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Abstract

We consider the fundamental problem of selecting k out of n random variables
in a way that the expected highest or second-highest value is maximized. This
question captures several applications where we have uncertainty about the quality
of candidates (e.g. auction bids, search results) and have the capacity to explore
only a small subset due to an exogenous constraint. For example, consider a second
price auction where system constraints (e.g., costly retrieval or model computation)
allow the participation of only k out of n bidders, and the goal is to optimize the
expected efficiency (highest bid) or expected revenue (second highest bid).
We study the case where we are given an explicit description of each random
variable. We give a PTAS for the problem of maximizing the expected highest value.
For the second-highest value, we prove a hardness result: assuming the Planted
Clique Hypothesis, there is no constant factor approximation algorithm that runs
in polynomial time. Surprisingly, under the assumption that each random variable
has monotone hazard rate (MHR), a simple score-based algorithm, namely picking
the k random variables with the largest 1/

√
k top quantile value, is a constant

approximation to the expected highest and second highest value, simultaneously.

1 Introduction

We study a basic algorithmic meta-question: given n independent random variables, select k of them,
with the objective of maximizing the expected largest value, and/or the expected second highest value.
We are motivated by the following applications:

Search engine Given a search query, the search engine has to return k results of n candidates. The
random variables model the uncertainty about the user’s utility from each result. Among the k, the
human can select the most relevant result, and our goal is to maximize their utility. In their seminal
WAND paper, Broder et. al. [BCH+03] point out that a search engine’s latency constraint prevents it
from perfectly scoring all possible candidates, and propose a two-tier solution for scoring documents
in a search engine, where first they run a fast approximate evaluation and then a full slower evaluation
limited to only promising candidates.
Procurement auctions A buyer in a complex procurement auction (e.g. for a large engineering
project [RL07, Tan92]) receives n initial proposals. They need to select a subset of k bidders who
will be allowed to submit a more detailed second-stage proposal, of which the best will be selected.
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Simple ad auctions A platform receives n candidates for a slot to display an online ad. The
candidates come with a value-per-click bid, as well as a set of features for estimation of relevance and
click-through-rate (CTR). A large deep model converts these to CTR estimates ([HPJ+14, MHS+13]),
which are combined with the per-click bid to generate an auction score. An auction (typically second
price [Var07, EOS07]) is run to choose the ad to display and its per-click payment. In this setting,
computational constraints (the auction has to be extremely fast) typically prevent evaluation of the
large model on all n candidates; all but k are filtered using scores from a faster, less accurate model,
before going to the auction.

The race for a vaccine A government agency like NIH or NSF can fund k out of n competing grant
proposals that aim to solve the same problem, e.g. develop a vaccine for COVID-19. Ultimately, the
best vaccine will be used.

The significance of the expected largest value is clear in all applications. In the context of auctions
(of both types), the expected second-largest is important since it is the revenue of a second-price
auction. The expected maximum objective was previously studied by Kleinberg and Raghu [KR18]
in the context of a fifth application, team selection.

Team selection A manager needs to select k out of n applicants to form a team to work on a
particular task [KR18]. Every applicant takes one or multiple tests, modeled as samples from the
distribution of performance. In the “contest” model, the team’s performance is evaluated based on
the best outcome of any team member.

[KR18] focused on the existence of good score-based selection rules, i.e. rules that separately
compute a score for each variable, and then take the k variables with the highest score. It is tempting,
and very common in practice, to compute the average performance for each variable, and then
pick the best k. But, this would lead to a suboptimal solution. As a simple example, consider a
scenario with n = 20 candidates: 10 that always score 1.1 (with probability 1) and 10 score 0 with
probability 0.9, and 10 otherwise (with probability 0.1). We must form a 10-member team. The
first group of candidates has higher individual averages, but the group’s expected maximum score is
only 1.1. On the other hand, the second group has lower individual scores, but the probability that
the maximum is less than 10 is 0.910; the expected maximum is larger than 6.5. Thus, a group of
high variance members can outperform a team formed by the members with the highest individual
score [Pag08, HP04].

