locally low-rank, this mapping Φ can be full-rank.

Choice of Regressor: Any class of regressor can be fit in the above method, from simple linear
regression/ordinary least squares to regularized linear models like Ridge and Lasso, to more complex
nonlinear models. Our code-base allows for the use of any regression model from [39]. Surprisingly,
we found that linear regression performed comparably to the more sophisticated models, and was of
course faster to train (see supplement for comparisons).

Choice of Patch Radius: To determine the effect of changing the patch radius on denoising accuracy,
we compute the Root Mean Squared Error (RMSE) between the ground truth and Patch2Self denoised
estimates at SNR 15 (details of simulation in Sec. 4). For patch radius zero and one, we show the
effect at different number of volumes as depicted in Fig. 6C. The line-plot trend shows that the
difference in the RMSE scores between the two patch radii steadily decreases with an increase in
number of volumes. However, with lesser number of volumes, a bigger patch-radius must be used. In
the remainder of the text, we use and show results with patch radius zero and linear regressors.

3 Evaluation on Real Data

3.1 Evaluation on in-vivo data

We compare the performance of Patch2Self with Marchenko-Pastur on the Parkinson’s Progression
Markers Initiative (PPMI) [32], Stanford HARDI [41] and Sherbrooke 3-Shell [16] datasets as shown
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Figure 2: Shows the comparison of denoising on 3 different types of datasets: Parkinson’s Progression
Markers Initiative (PPMI), Stanford HARDI and Sherbrooke 3-Shell HARDI data. The denoising of
Patch2Self is compared against the original noisy image and Marchenko-Pastur denoised data along
with their corresponding residuals. Notice that Patch2Self suppresses more noise and also does not
show any anatomical structure in the corresponding residual plots.

in Fig. 2. These datasets represent different commonly used acquisition schemes: (1) Single-Shell
(PPMI, 65 gradient directions), (2) High-Angular Resolution Diffusion Imaging (Stanford HARDI,
160 gradient directions) and (3) Multi-Shell (Sherbrooke 3-Shell, 193 gradient directions). For each
of the datasets, we show the axial slice of a randomly chosen 3D volume and the corresponding
residuals (squared differences between the noisy data and the denoised output). Note that both,
Marchenko-Pastur and Patch2Self, do not show any anatomical features in the error-residual maps, so
it is likely that neither is introducing structural artifacts. Patch2Self produced more visually coherent
outputs, which is important as visual inspection is part of clinical diagnosis.

3.2 Effect on Tractography

To reconstruct white-matter pathways in the brain, one integrates orientation information of the
underlying axonal bundles (streamlines) obtained by decomposing the signal in each voxel using a
microstructure model [5, 34]. Noise that corrupts the acquired DWI may impact the tractography
results, leading to spurious streamlines generated by the tracking algorithm. We evaluate the effects
of denoising on probabilistic tracking [17] using the Fiber Bundle Coherency (FBC) metric [40].
To perform the probabilistic tracking, the data was first fitted with the Constant Solid Angle (CSA)
model [1]. The Generalized Fractional Anisotropy (GFA) metric extracted from this fitting was used
as a stopping criterion within the probabilistic tracking algorithm. The fiber orientation distribution
information required to perform the tracking was obtained from the Constrained Spherical Decon-
volution (CSD) [46] model fitted to the same data. In Fig. 3, we show the effect of denoising on
tractography for the Optic Radiation (OR) bundle as in [40]. The OR fiber bundle, which connects
the visual cortex:V1 (calcarine sulcus) to the lateral geniculate nucleus (LGN), was obtained by
selecting a 3×3×3 Region Of Interest (ROI) using a seeding density of 6. After the streamlines were
generated, their coherency was measured with the local FBC algorithm [40, 14]), with yellow-orange
representing - spurious/incoherent fibers and red-blue representing valid/coherent fibers. In Fig, 3, OR
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bundle tracked from original/ raw data contains 3114 streamlines, Marchenko-Pastur denoised data
[48] contains 2331 streamlines and Patch2Self denoised data contains 1622 streamlines. Patch2Self
outperforms Marchenko-Pastur by reducing the number of incoherent streamlines, as can be seen in
the red-blue (depicting high coherence) coloring in Fig. 3.

