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Abstract

k-means++ [3] is a widely used clustering algorithm that is easy to implement,
has nice theoretical guarantees and strong empirical performance. Despite its
wide adoption, k-means++ sometimes suffers from being slow on large data-sets
so a natural question has been to obtain more efficient algorithms with similar
guarantees. In this paper, we present a near linear time algorithm for k-means++
seeding. Interestingly our algorithm obtains the same theoretical guarantees as
k-means++ and significantly improves earlier results on fast k-means++ seeding.
Moreover, we show empirically that our algorithm is significantly faster than
k-means++ and obtains solutions of equivalent quality.

1 Introduction

Clustering is a fundamental task in machine learning with many applications in data analysis and
machine learning. One particularly important variant is k-means clustering: Given a set of n points
in Rd the goal is to find a partition of the points into k clusters such that the sum of squared distance
to the cluster centers (which are the means of the clusters) is minimized.

A popular method to compute a good clustering with respect to the k-means objective is the K-
MEANS++ algorithm [3]. The algorithm is a combination of a randomized procedure for finding a set
of k starting centers (often referred to as the seeding) with the classic local improvement algorithm by
Lloyd [20]. The seeding step samples the first center uniformly at random. In the remaining iterations
the algorithm samples a center from the D2-distribution, where the probability of sampling a point is
proportional to the squared distance to the current set of centers.

The K-MEANS++ algorithm is easy to implement, has strong theoretical guarantees (an O(log k)
approximation guarantee), and performs empirically well. However, the running time of Θ(dnk)3

becomes impractical for many very large datasets. Therefore, a lot of previous work focused on
speeding up the K-MEANS++ seeding [4, 5] as well as Lloyd’s algorithm [14, 10, 22, 13].

To obtain a fast seeding algorithm, Bachem et al. [4] and [5] use an MCMC algorithm to generate
a set of k centers that follows the K-MEANS++ distribution. They provide different versions of
their algorithm that provide trade-offs between theoretical guarantees and empirical running time.
Interestingly, under certain assumptions on the inputs and when k is small, their algorithm may
even run in sublinear time in the input size. However, all versions of their algorithms have a
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running time of Ω(k2)4 and so it does not scale for massive datasets and moderate values of k (i.e.
500− 1000). Another important drawback from their results is that the guarantees on the quality of
the solution output by their algorithms are weaker than the original K-MEANS++ guarantee (since
their approximation is additive in the worst case).

Our contribution In this paper we present a new algorithm that provably achieves near-linear
running time while offering similar guarantees as the original K-MEANS++ algorithm. In particular:

• We introduce a new seeding algorithm that for constant ε > 0 has near-linear running time
Õ
(
nd+ (n log(∆))

1+ε
)

and returns a Oε(log k) approximate solution, where n is the
number of points in the dataset and ∆ is the ratio between the maximum distance and the
minimum distance between two points in the dataset, see Corollary 5.5. Our algorithm also
has the advantage that, in the stated running time, it computes the solution for all values of
k = 1, 2, . . . , n.

• We compare the performances of our seeding technique with the baselines K-MEANS++
and AFKMC2 from [4] on various classic datasets. Our algorithms outperform the baselines
even for moderate values of k (e.g.: k = 1000) and the speed-up is an order of magnitude
for larger values of k5. In addition, our algorithms output solutions of similar costs as
K-MEANS++ (as our theoretical results predict).