[KR18] prove that two simple test scores, “best of k samples” and “expectation over 1/k top quantile”,
obtain a constant factor approximation to the expected-maximum objective. Furthermore, they prove
that in general, the approximation ratio of any score-based rule is at most a constant (namely 8/9).

Our contribution

In this work, we extend the seminal ideas of [KR18] in multiple directions.

Algorithms and complexity We first consider the algorithmic task of computing a near-optimal
subset given an explicit description of discrete support random variables, i.e. as a list of (value,
probability) pairs. We prove NP-hardness and give a near-linear time PTAS for the highest value
objective. Score based algorithms with such performance are ruled out by the lower bound of [KR18],
so, of course, our algorithm is not score based. This result shows that looking at the interaction
between variables opens the door to much better guarantees. On the other hand, for the second-highest
objective, we prove that computing any constant factor approximation is intractable, assuming either
(a variant of) the Planted Clique assumption or the Exponential Time Hypothesis.

A simple and near-optimal score for MHR distributions In contrast to our worst-case hardness
result, we show that if each variable satisfies a monotone hazard rate (MHR) assumption,2 then a
simple score-based rule gives a constant factor approximation to both the highest and second-highest
objectives, simultaneously. The score si of each variable xi is the value of its 1/

√
k top quantile,

namely si = sup
{
τ : Pr[Xi > τ ] ≥ 1/

√
k
}
.

2A random variable is MHR if its hazard rate h(x) = f(x)/(1− F (x)) is monotone non-decreasing; see
Section 2. Many common families of distributions are MHR, e.g. Normal, Exponential and Uniform.
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Selection rules for machine learning In practice, for most of the above scenarios, we don’t have
an explicit description of the distribution. Relaxing the assumption of access to such an explicit
description was left as an open problem in [KR18]. In this paper, we consider a more realistic scenario
where each candidate is represented by a vector of features, and the random variables model our
uncertainty about the true value of each candidate. We develop regression-based analogs of [KR18]’s
and our scoring rules and empirically evaluate them on a neural net to predict the popularity of tweets
on Twitter. We observe that the Quantile method and [KR18]’s method have similar performance,
and both outperform regression (squared loss), for a large range of input quantiles (including the
choices that we have theoretical guarantees for).

2 Model

There is a set N = {X1, . . . , Xn} of n mutually independent random variables. We write [n]
for the set {1, . . . , n}. Our goal is to select a subset S ⊂ [n] of size k ≥ 2 in order to maxi-
mize the expected largest value, denoted by E[maxi∈S Xi], and expected second largest value, de-
noted by E[smaxi∈S Xi]. Let OPTmax(X) = maxS⊂[n]:|S|=k E[maxi∈S Xi] and OPTsmax(X) =
maxS⊂[n]:|S|=k E[smaxi∈S Xi] be the optimal expected largest and second largest values. We often
overload notation and refer to the optimal subsets themselves as OPTmax(X) and OPTsmax(X).
Also, when clear from context we drop the subscript, and simply write OPT(X).

In Sections 3 and 4 we are interested in computation: given an explicit description of the Xis, i.e.
for each Xi pairs of numbers (vj , pj) indicating the probability pj that Xi takes value vj , can we
compute a good approximation to OPTmax(X) and OPTsmax(X)? In Section 5 we consider a
slightly different model, where each Xi is a continuous random variable. Let Fi(x) and fi(x) be the
cumulative distribution function (CDF) and probability density function (PDF) of Xi. We will be
interested in a special family of random variables.
Definition 1 (MHR). A random variable X has Monotone Hazard Rate (MHR) if its hazard rate
h(v) = f(v)

1−F (v) is a monotone non-decreasing function.

Many common families of distributions such as the Uniform, Exponential, and Normal have monotone
hazard rate. MHR distributions have been extensively studied in the statistics literature under the
(perhaps better) name of IFR, Increasing Failure Rate (see [BP96]) but to maintain consistency with
the computer science literature we refer to them as MHR in this paper.

3 A PTAS for Expected Largest Value

In this section we study the problem of maximizing the expected largest value. First, we show that
the problem is NP-hard.
Theorem 1. Given n random variables X1, . . . , Xn, an integer k and a target C, deciding if there
exists a subset of random variables, of size k, whose expected largest largest value is at least C, is an
NP-hard problem.