Original Marchenko-Pastur Patch2Self

Fiber to Bundle Coherence (FBC)Low High

Figure 3: Depicts the Fiber to Bundle Coherency (FBC) density map projected on the streamlines
of the optic radiation bundle generated by the probabilistic tracking algorithm. The color of the
streamlines depicts the coherency − yellow corresponding to incoherent and blue corresponding
to coherent. Notice that the number of incoherent streamlines present in the original fiber-bundle
is reduced after Marchenko-Pastur denoising. Patch2Self denoising further reduces spurious tracts,
resulting in a cleaner representation of the fiber bundle.
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Figure 4: (A) Shows the mean kurtosis parameter maps obtained by fitting the DKI model to the
axial slice of the CFIN dataset [21]. Notice that Patch2Self (A3) alleviates more degenerecies in
model estimation (visible as black voxels in the region highlighted with arrows) as compared to
noisy (original) data (A1) and Marchenko-Pastur (A2) denoised data. (B) Box-plots quantifying
the increase in R2 metric after fitting downstream DTI and CSD models. The R2 improvements in
each case are plotted by subtracting the scores of model fitting on noisy data from R2 of fitting each
denoised output. Note that the consistency of microstructure model fitting on Patch2Self denoised
data is higher than that obtained from Marchenko-Pastur (see 3.3 for details and significance).

3.3 Impacts on Microstructure Model Fitting

The domain of microstructure modeling employs either mechanistic or phenomenological approaches
to resolve tissue structure at a sub-voxel scale. Fitting these models to the data is a hard inverse
problem and often leads to degenerate parameter estimates due to the low SNR of DWI acquisitions
[35]. We apply two of the most commonly used diffusion microstructure models, Constrained
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Spherical Deconvolution (CSD) [46] and Diffusion Tensor Imaging (DTI) [3], on raw and denosied
data. DTI is a simpler model that captures the local diffusion information within each voxel by
modeling it in the form of a 6-parameter tensor. CSD is a more complex model using a spherical
harmonic representation of the underlying fiber orientation distributions. In order to compare the
goodness of each fit, we perform a k-fold cross-validation (CV) [22] at two exemplary voxel locations,
corpus callosum (CC), a single-fiber structure, and centrum semiovale (CSO), a crossing-fiber
structure. The data is divided into k = 3 different subsets for the selected voxels, and data from two
folds are used to fit the model, which predicts the data on the held-out fold. The scatter plots of CV
predictions against the original data are shown in Fig. 5 for those two voxels. As measured by R2,
Patch2Self has a better goodness-of-fit than Marchenko-Pastur by 22% for CC and 65% for CSO. To
show that Patch2Self consistently improves model fitting across all voxels, in Fig. 4B we depict the
improvement of the R2 metric obtained from the same procedure for the axial slice (4606 voxels) of
masked data (using [41] data). This was done by simply subtracting the goodness-of-fit R2 scores
of fitting noisy data, from Marchenko-Pastur and Patch2Self denoised data for both CSD and DTI
models. Patch2Self shows a significant improvement on both DTI and CSD (two-sided t-test, p <
1e-300, Fig. 4). The Diffusion Kurtosis (DKI) model contrast, uses higher-order moments to quantify
the non-gaussianity of the underlying stochastic diffusion process. This can be used to characterize
microstructural heterogeneity [23] leading to important biomarkers of axonal fiber density and
diffusion tortuosity [15]. Models such as DKI are susceptible to noise and signal fluctuations can
often lead to estimation degeneracies. In Fig. 4A, we compare the effects of different denoising
algorithms on DKI parameter estimation by visualizing the mean kurtosis maps. We make use of the
CFIN dataset [21] which was designed to evaluate kurtosis modeling and imaging strategies to depict
the effects of denoising. As highlighted by the arrows, Marchenko-Pastur does not add any new
artifacts due to noise suppression but also does not help alleviate degeneracies in parameter estimation.
Patch2Self reduces the number of degeneracies without adding any artifacts due to denoising.

D
iff

us
io

n 
Te

ns
or

 M
od

el

A C D

Corpus Callosum

B

Centrum Semiovale Corpus Callosum Centrum Semiovale

M
od

el
 P

re
di

ct
io

n

C
on

st
ra

in
ed

 S
ph

er
ic

al
 D

ec
on

vo
lu

tio
n

M
od

el
 P

re
di

ct
io

n

M
od

el
 P

re
di

ct
io

n

M
od

el
 P

re
di

ct
io

n

Data Data Data Data

Figure 5: Quantitative comparison of the goodness-of-fit evaluated using a cross-validation approach.
(A) and (B) depict the scatter plots of the model predictions obtained by fitting CSD to voxels in
the corpus callosum (CC) and centrum semiovale (CSO) for original (noisy), Marchenko-Pastur
(denoised) and Patch2Self (denoised) data. Similarly (C) and (D) show the scatter plots of predictions
obtained from DTI fitting in the same voxel locations. Top-left of each plot shows the R2 metric
computed from each model fit on the corresponding data.