The main idea behind our method is to use an embedding into a collection of trees to approximate the
distances between the input points, and then leverage the tree structure to speed-up the D2-sampling
of K-MEANS++. To ensure that our sampling, which uses the approximate tree distances, leads to
a solution that is competitive with respect to K-MEANS++ on the original data, we "emulate" the
D2-distribution on the original data by additionally using rejection sampling. More concretely,
– We first develop a new seeding algorithm FASTK-MEANS++ that computes in Õ(nd) time a solution.
The near linear running time is obtained by first approximating the squared Euclidean distance using
a multi-tree embedding and then by showing that one can efficiently perform D2-sampling with
respect to multi-tree distances.
– We then argue that one can use our sampling technique on multi-tree distances in combination with
rejection sampling so as to reproduce the same distribution as used by K-MEANS++ on the original
distances and so to achieve the same approximation guarantees that K-MEANS++. To ensure a fast
running time, we calculate the rejection probability by using locality-sensitive hashing (LSH) to
approximately determine the nearest neighbor w.r.t. the original distances.
– Finally, we show that our LSH based rejection sampling algorithm computes a solution with the
same expected approximation guarantee of O(log k) as the basic K-MEANS++ algorithm.

2 Preliminaries

Basic notation. We denote by P ⊆ Rd the set of n input points in a d dimensional space and let
∆ be the ratio between the maximum distance and the minimum distance between two point in the
dataset. The Euclidean distance between two points x, y ∈ Rd is denoted by DIST(x, y) = ||x− y||2.
We also let DIST(x,C) = miny∈C DIST(x, y) be the distance of x to the closest point in C. The
goal in the k-means problem is to choose a set of k centers C ⊆ Rd minimizing

∑
x∈P DIST(x,C)2.

Tree embeddings. Tree embedding is a well-known technique used in many different clustering
problems (see for example [6]). We now explain a simple version that is similar to [18] that will
be used in our algorithm. We first compute an upper bound MAXDIST on the maximum distance
between two points within a factor of 2.6 Second, we add a random shift 0 ≤ s ≤ MAXDIST to
each coordinate of all input points7. Let x ∈ P be any point in the data set. The root of the tree (at

4We note that a similar running time can be achieved also via coresets [16, 11] but it is challenging to go
below the Ω(k2) barrier.

5While the large k setting is not the most studied setting, it still has many practical applications. For instance
in spam and abuse [23, 25], near-duplicate detection [17], compression or reconciliation tasks [24]. Furthermore
the large k case is very interesting from a theoretical perspective and it gained attention in recent years [9].

6This can be done in time O(nd), by selecting any point and by computing the maximum distance between
that point and any other point in the dataset. Then multiply this distance by 2.

7Notice that this does not effect the distance between any two points and therefore the cost of any solution.
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height zero) represents an axis-aligned cube of side length 2MAXDIST centered at x. By selection,
note that all the input points are inside this cube and we say that they belong to this node of the tree.
We then partition this cube into 2d axis-aligned subcubes of side length MAXDIST and assign each
point to the one that contains its coordinates. For each of these subcubes that contains a point, we
create a node and add it as a child of the root in the tree (so their height is one), with edge weight√
dMAXDIST, i.e., the side length of the (parent) cube times

√
d/2. Notice that this is equal to the

half of the maximum distance between any two coordinates in the parent cube. Also observe that the
number of nodes at height one is at most n, since each node contains at least one point. We let the
height of these edges be zero. We then repeat this operation on the nodes until every cube contains
at most a single point. This results in a tree where all leaves are at the same height, the height is at
most H = O(log(d∆)), and there are at most n nodes in each layer. Moreover, the running time of
constructing each layer is O(nd) since for each point we can determine in which subcube it belongs
by going over its dimensions. The total running time is thus O(nd log(d∆)). The distance between
two points p, q in the tree, denoted by TREEDIST(p, q), is the length of the shortest path between p
and q in the tree, or equivalently twice the length from one of them to their lowest common ancestor.

3 Multi-tree Embedding

Tree embedding is a powerful tool for designing approximation algorithms but it cannot be applied
directly to the k-means problem. In fact there are simple examples that show that the expected
distortion between the squared distances of an `2 metric and the TREEDIST is Ω(n). To overcome
this limitation, we use three tree embeddings with different random shifts and we define the distance
between two points (denoted by MULTITREEDIST) to be the minimum TREEDIST among the
distances in the three trees. Interestingly, we show that this suffices to get a significantly better upper
bound on the distortion. We refer to this simple procedure as MULTITREEINIT(). We note that
the running time of MULTITREEINIT() is asymptotically equal to that of a single tree embedding
O(nd log(d∆)) since it initializes three tree embeddings.