We defer the proof to Appendix A. We note that [KR18] also show NP-hardness, but for the case of
correlated random variables. Our main result for this section is a PTAS for maximizing the expected
largest value.
Theorem 2. For every fixed ε ∈ (0, 1] there exists an algorithm that runs in time polynomial in n, k
and 1/ε, and outputs a (1− ε) approximate solution to the expected maximum objective.

Our algorithm uses a number of non-trivial pre-processing steps to simplify every random variable
Xi to a new random variable Ti that can be completely described via one of constantly many vectors
(this constant, of course, depends on ε). After this transformation, the search space is small enough
for a brute-force approach to work, by trying all ways to put k “balls”, the random variables, into a
constant number of “bins”, the different descriptions, resulting in a polynomial time algorithm. We
can further reduce this to an almost linear time algorithm. We briefly sketch the main ideas. Missing
proofs can be found in Appendix B.

Our pre-processing works as follows. First, for some appropriately chosen threshold τ , we replace,
for each random variable Xi, the outcomes (i.e. points of the support) of Xi with value greater than
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τ with a point mass of the same expectation. That is, we construct a new random variable X̂i that
is equal to Xi when Xi ≤ τ and otherwise randomizes between zero and a value Hmax (formally
defined in the appendix), in a way that E[X̂i|X̂i > τ ] = E[Xi|Xi > τ ]. We show (Claim 2) that for
any subset of variables, this transformation has a negligible effect on the expected maximum value.

Second, for each random variable Xi, we discard outcomes with value smaller than ε2τ . Those values
have a negligible contribution to the expected largest value anyway (Claim 3). Third, the new random
variables are supported in the range [ε2τ, τ ]∪ {0, Hmax} for each Xi. We partition the [ε2τ, τ ] range
into ` := log1−ε(ε

2) = O( 1
ε log( 1

ε )) = Õ(1/ε). Let Ij = [ ε2

(1−ε)j−1 τ,
ε2

(1−ε)j τ). We further round

down the values within each interval Ij to its lower endpoint ε2

(1−ε)j−1 τ , losing a 1− ε factor. Thus
far we have constructed random variables that are `+ 2 point masses (with the last two corresponding
to 0 and Hmax from Step 1).

Fourth, for some appropriately chosen threshold η, we decompose each variable into a core random
variable Ci and a tail random variable Ti using η as the cutoff. We show (Lemma 3) that we can set
aside a small portion of our “budget” k to cover almost the full contribution to the expected maximum
from the cores using a simple greedy algorithm. We can therefore focus on optimizing the tail random
variables.

Fifth, for each tail random variable Ti, we discard all intervals whose marginal contribution is much
smaller than the total expectation from Ti. We show (Claim 4) that this step has a negligible effect on
the expected maximum of any subset. For each of the remaining intervals, we consider its marginal
contributions relative to the total expectation, and round it to the nearest power of (1 + ε).

This concludes the pre-processing. After the last step, we use a new representation for each tail
random variable Ti, as follows. Let I = ∪`j=1Ij ∪Hmax be the set of intervals Ti can take a value
in. We can write the expectation of Ti as E[Ti] =

∑
I∈I Pr[Ti ∈ I]E[Ti|Ti ∈ I]. We henceforth use

REL(i) to denote the vector of length ` + 1, whose j-th component is the relative contribution of
I , the j-th interval in I, to the expectation of Ti. We overload notation and use I for the index of
interval I . Thus, we have

REL(i, I) :=
Pr[Ti ∈ I]E[Ti|Ti ∈ I]

E[Ti]
.

Notice that Ti is completely described by E[Ti] and REL(i). Given our last pre-processing step
REL(i, I) only take a constant number of values. The length of REL(i) is `+ 1 = Õ(1/ε), again,
a constant; therefore the total number of REL(i) vectors C(ε) is a constant. Given two random
variables with the same REL(i) vector, it is always preferable to pick the one with the larger
expectation (since it stochastically dominates).