4 Evaluation on Simulated Data

We begin with whole brain noise-free DWIs simulated from the framework proposed in [19, 49], with
2 image volumes at b-value=0 s/mm2 (i.e., b0), 30 diffusion directions at b-value=1000 s/mm2

(b1000) and 30 directions at b-value=2000 s/mm2 (b2000). The real-world noise distribution was
simulated with multi-channel acquisition: a realistic 8-channel coil sensitivity map was used and
Gaussian noise was added to the real and imaginary part of each channel of the DWIs respectively
[49]. Finally DWIs were combined with sum-of-square coil combination and signal-to-noise ratio
(SNR) was calculated in the white-matter of the b=0 image. All together, 5 datasets were simulated:
noise-free, SNR= 10, 15, 20, 25 and 30. We take two different approaches of comparing Patch2Self
and the performance gains it provides: (1) Compute the mean squared error (MSE) between the
denoised data and the ground truth at each SNR. (2) Using the R2 metric of the denoised data against
ground truth. The outcomes from both these evaluation strategies have been compared against the raw
noisy data and Marchenko-Pastur denoised data. As shown in table 1 the performance gains obtained
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by using Patch2Self are substantial in realistic SNR ranges, especially in the 5-20 range common for
in-vivo imaging. This can also be seen qualitatively in Fig. 6, where Patch2Self is visibly cleaner
than with Marchenko-Pastur[48] at each low SNRs. A scatterplot of ground-truth versus denoised
voxel value illustrates this performance gain as well (Fig. 6D). Notice that with an increase in SNR,
the performance of Patch2Self improves consistently (see table 1) and does consistently better than
the Marchenko-Pastur method (evaluated via MSE and R2 metrics).
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Figure 6: (A) Qualitative comparison of denoising on simulated data with varying levels of noise
(from SNR 5 to 30) [see Sec. 4 for details of simulation]. The top row shows a slice of the simulated
noisy data, the middle and the bottom row correspond to the Marchenko-Pastur and Patch2Self
denoised outputs, respectively. (B) Plots the ground truth for the same slice. (C) Shows line plots of
RMSE values at different number of volumes at patch radii 0 and 1. (D) Scatter plots of ground truth
against denoised data of the simulated phantom at SNR 10, 15, 20 and 20. In each case, Patch2Self
suppresses more noise and shows a consistent performance gain as the SNR increases (see table 1).

SNR 5 SNR 10 SNR 15 SNR 20 SNR 25 SNR 30

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Noisy 0.04 14.84 0.27 5.57 0.52 3.05 0.69 2.02 0.79 1.47 0.85 1.15

Marchenko-Pastur 0.10 14.40 0.52 5.27 0.73 2.79 0.84 1.79 0.88 1.28 0.91 0.98

Patch2Self 0.20 13.86 0.69 5.18 0.84 2.74 0.89 1.73 0.91 1.25 0.93 0.98

Table 1: Reports the R2 and the Root Mean Squared Error (RMSE) metrics on the simulated data
at SNRs 5 to 30. The metrics have been computed for noisy (simulated phantom) data, Marchenko-
Pastur and Patch2Self denoised data by comparing against ground-truth (noise-free) data.

5 Conclusions

This paper proposes a new method for denoising Diffusion Weighted Magnetic Resonance Imaging
data, which is usually acquired at a low SNR, for the purpose of improving microstructure modeling,
tractography, and other downstream tasks. We demonstrated that denoising by Patch2Self outperforms
the state-of-the-art random-matrix-theory-based Marchenko-Pastur method on these subsequent
analyses. To enable broad adoption of this method by the MRI community, we will incorporate an
efficient and unit-tested implementation of Patch2Self into the widely-used open-source library DIPY.
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Broader Impacts

The broader impacts of this work fall into three categories: the direct impact on medical imaging, the
theoretical impact on self-supervised learning more broadly, and the societal impact of improvements
to those two technologies. In medical imaging, better denoising allows for higher quality images
with fewer or shorter acquisitions, potentially making advanced acquisition schemes clinically viable,
allowing for new bio-markers, and visualizing small structures such as the spinal cord in MRI.

Patch2Self provides a method for doing fast local matrix approximations, which could be used
for matrix completion, subspace tracking, and subspace clustering, with applications across signal
processing domain. To the extent that self-supervision enhances the ability to extract signal from
poor measurements, it may expand the reach of state or private surveillance apparatuses allowing
people’s identities, movements, or disease status to be obtained from a greater distance and at lower
cost. If a cache of easily acquired low-quality data can be efficiently used, it may open the door to
exploitation by new actors.
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