To analyze the expected distortion, define for any set S ⊆ P and point p ∈ P ,
MULTITREEDIST(p, S) = minq∈S MULTITREEDIST(p, q). The proof of the following bounds
is provided in the full version.

Lemma 3.1 For any point p, and set S, we have DIST(p, S)2 ≤
MULTITREEDIST(p, S)2 and E[MULTITREEDIST(p, S)2] ≤ O(d2 · DIST(p, S)2) .

4 FASTK-MEANS++ Algorithm

Recall that the classic K-MEANS++ algorithm samples the first center uniformly at random and in the
remaining iterations k-means++ samples a center from the D2-distribution, where the probability of
each point is proportional to the squared distance to its nearest current center. The most expensive
operation in this procedure is to update the D2-distribution after each sample. In fact, the probability
for a point to be selected may change in every round of the algorithm leading to n updates in each of
the k iterations.

Our key idea here is to use the special structure of the the multi-tree embedding to update the
D2-distribution with respect to those distances efficiently. This is intuitively possible since in
the multi-tree metric every node can change its distance from the current set of centers at most
O(log(d∆)) times. This is true because in order to decrease the distance between a point x and the
set of centers in a single tree embedding, the lowest common ancestor between x and the closest
center has to get closer to x. The number of times that this can happen is bounded by the height of
the tree. Therefore, since the multi-tree embedding consists of three trees of height O(log(d∆)), we
have that the number of times a point can change its multi-tree distance to the set of opened centers is
at most O(log(d∆)).

MULTITREEOPEN and MULTITREESAMPLE. To describe our algorithm we start by defining
the procedures to update the distribution, MULTITREEOPEN, and to compute a sample MULTI-
TREESAMPLE. To achieve an efficient running time, both procedures act on a common data structure
which consists of the following:
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• A weight wx for each point x ∈ P .

• A node-weighted balanced binary tree with a leaf for each of the n points in P . We refer to
this tree as the sample-tree so as to not confuse it with the trees in the multi-tree embedding.

• For each node in each of the trees in the multi-tree embedding, a bit saying whether this
node is marked.

For notational convenience, let MULTITREEDIST(x, ∅)2 = M for any point x ∈ P , where M =
16d ·MAXDIST2 is chosen to be an upper bound of MULTITREEDIST(p, q)2 for any two points p
and q. If we let S be the set of opened points (using calls to MULTITREEOPEN), the data structure
will satisfy the following invariants:

1. For every x ∈ P , wx = MULTITREEDIST(x, S)2.

2. The weight of each node in the sample-tree equals the sum of the weights of the points
corresponding to the leaves in its subtree.

3. A node v in a tree T in the multi-tree embedding is marked if there is a point in its subtree
that has been opened, i.e., is in S; otherwise it is in unmarked.

So the data structure is initialized (when S = ∅) by setting all weights (wx)x∈P to M ; setting the
weight of each node in the sample-tree to M times the number of points in its subtree; and by letting
all nodes in the trees of the multi-tree embedding to be unmarked. In addition, for each tree T in
the multi-tree embedding and for each node v in T , we compute the set PT (v) ⊆ P of points in its
subtree. Note that the initialization of the weights and the sample-tree run in time O(n) whereas
the initialization of the unmarked notes and the sets PT (v) can be computed in time O(n log(d∆))
by traversing the trees in the multi-tree embedding of height O(log(d∆)). The total runtime of the
initialization is thus O(n log(d∆)).

We proceed to describe the procedure MULTITREEOPEN that opens a new point x and updates the
data structure to satisfy the invariants. We then describe the simpler procedure MULTITREESAMPLE
which samples a point x with probability wx/(

∑
y∈P w(y)), i.e., from the D2-distribution with

respect to the multi-tree distances.