Thinking of each different REL(i) vector as a type, each random variable has one of C(ε) types.
At this point, we can simply try all ways to put k “balls”, the random variables, into C(ε) “bins”,
the different types, and taking the best one (of the ones corresponding to feasible assignments with
respect to the random variables we actually have). This gives a O(n)kC(ε) time algorithm (where
the O(n) comes from the running time of the pre-processing steps). We show how to vastly improve
the running time by considering only log(k) possibilities for each type. Specifically, instead of
considering putting 1, 2, . . . , k “balls” to bin I , we consider 1, (1 + ε), (1 + ε)2, . . . , k “balls”. The
running time is improved to O(n(log k)Õ(1/ε)) = O(npolylog(k)).

4 Hardness for Expected Second Largest Value

In this section we prove that, in stark contrast to expected maximum, maximizing the expected second
largest value is hard to approximate, assuming the planted clique hypothesis or the exponential time
hypothesis. The planted clique hypothesis states that there is no polynomial time algorithm that
can distinguish between an Erdős-Rényi random graph G(n, 1/2) and one in which a clique of size
polynomial in n (e.g. n1/3) is planted. The exponential time hypothesis (ETH) states that no 2o(m)

time algorithm can decide whether any 3SAT formula with m clauses is satisfiable.
Theorem 3. Assuming the exponential time hypothesis or the planted clique hypothesis, there is no
polynomial time algorithm that, given n random variables X1, . . . , Xn, finds a subset of size k whose
expected second largest value is a constant factor of the optimal.
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We give a reduction from the densest κ-subgraph problem, which is known to be hard under both
hypotheses [Man17, AAM+11]. We briefly sketch the construction and intuition here, and defer the
details to Appendix C.

Given a graphG on n vertices we construct n random variablesX1, . . . , Xn. For every edge e = (i, j)
in the graph, we add the value p2e with probability 1/pe to the support of Xi and Xj , for some value
pe. If both Xi and Xj are in a subset, and an edge (i, j) exists, then the second largest value is
(exactly equal to) p2e with probability at least 1/p2e, which contributes 1 to the expected second largest
value. Furthermore, by picking the pes very far apart, we can ensure the probability that the second
largest value is p2e but the largest value is strictly larger is negligible. Therefore, the overall expected
second largest value for a subset S is roughly the corresponding number of edges in the graph.

5 Quantile Based Algorithm

In this section, we consider continuous random variables that have monotone hazard rate. Omitted
proofs can be found in Appendix D. Let α(i)

p ≥ inf{x|Fi(x) = 1− 1
p}, for p ≥ 1.

Theorem 4. Picking the k random variables with the highest α(i)
p , for p =

√
k, is a 32 approximation

to the optimal subset for the expected largest value and a 1000 approximation to the optimal subset
for the expected second largest value.

We note that we did not try to optimize the constant factors, and further improvements could be
possible. Let S be the subset selected by the algorithm. Let X̂i be the random variable that is identical
to Xi up until α(i)√

k
, and takes value α(i)√

k
with probability 1√

k
. We analyze the algorithm in two steps.

First, in Section 5.1 we show that S is an almost optimal subset for the truncated random vari-
ables (Lemma 1), i.e. for some small δk, δ′k > 0, E[maxi∈S X̂i] ≥ (1 − δk)E[maxi∈A X̂i] and
E[smaxi∈S X̂i] ≥ (1 − δ′k)E[smaxi∈B X̂i], for all A,B ⊆ [n], |A| = |B| = k. Second, in Sec-
tion 5.2 we show that by truncating at

√
k we only lose constant factors (Lemma 2). Given the two

lemmas, we complete the proof of Theorem 4 in Section 5.3.

5.1 Almost optimal selection for truncated random variables

We start by showing that for truncated random variables we can make an almost optimal selection.
The intuition is as follows. Let αmin be the k-th largest α(i)

p value. For the random variables in S,
the probability that each of them exceeds αmin is at least 1/p. In fact, the largest one exceeds S with
probability at least 1−

∏k
i=1(1− 1/p). If p ∈ Ω(1/

√
k), then with high probability both the largest

and the second largest value exceed αmin. Conditioned on this event, the set S we have chosen
contains the random variable with the highest value and the random variable with the second highest
value among all (n) random variables.

