
A Additional Details of the Method

A.1 Algorithm

We present the algorithm of rendering with NSVF as follows in Algorithm 1. We additionally return
the transparency A, and the expected depth Z which can be further used for visualizing the normal
with finite difference.

Algorithm 1: Neural Rendering with NSVF
Input: camera p0, ray direction v, step size τ , threshold ε, voxels V = {V1, . . . , VK}, background cbg,

background maximum depth zmax, parameters of the MLPs θ
Initialize: transparency A = 1, color C = 0, expected depth Z = 0
Ray-voxel Intersection: Return all the intersections of the ray with k intersected voxels, sorted from near
to far: zint1 , z

out
t1 , . . . , zintk , z

out
tk , where {t1, . . . , tk} ⊂ {1 . . .K}, k < K;

if k > 0 then
Stratified sampling: z1, . . . , zm with step size τ , where z1 ≥ zint1 and zm ≤ zouttk ;
Include voxel boundaries: z̃1, . . . z̃2k+m ← sort

(
z1, . . . , zm; zint1 , z

out
t1 , . . . , zintk , z

out
tk

)
;

for j ← 1 to 2k +m− 1 do
Obtain midpoints and intervals: ẑj ← z̃j+z̃j+1

2
,∆j ← z̃j+1 − z̃j ;

if A > ε and ∆j > 0 and p(ẑj) ∈ Vi(∃i ∈ {t1, . . . , tk}) then
α← exp (−σθ (gi(p(ẑj))) ·∆j) , c← cθ (gi(p(ẑj)),v);
C ← C +A · (1− α) · c, Z ← Z +A · (1− α) · ẑj , A← A · α;

C ← C +A · cbg, Z ← Z +A · zmax;
Return: C, Z,A

A.2 Overall Pipeline

We present the illustrations of the overall pipeline to better demonstrate the proposed approach in
Figure 8. For any given camera position p0 and the ray direction v, we render its color c with NSVF
by first intersecting the ray with a set of sparse voxels, and sampling and accumulating the color and
density inside every intersected voxel, which are predicted by neural networks.

Figure 8: Illustration of the differenitable volume rendering procedure with NSVF. For any given
camera position p0 and the ray direction v, we first intersect the ray with a set of sparse voxels, then
predict the colors and densities with neural networks for points sampled along the ray inside voxels,
and accumulate the colors and densities of the sampled points to get the rendered color C(p0,v).

B Additional Experimental Settings

B.1 Datasets

We present more details about the datasets we used. We conduct the experiments of single-scene
learning on five datasets, including three synthetic datasets and two real datasets:

14



• Synthetic-NeRF. We use the NeRF (Mildenhall et al., 2020) synthetic dataset which includes eight
objects rendered with path tracing. Each object is rendered to produce 100 views for training and
200 for testing at 800× 800 pixels.

• Synthetic-NSVF. To demonstrate the ability of NSVF to handle various conditions, we additionally
render eight objects in 800× 800 with more complex geometry and lighting effects. Details on the
original source files and license information are given below:

– Wineholder(CC-0) https://www.blendswap.com/blend/15899
– Steamtrain(CC-BY-NC) https://www.blendswap.com/blend/16763
– Toad(CC-0) https://www.blendswap.com/blend/13078
– Robot(CC-BY-SA) https://www.blendswap.com/blend/10597
– Bike(CC-BY) https://www.blendswap.com/blend/8850
– Palace(CC-BY-NC-SA) https://www.blendswap.com/blend/14878
– Spaceship(CC-BY) https://www.blendswap.com/blend/5349
– Lifestyle(CC-BY) https://www.blendswap.com/blend/8909

• BlendedMVS. We test on four objects of a recent synthetic MVS dataset, BlendedMVS (Yao et al.,
2020) 2. The rendered images are blended with the real images to have realistic ambient lighting.
The image resolution is 768× 576. One eighth of the images are held out as test sets.

• Tanks & Temples. We evaluate on five objects of Tanks and Temples (Knapitsch et al., 2017) 3 real
scene dataset. We label the object masks ourselves with the software of Altizure 4, and sample
One eighth of the images for testing. The image resolution is 1920× 1080.

• ScanNet. We use two real scenes of an RGB-D video dataset for large-scale indoor scenes,
ScanNet (Dai et al., 2017)5. We extract both the RGB and depth images of which we randomly
sample 20% as training set and use the rest for testing. The image is scaled to 640× 480.