Algorithm 1 MULTITREEOPEN

Input: A point x ∈ P
1: for each tree T in the multi-tree embedding

do
2: Let v0 be the leaf of T that x belongs to.
3: Traverse the tree towards the root forming a

path v0, v1, . . . , v` until either v` is the root
or the parent of v` is marked.

4: Mark v0, . . . , v`.
5: for each point y in PT (v`) do
6: if TREEDISTT (y, x)2 < wy then
7: wy ← TREEDIST2

T (y, x)
8: Traverse the sample-tree from the leaf

corresponding to y to the root to update
the node-weights that depend on wy .

9: end if
10: end for
11: end for

The description of MULTITREEOPEN is given
in Algorithm 1. When the tree embedding is
not clear from the context, we use the notation
TREEDISTT to denote the distances given by
the tree embedding T . We now verify the invari-
ants and give some intuition of the procedure.
Let S be the set of opened centers prior to this
call to MULTITREEOPEN(x) and let T be a tree
in the multi-tree embedding. When considering
T , MULTITREEOPEN starts in the leaf v0 of
T that x belongs to. It then traverses the tree
towards the root forming a path v0, v1, . . . , v`
of nodes so that v` is either the root or its par-
ent is already marked. The subtrees of these
vertices are exactly those that contain x but no
other point in S, and so Step 4 guarantees the
third invariant. Now a key observation is that
TREEDISTT (y, S ∪ {x}) < TREEDISTT (y, S)
for exactly those points y in PT (v`). This holds
because in order to decrease the distance be-
tween a point y and the set of centers, with respect to the tree embedding T , the lowest com-
mon ancestor in T between y and the closest center must get closer. MULTITREEOPEN con-
siders each of these points and updates wy if TREEDISTT (y, x) < wy. Since the procedure
considers all three trees in the multi-tree embedding this guarantees the first invariant, i.e., that
wy = MULTITREEDIST(y, S ∪ {x})2 for every y ∈ P at the end of the procedure. The second
invariant is guaranteed by Step 8 which updates all the nodes in the sample-tree so as to satisfy that
invariant. MULTITREEOPEN therefore updates the data structure to satisfy the invariants. As the
distance from a point x to the centers is updated O(log(d∆)) times and each time the sample-tree is
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updated in time O(log n) (its height), we have the following running time (see the full version for a
formal argument).

Lemma 4.1 The running time of opening any set S of k points (using calls to MULTITREEOPEN) is
O(n log(d∆) log n).

Having described how to open a new center, we proceed to describe the simpler algorithm for
generating a sample. The pseudo-code of MULTITREESAMPLE is given in Algorithm 2. MULTI-
TREESAMPLE traverses the sample-tree from the root to a random leaf by, at each intermediate node,
randomly choosing one of its two children proportional to its weight. As the weight of each node
in the sample-tree, equals the sum of weights of the points in its subtree (by the second invariant),
this guarantees that a point x is sampled with probability wx/

∑
y∈P wy, i.e., proportional to its

weight. By the first invariant, this corresponds to sampling from the D2-distribution with respect to
the multi-tree distances8. Furthermore, the running time of MULTITREESAMPLE is O(log n) since
the height of the sample-tree is O(log n). (Recall that the sample-tree is a balanced binary tree with
n leafs and is thus of height O(log n). Recall also that the sample-tree is a different tree from the
tree embeddings) We summarize these properties of MULTITREESAMPLE in the following lemma.

Algorithm 2 MULTITREESAMPLE

1: Let v be the root of the sample-tree.
2: while v is not a leaf do
3: Let w(L) and w(R) be the weight of its left and

right child, respectively.
4: Update v to be its left child with probability

w(L)
w(L)+w(R) and to be its right child with remain-

ing probability w(R)
w(L)+w(R) .