Lemma 1. Let X̂i be the random variable that takes value x when (the possibly non MHR) random
variable Xi takes value x, for all x < α

(i)
p , and takes value α(i)

p when Xi takes value at least α(i)
p

(i.e. with probability 1/p). Let S be the subset of random variables, |S| = k, with the largest αp
values. Then for all A ⊆ [n], |A| = k, (1) E[maxi∈S X̂i] ≥

(
1− (1− 1/p)k

)
E[maxi∈A X̂i], and

(2) E[smaxi∈S X̂i] ≥
(
1− (k + 1)(1− 1/p)k−1

)
E[smaxi∈A X̂i].

5.2 Loss from truncation

In this section we bound the ratio between the expected highest and expected second highest value
between Xi and X̂i, for any subset A of size k. For ease of notation we, without loss of generality,
consider the subset A = [k]. We consider an algorithm that, given as inputs k random variables
X1, . . . , Xk outputs anchoring points β1 and β2 (Algorithm 1). If the variables are MHR then the
contribution to E[maxiXi] and E[smaxiXi] from the tail, formally events larger β = max{β1, β2}
and β1, respectively, is upper bounded by (roughly) a constant times β and β1, respectively. Second,
the outputs of this algorithm satisfy, even for non-MHR random variables, that the probability of
maxiXi and smaxiXi being above β and β1 is at least a constant. Finally, the outputs β1 and β2
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when the algorithm is executed on input X1, . . . , Xk and on input X̂1, . . . , X̂k (as defined above, i.e.
X̂i is Xi truncated at α(i)√

k
) are exactly the same. The upper bound on the tail connects β1, β2 with

the expectations of the original random variables, while the lower bound on the probability (plus
Markov’s inequality) connects β1 and β2 with the expectations of the truncated random variables.
Combining all these ingredients we get the main lemma for this step.

Lemma 2. Let X1, . . . , Xk be MHR random variables. Let X̂i be the random variable that is
identical to Xi up until α(i)√

k
, and takes value α(i)√

k
with probability 1/

√
k. Then E[maxiXi] ≤

28.8E[maxi X̂i] and E[smaxiXi] ≤ 122E[smaxi X̂i].

Algorithm 1 is a modification of an algorithm of Cai and Daskalakis [CD15]. Verbatim, their
result states that for k independent MHR random variables, X1, . . . , Xk, there exists an al-
gorithm that outputs an anchoring point β such that Pr[maxiXi ≥ β/2] ≥ 1 − 1√

e
and∫∞

2β log2(1/ε)
xfmaxiXi(x)dx ≤ 36βε log2(1/ε),∀ε ∈ (0, 1/4), where fmaxiXi(x) is the probability

density function of maxiXi. For our purposes, this high level view is not sufficient. This theorem
gives us a value β such that truncating the Xis at 2β log(1/ε) has a small effect on the expected
maximum of the Xis. This fact is very surprising, but on first glance seems of little use here.
First, we do not know which subset of [n] to use to compute β (selecting a good subset is, in fact,
the problem we’re trying to solve). Second, it is unclear how to use this information to bound
E[maxiXi]/E[maxi X̂i]. Third, this theorem tells us nothing about the expected second largest value.
We need a more flexible approach.

Taking a closer look at their proof, the algorithm of [CD15] looks at quantiles of the form 2t/k.
Specifically, in round t, for t = 0, . . . , log2 k − 1, it sorts the remaining random variables by αk/2t
and eliminates the bottom half, keeping track of βt, the smallest threshold among surviving random
variables. β is the maximum of the βts and the α2 value of the unique surviving random variable.
Truncating our random variables at αk and then executing this algorithm for Xi and X̂i would give
the same β. Unfortunately, such a truncation point is not good enough for the bound on the expected
second largest value in Lemma 1. Our first modification is to instead focus on the