For the multi-scene learning, we show our result of training with all the scenes of Synthetic-NeRF
and two out of Synthetic-NSVF, and the result of training with all the frames of a moving human:

• Maria Sequence. This sequence is provided by Volucap with the meshes of 200 frames of a moving
female. We render each mesh from 50 viewpoints sampled on the upper hemisphere at 1024×1024
pixels. We also render 50 additional views in a circular trajectory as the test set.

B.2 Implementation Details

Architecture The proposed model assigns a 32-dimentional learnable voxel embedding to each
vertex, and applies positional encoding with maximum frequency as L = 6 (Mildenhall et al., 2020)
to the feature embedding aggregated by eight voxel embeddings of the corresponding voxel via
trilinear interpolation. As a comparison, we also train our model without positional encoding where
we set the voxel embedding dimension d = 416 in order to have comparable feature vectors as the
complete model. We use around 1000 initial voxels for each scene. The final number of voxels
after pruning and progressive training varies from 10k to 100k (the exact number of voxels differs
scene by scene due to varying sizes and shapes), with an effective number of 0.32 ∼ 3.2M learnable
parameters in our default voxel embedding settings.

The overall network architecture of our default model is illustrated in Figure 9 with ∼ 0.5M
parameters, not including voxel embeddings. Note that, our implementation of the MLP is slightly
shallower than many of the existing works (Sitzmann et al., 2019b; Niemeyer et al., 2019; Mildenhall
et al., 2020). By utilizing the voxel embeddings to store local information in a distributed way,
we argue that it is sufficient to learn a small MLP to gather voxel information and make accurate
predictions.

2https://github.com/YoYo000/BlendedMVS
3https://tanksandtemples.org/download/
4https://github.com/altizure/altizure-sdk-offline
5http://www.scan-net.org/

15

https://www.blendswap.com/blend/15899
 https://www.blendswap.com/blend/16763
https://www.blendswap.com/blend/13078
https://www.blendswap.com/blend/10597
https://www.blendswap.com/blend/8850 
https://www.blendswap.com/blend/14878
 https://www.blendswap.com/blend/5349
https://www.blendswap.com/blend/8909 
https://github.com/YoYo000/BlendedMVS
https://tanksandtemples.org/download/
https://github.com/altizure/altizure-sdk-offline
http://www.scan-net.org/


Figure 9: A visualization of the proposed NSVF architecture. For any input (p,v), the model first
obtains the feature representation by querying and interpolating the voxel embeddings with the 8
corresponding voxel vertices, and then uses the computed feature to further predicts (σ, c) using a
MLP shared by all voxels.

Training & Inference We train NSVF using a batch size of 32 images on 8 Nvidia V100 GPUs,
and for each image we sample 2048 rays. To improve training efficiency, we use a biased sampling
strategy to sample rays where it hits at least one voxel. We use Adam optimizer with an initial
learning rate of 0.001 and linear decay scheduling. By default, we set the step size τ = l/8, while
the initial voxel size (l) is determined as discussed in § 3.3.

For all experiments, we prune the voxels with Eq (6) periodically for every 2500 steps. All our
models are trained with 100 ∼ 150k iterations by progressively halving the voxel and step sizes at 5k,
25k and 75k, separately. At inference time, we use the threshold of ε = 0.01 for early termination for
all models. As a comparison, we also conduct experiments without setting up early termination. Our
model is implemented in PyTorch using Fairseq framework6.

Evaluation We measure the quality on test sets with three metrics: PSNR, SSIM and LPIPS (Zhang
et al., 2018). For the comparisons in speed, we render NSVF and the baselines with one image per
batch and calculate the average rendering time using a single Nvidia V100 GPU.

Multi-scene Learning Our experiments also require learning NSVF on multiple objects where a
voxel location may be shared by different objects. In this work, we present two ways to tackle this
issue. First, we use the navie approach that learns saperate embedding matrices for each object and
only the MLP are shared. This is well suitable when the categories of target objects are quite distinct,
and this can essentially increase the model capacity by extending the number of embeddings infinitely.
We validate this method for the multi-scene learning task on all 8 scenes from Synthetic-NeRF
together with 2 additional scenes (wineholder, train) from Synthetic-NSVF.

However, when modeling multiple objects that have similarities (e.g., a class of objects, or a moving
sequence of the target object), it is more suitable to have shared voxel representations. Here we learn
a set of voxel embeddings for each voxel position, while maintaining a unique embedding vector for
each object. We compute the final voxel representation based on hypernetworks (Sitzmann et al.,
2019b) with the object embedding as the input. We show our results on Maria Sequence.