5: end while
Output: the point x corresponding to the leaf v.

Algorithm 3 FASTK-MEANS++

Input: Set of points P , number of centers k.
1: Set S ← ∅
2: MULTITREEINIT ()
3: while |S| < k do
4: x← MULTITREESAMPLE()
5: S ← S ∪ x
6: MULTITREEOPEN(x)
7: end while

Output: S

Lemma 4.2 Let S be the set of opened centers (using calls to MULTITREEOPEN). Then
MULTITREESAMPLE runs in time O(log n) and each point x ∈ P is output with probability

MULTITREEDIST(x,S)2∑
y∈P MULTITREEDIST(y,S)2 .

FASTK-MEANS++. We can now present a fast algorithm for the k-means problem (see Algorithm 3)
that samples each center from the D2-distribution with respect to the distances given by the multi-tree
embedding. In the next section we show how to adapt the procedure so as to sample from the
original D2-distribution by using rejection sampling. The running time directly follows from that,
the time to initialize the multi-tree embedding is O(nd log(d∆)), the time to initialize the data
structure used by MULTITREEOPEN and MULTITREESAMPLE is O(n log(d∆)), the total running
time of MULTITREEOPEN is O(n log(d∆) log n) (Lemma 4.1) and the running time of each call to
MULTITREESAMPLE is O(log n) (Lemma 4.2).

Corollary 4.3 The running time of FASTK-MEANS++ is O(nd log(d∆) + n log(d∆) log n).

5 Rejection Sampling Algorithm

In this section we present an algorithm, REJECTIONSAMPLING, that efficiently samples arbitrarily
close to the D2-distribution in the original metric. The algorithm is rather simple and its pseudo-code
is given in Algorithm 4. The main idea is to use the multi-tree embedding to sample candidate centers
but then adjust the sampling probability using rejection sampling.

As for K-MEANS++, the first center that we pick is chosen uniformly at random among all the points.
For the rest of the k − 1 centers, the idea is to sample a point x using MULTITREESAMPLE, i.e.,

8We remark that the idea of sampling in this way from a tree has been used in the context of constructing a
coreset in [1] (however, their tree depends on a partition of the data and is not necessarily balanced).
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form the D2-distribution with respect to the multi-tree distances. Then we open x as a new center
with probability proportional to its actual distance to the set of centers in the original metric over
the distance in the multi-tree embedding. We repeat this procedure until we pick the rest of the
k − 1 centers. Interestingly, this rejection-sampling procedure guarantees that we sample each of
the centers according to the actual D2-distribution. However, the running time of this procedure
is of Ω(k2) since, for each point x that we sample from the multi-tree, we have to find the closest
open center which takes time Ω(k). In order to improve this running time, we use an approximate
nearest neighbor data structure to approximate the distance between x and the closest open center.
This enables us to improve the running time to be near linear. The data structure that we use is based
on the locality-sensitive hash (LSH) functions developed for Euclidean metrics [2]. We only need to
slightly modify their data structure to guarantee monotonicity as we explain in the full version.

Theorem 5.1 (LSH data structure) For any set P of n points in Rd and any parameter c > 1,
there exists a data structure with operations Insert and Query that, with probability at least 1− 1/n,
have the following guarantees: (i) Insert(p): Inserts point p ∈ P to the data structure in time
O
(
d log(∆) · (n log(∆))

O(1/c2)
)

. (ii) Query(p): Returns a point q that has been inserted into the
data structure that is at distance at most c · δ from p, where δ is the minimum distance from p to a
point inserted to the data structure. The query time is O

(
d log(∆) · (n log(∆))

O(1/c2)
)

.
Furthermore, the data structure is monotone under insertions: the distance between p and Query(p)
is non-increasing after inserting more points.