√
2t/k top quantile

values. This guarantees that the algorithm does not use any information from the parts where Xi and
X̂i differ. In order to take care of both maxiXi and smaxiXi at the same time, further modifications
in the book-keeping (which values to remember at each round) and the analysis are necessary. Overall
our algorithm works as follows. In round t, for t = 0, . . . , log2 k − 1, it sorts the random variables
by threshold α√

k/2t
and eliminates the bottom half. We record the largest threshold among the

eliminated random variables. The maximum of these records is β1, the threshold we use for the
second highest value smaxiXi. β2 is the threshold α√2 for the unique random variable that survived
the log2 k − 1 rounds of elimination. The maximum of β1 and β2 is the threshold we use for the
highest value maxiXi. We assume without loss of generality that k is a power of 2; we can always
add random variables that take value deterministically zero.

Algorithm 1: Algorithm for finding β

Input: α(i)
q for i = 1, . . . , k, and q =

√
k/
√

2
t
, for t = 0, . . . , log2 k − 1.

Define the permutation π0(i) = i, i ∈ [k]. Let Q0 = [k].
for t = 0, . . . , log2 k − 1 do

For j ∈ [k/2t], sort the numbers α(πt(j))√
k/
√
2
t in decreasing order πt+1 such that

α
(πt+1(1))√
k/
√
2
t ≥ α(πt+1(2))√

k/
√
2
t ≥ · · · ≥ α(πt+1(k/2

t))√
k/
√
2
t ;

Qt+1 = {πt+1(i)|i ≤ k/2t+1} ;

βt = α
(πt+1(k/2

t+1+1))√
k/
√
2
t ;

end
Set βlog2 k = α

(πlog2 k
(1))

√
2

;
Output β1 = maxt=0,...,log2 k−1 βt and β2 = βlog2 k;

We bound the contribution to the tail above β1 and β2 separately in Appendix D.2.1. In Section D.2.2
we lower bound the probability that the maximum and second maximum is above max{β1, β2} and
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β1, respectively; importantly these lower bounds hold even if the random variables are not MHR. We
complete the proof of Lemma 2 in Appendix D.2.3.

5.3 Putting everything together

Proof of Theorem 4. Let S be the subset of [n] selected by our algorithm, i.e. the set of random
variables with the largest α√k. Let W ∗ be the subset of [n] that maximizes the expected maximum
and R∗ be the subset that maximizes the expected second maximum.

E[max
i∈S

X̂i] ≥(Lem. 1)
(

1− (1− 1/
√
k)k
)
E[max
i∈W∗

X̂i]

≥ 0.91E[max
i∈W∗

X̂i]

≥(Lem. 2) 0.91

28.8
E[max
i∈W∗

Xi],

where in the second inequality we lower bounded for the value at k = 2. Similarly,

E[smaxi∈S X̂i] ≥(Lemma 1)
(

1− (k + 1)(1− 1/
√
k)k−1

)
E[smaxi∈R∗ X̂i]

≥ 0.122E[smaxi∈R∗ X̂i] ≥(Lemma 2) 0.122

122
E[smaxi∈R∗ Xi] =

1

1000
E[smaxi∈R∗ Xi].

6 Experiments

We run two types of experiments to evaluate the methods described above; we restrict attention to the
simple score-based methods and exclude the more complex PTAS from Section 3. First, we evaluate
the methods on synthetic data. That is, we construct explicit distributions that we give as inputs
to our methods and measure the expected largest and expected second largest value. We observe
that the vast differences in approximation factors do not appear. In other words, despite the poor
approximation guarantees of the quantile method in theory, in practice it does just as well as the
theoretically superior (better approximation guarantee without the MHR assumption, at least for
expected maximum) method of [KR18]. In the same type of experiment, we slightly deviate from
measuring the expected highest and second highest value, and compare the methods in a different
dimension: how the scarcity of data affects each method’s selection. Second, we evaluate the methods
on real data, and specifically likes-data from Twitter (from [Kag20]). In practice explicit distributions
typically only arise if we fit a model to data. A slightly more realistic assumption is historical
samples from the same distribution. In our experiments, we go one step further: we consider the
practical scenario where we observe only one value for each feature vector. Here, we have an implicit
distribution over our uncertainty. We develop regression-based analogs of the score-based algorithms
and compare them. We include some additional figures and details about the implementations in
Appendix E.