B.3 Additional Baseline Details

Scene Representation Networks (SRN, Sitzmann et al., 2019b) We use the original code open-
sourced by the authors 7. To enable training on higher resolution images, we employ the ray-based
sampling strategy that is similarly used in neural volumes and NeRF. We use the batch size of 8 and
5120 rays per image. We found that clipping gradient norm to 1 greatly improves stability during
training. All models are trained for 300k iterations.

6https://github.com/pytorch/fairseq
7https://github.com/vsitzmann/scene-representation-networks

16

https://github.com/pytorch/fairseq
https://github.com/vsitzmann/scene-representation-networks


Figure 10: Additional examples and comparisons sampled from Synthetic-NSVF, BlendedMVS and
Tanks&Temples datasets. Please see more results in the supplemental video.

17



Figure 11: An example of zooming in and out without any visible artifacts
.

Neural Volumes (NV, Lombardi et al., 2019) We use the original code opensourced by the
authors 8. We use batch size of 8 and 128× 128 rays per image. The center and scale of each scene
are determined using the visual hull to place the scene within a cube that spans from -1 to 1 on each
axis, as required by implementation. All models are trained for 40k iterations.

Neural Radiance Fields (NeRF, Mildenhall et al., 2020) We use the NeRF code opensourced by
the authors 9 and train on a single scene with the default settings used in NeRF with 100k-150k
iterations. We scale the bounding box of each scene used in NSVF so that the bounding box lies
within a cube of side length 2 centered at origin. To train on multiple scenes, we employ the auto-
decoding scheme using a hypernetwork as described in SRN (Sitzmann et al., 2019b). We use a
1-layer hypernetwork to predict weights for all the scenes. The latent code dimension is 256.

C Additional Results

C.1 Per-scene breakdown

We show the per-scene breakdown analysis of the quantitative results presented in the main paper
(Table 1) for the four datasets (Synthetic-NeRF, Synthetic-NSVF, BlendedMVS and Tanks&Temples).
Table 4 reports the comparisons with the three baselines in three metrics. Our approach achieves
the best performance on both PSNR and LPIPS metrics across almost all the scenes, especially for
datasets with real objects.

C.2 Additional Examples

In Figure 10, we present additional examples for individual scenes not shown in the main paper. We
would like to highlight how well our method performs across a wide variety of scenes, showing much
better visual fidelity than all the baselines.

C.3 Additional Analysis

Effects of Voxel Sizes. In Table 5, we show additional comparison on wineholder where we fix the
ray marching step size as the initial values, while training the model with different voxel sizes. The
first column shows the ratio compared to the initial voxel size. It is clear that reducing the voxel size
helps improve the rendering quality, indicating that progressively increasing the model’s capacity
alone helps model details better for free-viewpoint rendering.

Geometry Reconstruction Accuracy We would like to expand on the observation that we have
briefly touched on in the main paper regarding the nature of surface-based and volume-based renderers.

8https://github.com/facebookresearch/neuralvolumes
9https://github.com/bmild/nerf

18

https://github.com/facebookresearch/neuralvolumes
https://github.com/bmild/nerf


Table 4: Detailed breakdown of quantitative metrics of individual scenes for all 4 datasets for our
method and 3 baselines. All scores are averaged over the testing images.

Synthetic-NeRF
Chair Drums Lego Mic Materials Ship Hotdog Ficus

PSNR↑
SRN 26.96 17.18 20.85 26.85 18.09 20.60 26.81 20.73
NV 28.33 22.58 26.08 27.78 24.22 23.93 30.71 24.79
NeRF 33.00 25.01 32.54 32.91 29.62 28.65 36.18 30.13
Ours 33.19 25.18 32.29 34.27 32.68 27.93 37.14 31.23

SSIM↑
SRN 0.910 0.766 0.809 0.947 0.808 0.757 0.923 0.849
NV 0.916 0.873 0.880 0.946 0.888 0.784 0.944 0.910
NeRF 0.967 0.925 0.961 0.980 0.949 0.856 0.974 0.964
Ours 0.968 0.931 0.960 0.987 0.973 0.854 0.980 0.973

LPIPS↓
SRN 0.106 0.267 0.200 0.063 0.174 0.299 0.100 0.149
NV 0.109 0.214 0.175 0.107 0.130 0.276 0.109 0.162
NeRF 0.046 0.091 0.050 0.028 0.063 0.206 0.121 0.044
Ours 0.043 0.069 0.029 0.010 0.021 0.162 0.025 0.017