We say that the data structure is successful if the above guarantees hold. By the theorem statement,
we know that the data structure is successful with probability at least 1 − 1/n. The small failure
probability will not impact the expected cost of our solution9. We therefore assume throughout the
analysis that our data structure is successful. In Algorithm 4 we present the pseudocode for our
algorithm.

Algorithm 4 REJECTIONSAMPLING

Input: Set of points P , number of centers k
1: Set S ← ∅
2: MULTITREEINIT ()
3: while |S| < k do
4: x← MULTITREESAMPLE()
5: With probability

min{1, DIST(x,Query(x))2

c2·MULTITREEDIST(x,S)2 } do
6: S ← S ∪ x
7: MULTITREEOPEN (x)
8: Insert(x)
9: end while

Output: S

In the REJECTIONSAMPLING algorithm (Algo-
rithm 4), the probability on Line 5 is not defined
for the case that S is an empty set, i.e., the first
iteration of the loop. In this case we assume that
this probability is one and the sampled element
will be added to S. We start be presenting a
few properties of REJECTIONSAMPLING algo-
rithm. We show that the expected number of the
times that the loop (Line 3) repeats is O(c2d2k).
To that end, we first show that the probability
of opening a center in x in any iteration is in-
dependent of the MULTITREE embedding and
only depends on the LSH data structure. This
holds, intuitively, because when we sample a
point x by calling MULTITREESAMPLE() we
then decide to add it based on the distance to
the point reported by the LSH data structure which removes the dependency on MULTITREEINIT.
Specifically, each point x is first sampled w.p. MULTITREEDIST(x,S)2∑

y∈P MULTITREEDIST(y,S)2 and then added to set

S w.p. DIST(x,Query(x))2

c2·MULTITREEDIST(x,S)2 . Therefore, the probability of adding x to S is proportional to
DIST(x,Query(x))2 and we get (see the full version for a formal proof):

Lemma 5.2 The probability of inserting a point x to set S in REJECTIONSAMPLING algorithm is
independent of MULTITREEINIT and is equal to 1/n for the first iteration and DIST(x,Query(x))2∑

y∈P DIST(y,Query(y))2

for other iterations.

9To be completely formal: if we repeat our algorithm for logn(4n∆2) times, then we know that with
probability at least 1− 1/(4n∆2) one of the runs is with a successful data structure. As squared-distances are at
most MAXDIST2 and at least MAXDIST2/(2∆)2, the total cost of a solution with a single opened center is at
most n · MAXDIST2. Therefore, the small failure probability of 1/(4n∆2) will not have a measurable impact
on the expected cost of the best found clustering.
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Algorithm k = 100 k = 500 k = 1000 k = 2000 k = 3000 k = 5000
FASTK-MEANS++ 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

REJECTIONSAMPLING 1.04x 1.09x 1.04x 1.07x 1.01x 1.28x
K-MEANS++ 0.66x 3.11x 6.58x 15.26x 18.58x 42.64x

AFKMC2 0.89x 1.88x 3.80x 8.5x 16.61x 38.7x

Table 1: Running time of the algorithms divided by the running time of FASTK-MEANS++ for
the KDD-Cup dataset. This shows the speed-up that we achieve compared to the K-MEANS++ and
AFKMC2.

Algorithm k = 100 k = 500 k = 1000 k = 2000 k = 3000 k = 5000
FASTK-MEANS++ 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

REJECTIONSAMPLING 0.99x 1.03x 0.98x 1.03x 1.04x 1.04x
K-MEANS++ 0.76x 4.55x 8.89x 16.98x 23.03x 46.26x

AFKMC2 0.62x 1.02x 1.35x 2.81x 4.98x 8.71x

Table 2: Running time of the algorithms divided by the running time of FASTK-MEANS++ for the
Song dataset. This shows the speed-up that we achieve compared to the K-MEANS++ and AFKMC2.