Synthetic data. We construct n = 500 (independent but non-identical) Normal distributions
Ni(µi, σi), where each mean µi is drawn from U [0, 60] and σi is drawn from U [0, 30]. Since we
want to deal with non-negative and bounded support, we further clip the distributions as follows: for
each Ni, we make 5000 draws, taking a min with Vmax := 1000 and a max with 0, and then take the
empirical distribution. We note that this process yields an explicit distribution that we can give as
input to each method. We run this process 100 independent times and compare the following methods,
for three different values of k = 10, 20, 30: (1) Quantile, the algorithm from Section 5, (2) KR, the
algorithm from [KR18], (3) Expectation: pick the k distributions with the highest expected values,
and (4) Greedy Submodular Optimization: Pick distributions iteratively, picking the next distribution
to maximize the increment in expected reward. This is the standard greedy (1− 1/e)-approximation
algorithm from submodular optimization. It is relevant here since the expected maximum objective is
a submodular function (see Appendix B or [KR18] for a proof). The Quantile and KR algorithms are
parameterized by the quantiles picked. Note that “quantile” is used to refer to the bottom quantile.
So, for example, the correct instantiation of the KR method would be to use the 1− 1/k, the value
such that a 1− 1/k fraction of entries is below. We choose a range of quantiles for each method, and
observe the performance under each one.
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Figure 1: Comparing the average perfor-
mance (errors bars show standard deviation
divided by square root of number of exper-
iments) of the score-based algorithms and
Greedy, for selecting k out of n = 500 distri-
butions, for the expected maximum objective.

Figure 2: Percentage of small data candidates
selected and expected maximum for different
algorithms.

The results for the expected maximum objective are presented in Figure 1. We include figures for the
expected second largest value objective in Appendix E. We can see that the KR algorithm is always
outperforming expectation, while the Quantile algorithm’s performance is more sensitive to the
quantile selected. However, despite the poorer worst-case approximation guarantees of the Quantile
algorithm, it performs just as well as the algorithms with better guarantees. For the parameter choices
that we have theoretical guarantees for, though, (1− 1√

k
for Quantile and 1− 1/k for KR) the two

algorithms, as well as the greedy algorithm, are indistinguishable in terms of performance.

More versus fewer data. We also run the following “selection-bias” experiment on synthetic data.
In the experiments so far, we drew samples from a Normal distributionNi(µi, σi), took the empirical
distribution, and used that as the input to our algorithms. The expected largest/second largest value is
one measure that we can use to compare the different methods. In theory, improving the objective
function is always a better outcome. In practice, in particular in the context of the broader impact
of machine learning research, it is important to explore the bias introduced by different algorithms.
Algorithmic bias due to data scarcity is a well-documented bias in practical ML (e.g. [MMS+19]).
Here, we explore the bias of each method with respect to the number of samples available from each
distribution. After sampling µi and σi for each Normal, we also sample a binary label {l,m}, with
probability 1/2. If the label is m our algorithms see 5000 samples from this random variable, as
before. If the label is l they only see 10. We compare each method along two metrics: in terms of
the percentage of small labeled distributions selected, and in terms of the true expected maximum of
the subset selected. We notice that all methods have comparable performance in terms of expected
maximum, but select very different candidates in terms of their labels. See Figure 2, and additional
figures in Appendix E.

Real data and the regression-based algorithms. In most practical situations, we do not have
access to an explicit distribution. Instead, we have multi-dimensional feature vectors associated
with each data point. To apply the insights from our algorithms to this kind of data, we develop
regression-based analogs of the score-based methods (Quantile and KR), and evaluate them together
with the standard squared loss algorithm (which naturally corresponds to picking the k candidates
with the k largest expected values).

We start with a dataset of 8 million tweets, sorted in chronological order. We use the first 2 million
for collecting features: we drop all entries with fewer than 5 likes and pre-process the text, and use as
features the (distinct) words that appear in a certain range. This step gives us ≈ 5500 features. The
value in our case is the number of likes a tweet received.