Synthetic-NSVF
Wineholder Steamtrain Toad Robot Bike Palace Spaceship Lifestyle

PSNR↑
SRN 20.74 25.49 25.36 22.27 23.76 24.45 27.99 24.58
NV 21.32 25.31 24.63 24.74 26.65 26.38 29.90 27.68
NeRF 28.23 30.84 29.42 28.69 31.77 31.76 34.66 31.08
Ours 32.04 35.13 33.25 35.24 37.75 34.05 39.00 34.60

SSIM↑
SRN 0.850 0.923 0.822 0.904 0.926 0.792 0.945 0.892
NV 0.828 0.900 0.813 0.927 0.943 0.826 0.956 0.941
NeRF 0.920 0.966 0.920 0.960 0.970 0.950 0.980 0.946
Ours 0.965 0.986 0.968 0.988 0.991 0.969 0.991 0.971

LPIPS↓
SRN 0.224 0.082 0.204 0.120 0.075 0.240 0.061 0.120
NV 0.204 0.121 0.192 0.096 0.067 0.173 0.056 0.088
NeRF 0.096 0.031 0.069 0.038 0.019 0.031 0.016 0.047
Ours 0.020 0.010 0.032 0.007 0.004 0.018 0.006 0.020

BlendedMVS Tanks& Temple
Jade Fountain Char Statues Ignatius Truck Barn Cate Family

PSNR↑
SRN 18.57 21.04 21.98 20.46 26.70 22.62 22.44 21.14 27.57
NV 22.08 22.71 24.10 23.22 26.54 21.71 20.82 20.71 28.72
NeRF 21.65 25.59 25.87 23.48 25.43 25.36 24.05 23.75 30.29
Ours 26.96 27.73 27.95 24.97 27.91 26.92 27.16 26.44 33.58

SSIM↑
SRN 0.715 0.717 0.853 0.794 0.920 0.832 0.741 0.834 0.908
NV 0.750 0.762 0.876 0.785 0.922 0.793 0.721 0.819 0.916
NeRF 0.750 0.860 0.900 0.800 0.920 0.860 0.750 0.860 0.932
Ours 0.901 0.913 0.921 0.858 0.930 0.895 0.823 0.900 0.954

LPIPS↓
SRN 0.323 0.291 0.208 0.354 0.128 0.266 0.448 0.278 0.134
NV 0.292 0.263 0.140 0.277 0.117 0.312 0.479 0.280 0.111
NeRF 0.264 0.149 0.149 0.206 0.111 0.192 0.395 0.196 0.098
Ours 0.094 0.113 0.074 0.171 0.106 0.148 0.307 0.141 0.063

19



Table 5: Effect of voxel size on the wineholder test set.
Voxel PSNR↑ SSIM↑ LPIPS↓ Speed (s/frame)

1 28.82 0.933 0.063 2.629
1/2 29.22 0.938 0.057 1.578
1/4 29.70 0.944 0.052 1.369
1/8 30.17 0.948 0.047 1.515

As we have mentioned, surface-based rendering methods (e.g. SRN) require an accurate surface to be
able to learn the color well. A failure case where geometry fails to be learnt is seen in the "Character"
scene in Figure 10. In addition, we observe that SRN frequently gets stuck in a local minima so that
the geometry is incorrect but is nevertheless approximately multi-view consistent. We find that this
phenomenon occurs much less frequently in volume rendering methods including ours. NV, due to
limited spatial resolution, is unable to capture high frequency details. NeRF generally works well
while is still not able to synthesize images as sharply as NSVF does. Furthermore, NeRF suffers from
a slow rendering process due to its inefficient sampling strategy. For instance. it takes 30s to render
an 800× 800 image with NeRF.

Zoom-In & -Out Our model naturally supports zooming in and out for a trained object. We show
the results in Figure 11.

Table 6: Quantitative results on Wineholder of NSVF with different threshold ε for early termination.
ε PSNR↑ SSIM↑ LPIPS↓ Speed (s/frame)

0.000 31.93 0.965 0.021 4.0
0.001 32.03 0.965 0.020 2.1
0.010 32.04 0.965 0.020 2.0
0.100 29.99 0.947 0.029 1.7

Table 7: Comparison of one-round training and progressive training on Wineholder.
Method PSNR↑ SSIM↑ LPIPS↓
One-round 29.77 0.946 0.033
Progressive 32.04 0.965 0.020

Effect of Early Termination The quantitative results on Wineholder of NSVF with early termina-
tion with different thresholds are shown in Table 6. The selection of ε = 0.01 gives the best trade-off
between quality and rendering speed.