The main ingredient in the running time analysis is to bound the number of repetitions of the loop
(Line 3). This is roughly done by arguing that the probability that we add an element x to S after its
sampled using MULTITREESAMPLE is Ω( 1

c2d2 ) in expectation. Indeed, from Lemma 3.1 we expect

that MULTITREEDIST(x, S)2 ≤ O(d2DIST(x,Query(x))2), so 1
Ω(c2d2) ≤

DIST(x,Query(x))2

c2·MULTITREEDIST(x,S)2 .
Therefore the probability of passing Line 5 is at least 1

Ω(c2d2) . It follows that, in expectation,
O(c2d2k) repetitions suffices to add k points to S. The formal proof is presented in the full version.

Lemma 5.3 The expected number of the times that the loop (Line 3) is repeated is of O(c2d2k).

Putting the discussed ingredients and the approximation ratio analysis together, we get the following
result, the proof is presented in the full version.

Theorem 5.4 For any constant c > 1, with probability at least (1− 1/n) REJECTIONSAMPLING
always samples points x that are at most a factor c2 away from the D2-distribution, its expected
running time is O

(
n log(d∆)(d+ log n) + kc2d3 log(∆) · (n log(∆))

O(1/c2)
)

, and it returns a

solution that in expectation is a O(c6 log k)-approximation of the optimal solution.

We remark that the runtime can be improved in the case of a large d by first applying a dimensionality
reduction [7, 21] that reduces the dimension of the input points to O(log n) in time O(nd log n) and
maintains the cost of any clustering up to a constant factor. These works actually prove that the dimen-
sion can be reduced to O(log k). However, by using O(log n) our algorithm can output the solution
for all k = 1, 2, . . . , n in near-linear running time Õ

(
nd+ n log ∆ + c2k log(∆)(n log ∆)O(1/c2)

)
(where Õ suppresses logarithmic terms in n) while maintaining the same asymptotic approximation
guarantee as K-MEANS++. Selecting ε = O(1/c2) then yields the following

Corollary 5.5 For ε > 0, there is an Oε(log k)-approximation algorithm for the k-means problem
with a running time of Θ̃(nd+ (n log(∆))1+ε).

6 Empirical Evaluation

In this section we empirically validate out theoretical results by comparing our algorithms FASTK-
MEANS++ and REJECTIONSAMPLING (see the details on how we set the parameters for LSH in the
full version ) with the following two baselines:
K-MEANS++ algorithm: Perhaps the most commonly used algorithm in this field. It samples k points
according to the D2-distribution.
AFKMC2 algorithm: A recent result [4] based on random walks that improves the running time of the
K-MEANS++ algorithm while maintaining a (weaker) theoretical guarantee on the solution quality.
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Algorithm k = 100 k = 500 k = 1000 k = 2000 k = 3000 k = 5000
FASTK-MEANS++ 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

REJECTIONSAMPLING 0.98x 1.26x 1.17x 1.07x 1.0x 0.95
K-MEANS++ 0.89x 4.78x 8.92x 14.18x 23.57x 36.69

AFKMC2 0.76x 0.77x 1.12x 1.15x 1.54x 2.56x

Table 3: Running time of the algorithms divided by the running time of FASTK-MEANS++ for
the Census dataset. This shows the speed-up that we achieve compared to the K-MEANS++ and
AFKMC2.

Algorithm k = 100 k = 500 k = 1000 k = 2000 k = 3000 k = 5000
FASTK-MEANS++ 30335 5771 2957 1582 1070 640

REJECTIONSAMPLING 29243 5857 2999 1581 1095 642
K-MEANS++ 24552 5128 2695 1423 968 562

AFKMC2 25598 5384 2883 1512 1045 622
UNIFORMSAMPLING 148594 51692 26199 15927 13922 10017

Table 4: Costs of the solutions produced by the algorithm for KDD-Cup dataset for various values of
k. All the numbers are scaled down by a factor 103.