Given a feature vector, there is some correct distribution over the value. At run time, we would like
to have an explicit description of these distributions that we can use as inputs to our algorithms,
and select a good subset of tweets. Despite the lack of such explicit descriptions, notice that our
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(a) k = 10 (b) k = 30

Figure 3: Comparing the average performance (errors bars show standard deviation divided by square
root of number of experiments) of the KR, quantile and regression methods, for selecting k out of
n = 500 tweets, for the expected maximum objective.

methods do not use full access to the explicit description. The Quantile method only needs access to
a specific quantile, the method that picks the k candidates with the largest expected value only needs
the expected value, while the KR method only needs the expected value above a certain quantile.
Here we replace exact access (or even sample access) of this information, and instead work with
estimates produced by learning algorithms (that are trained using feature vector, number of likes
pairs). For the Quantile method we need to estimate a specific quantile, which becomes the usual
quantile loss. For the “Regression” method we train using squared loss. The KR-based regression
works as follows. The ideal score for the KR algorithm is of the form E[Xi|Xi in top q quantile ].
Our implementation first trains using quantile loss on a number of different quantiles. We filter
the data using these quantile models, throwing away all entries with real value (“likes”) below the
prediction. For the remaining entries we train using squared loss.

We train our models using the next 2 million tweets (without dropping any entries). We train a neural
network, with 2 hidden layers, with quantile loss at quantiles [0.7, 0.8, 0.9, 0.95, 0.99] (and this is
the estimator utilized by the Quantile method). We also train a similar network with squared loss
(this is the estimator for the Regression method). For the KR method we first filter the data using the
quantile models, and then use a neural net with squared loss for the rest. Lastly, we use the remaining
4 million tweets, that we map to our features, for testing. We randomly perturb this data, and split in
non-overlapping chunks of n = 500 tweets each. A single experiment samples a chunk of entries,
ranks by each method’s score and then reveals the true largest/second largest number of likes in the
entries picked by each method. We do 8000 experiments.3 The results are presented in Figure 3.
We can see that both the Quantile method and the KR method outperform regression (note that the
parameters for which we have theoretical guarantees are q = 1 − 1/

√
10 ≈ 0.7 for quantile and

q = 1− 1/10 = 0.9 for KR).

Broader impact

Our results apply to a wide range of resource allocation problems in society. The applications stated
in the introduction — search, auctions, vaccine development, or team selection — all have broad
benefits.

In this work we focused on optimizing the expected maximum subject to the uncertainty about
outcome of each random variable. An interesting question arising from our work is how the availability
of more data affects the choices of the algorithms we consider. This question has broad implications
given recent research that shows that machine learning training sets are often biased and include
less samples corresponding to underrepresented subgroups of the population (e.g. [MMS+19]).
Sparseness of data may have two competing effects on the probability of a candidate to be selected:
On one hand, our algorithms favor high variance variables, so candidates with less data may be more

3We removed one outlier tweet with 280, 000 likes (incidentally, Quantile at 0.99 did include this tweet in
its set, even for k = 10). The second largest number of likes was 40, 000.
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likely to be selected. On the other hand, our algorithms focus on values in the far tail, and candidates
with sparse data may not have any values high enough to show their potential. It is an interesting
question to understand how these two affects balance.

As an initial step toward understanding how availability of data affects the probability of a candidate
being selected, we consider the following experiment: We take n = 500 normal random variables
with parameters drawn independently from the same distribution as in Section 6. We randomly
partition the variables into More-Data and Less-Data types. For the More-Data types, we take
the empirical distribution from 5000 samples; for Less-Data types, we use 10 samples. We then
run different algorithms for selecting k = 30 variables using the empirical distribution. For each
algorithm, we measure the fraction of Less-Data types selected among the k winners, and the overall
max when drawing a fresh sample from each of the k true distributions. We observe (Figure 2) that in
terms of expected max (our main objective function), Greedy, Quantile-0.9, and KR-0.9 all perform
almost equally well, and Expectation is close after. But Greedy and to some extent Quantile-0.9
under-select Less-Data types, whereas KR-0.9 selects Less-Data types at a higher rate than their
fraction (50%) of the population.
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