Datasets, Experiments, and Setup We ran our algorithms on three classic datasets from UCI
library [15]: KDD-Cup [12] (311, 029 points of dimension 74) and song [8] (515, 345 points of
dimension 90) Census [19] (2, 458, 285 points of dimension 68). We did not apply any dimensionality
reduction technique for any of the algorithms; all the considered data sets is of small dimension. We
compare the quality of the clustering, i.e., the cost of the objective function, along with their running
times. For the AFKMC2 algorithm, we used the code provided by the authors with the same parameter
suggested there, i.e., m = 200.10 The algorithms were run on a standard desktop computer.

Discussion Our results show that the algorithms we propose are much faster than both the baselines,
i.e., K-MEANS++ and AFKMC2, as k grows. For large k = 5000, it is an order of magnitude faster
than both K-MEANS++ and AFKMC2. Moreover, the running time of our algorithms is already
significantly faster than both baselines for moderate values of k such as k = 500 for KDD-Cup and
k = 1000 for Song and Census. We refer to Tables 1, 2, and 3 for more details.

Importantly, we achieve this improvement in the running time without making any significant sacrifice
to solution quality from both a theoretical and experimental perspective. While the solution quality is
sometimes worse by 10-15% for small k, the k-means costs of the solutions produced by FASTK-
MEANS++ and REJECTIONSAMPLING algorithms are comparable (overall almost the same) with the
baselines for all the experiments for moderate values of k ≥ 1000. This is in contrast to the simplest
seeding algorithm UNIFORMSAMPLING which selects the k centers uniformly at random from the
input data set. While UNIFORMSAMPLING clearly provides for a very fast seeding algorithm, it
does so by significantly deteriorating the solution quality. This can e.g. be seen in our results for the
KDD-Cup dataset where UNIFORMSAMPLING consistently gives solutions of much worse quality.
For more details, see Tables 4, 5, and 6 where the solution costs are given. The variance along with
experimental setting is reported in the full version.

7 Conclusions

In this paper we present new efficient algorithms for k-means++ seeding. Our algorithms outperform
previous work as k grows and come with strong theoretical guarantees. Interesting avenues for future
work are to develop efficient distributed algorithms for the same problem and to prove lower bounds
on the running time.

10m is the number of steps in the random walk.
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Algorithm k = 100 k = 500 k = 1000 k = 2000 k = 3000 k = 5000
FASTK-MEANS++ 21898668 16732379 14987614 13477854 12691185 11628744

REJECTIONSAMPLING 21743137 16851767 15024812 13558210 12720314 11654493
K-MEANS++ 21583261 16409834 14746899 13395052 12480900 11496421

AFKMC2 21596184 16344430 14750601 13246450 12450688 11476712
UNIFORMSAMPLING 23255642 17919981 16373134 14579718 13934375 12938255

Table 5: Costs of the solutions produced by the algorithms for the Song dataset for various values of
k. All the numbers are scaled down by a factor 105.

Algorithm k = 100 k = 500 k = 1000 k = 2000 k = 3000 k = 5000
FASTK-MEANS++ 17304 9820 7883 6326 5625 4868

REJECTIONSAMPLING 17735 9970 8031 6432 5644 4893
K-MEANS++ 18498 9585 7812 6254 5561 4815

AFKMC2 17242 9844 7710 6272 5595 4838
UNIFORMSAMPLING 19912 10630 8678 6880 6120 5228

Table 6: Costs of the solutions produced by the algorithm for Census dataset for various values of k.
All the numbers are scaled down by a factor 104.

Broader Impact

Our work focuses on speeding-up the very popular K-MEANS++ algorithm for clustering. The
K-MEANS++ algorithm is used in a variety of domains and is an important tool for extracting
information, compressing data, or unsupervised classification tasks. Our result shows that one can
obtain a much faster implementation of the k-means++ algorithm while preserving its approximation
guarantees both in theory and in practice. Therefore, we expect that our new algorithm could have
impact in several domains in which clustering plays an important role. A broader concrete impact in
society is harder to predict since this is mainly fundamental research.
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