Comparion with one round of training at the final resolution As shown in Table 7, our test on
Wineholder shows that compared with one-round training, our progressive training is faster and easier
to train, uses less space and achieves better quality.

C.4 Details for Experiments on ScanNet

We list the details of learning on the ScanNet dataset. We first extract point clouds from all the RGBD
images using known camera poses, and register them in the same 3D space. We then initialize a voxel
based on the extracted points instead of using a bounding box. No pruning or progressive training are
applied in this case. Furthermore, we integrate an additional depth loss based on the provided depth
image, that is,

Ldepth =
∑
p0,v

|Z(p0,v)− Z∗(p0,v)|1 (7)

where Z∗ is the ground truth depth and Z is the expected distance where each ray terminates at
this distance in Algorithm 1. We show more qualitative results in Figure 12 and the quantitative
comparisons in Table 8 where NSVF achieves the best performance.

20



Table 8: Quantitative results for ScanNet (one scene) (Left) and Maria Sequence (Right). Here
geometry accuracy is measured by RMSE of ground-truth depths and depths of rendered geometry.
Note that no result for NV is reported for ScanNet because training failed to converge.

RMSE↓ PSNR↑ SSIM↑ LPIPS↓
SRN 14.764 18.25 0.592 0.586
NeRF 0.681 22.99 0.620 0.369
Ours (w/o depth) 0.210 25.07 0.668 0.315
Ours (w/ depth) 0.079 25.48 0.688 0.301

PSNR↑ SSIM↑ LPIPS↓
SRN 29.12 0.969 0.036
NV 33.86 0.979 0.027
NeRF 34.19 0.980 0.026
Ours 38.92 0.991 0.010

Figure 12: Our sampled results on ScanNet of two different rooms. From left to right: the predicted
image, the initial voxels from the point clouds, and the predicted geometry normals.
.

C.5 Details for Experiments on Maria Sequence

We present additional details for learning on the Maria sequence. The Maria sequence consists of
200 frames of different poses if the same character. Since there exists strong correlation from frame
to frame, we model all frames with the same set of initial voxels (a bounding box covers all 200
frames) and utilize a hypernetwork described in (Sitzmann et al., 2019b) to output the weights of the
MLPs with the frame index as inputs. We also conduct quantitative comparisons on testing views,
and report scores in Table 8. NSVF significantly outperforms all the baseline approaches.

C.6 Procedure for Scene Editing and Composition

The learnt NSVF representations can be readily used for editing and composition. We show the
basic procedure to edit a real scene in the following three steps: (1) learn and extract sparse voxels
with multi-view 2D input images; (2) apply editing (e.g. translation, cloning, removal, etc.) on the
voxels; (3) read the modified voxels and render new images. We illustrate the procedure in Figure 13.
Furthermore, by learning the model with multiple objects, we can easily render composed scenes by
rearranging learned voxels and rendering at the same time.

Figure 13: Illustration of scene editing and rendering with NSVF.

D Limitations and Future Work

Although NSVF can efficiently generate high-quality novel views and significantly outperform
existing methods, there are three major limitations:

(i) Our method cannot handle scenes with complex background. We assume a simple constant
background term (cbg). However, real scenes usually have different backgrounds when viewed from

21



different points. This makes it challenging to capture their effects correctly without the interference
on the learning of the target scenes.

Figure 14: A comparison between NSVF output (left) and
the groud-truth (right) of a cropped view sampled from scene
lifestyle (Synthetic-NSVF dataset).

(ii) We set the threshold for self-
pruning to be 0.5 in all the experi-
ments. Although this works well for
general scenes, incorrect pruning may
occur for very thin structures if the
threshold is not set properly.

(iii) Similar to Sitzmann et al. (2019b);
Mildenhall et al. (2020), NSVF learns
the color and density as a “black-
box” function of the query point lo-
cation and the camera-ray direction.
Therefore, the rendering performance
highly depends on the distribution of training images, and may produce severe artifacts when the
training data is insufficient or biased for predicting complex geometry, materials and lighting effects
(see Figure 14 where the refraction on the glass bottle is not learnt correctly). A possible future
direction is to incorporate the traditional radiance and rendering equation as a physical inductive bias
into the neural rendering framework. This can potentially improve the robustness and generalization
of the neural network models.

(iv) The current learning paradigm requires known camera poses as inputs to initialize rays and their
direction. For real world images, there is currently no mechanism to handle unavoidable errors in
camera calibration. When our target data consists of single-view images of multiple objects, it is
even more difficult to obtain accurately registered poses in real applications. A promising avenue for
future research would be to use unsupervised techniques such as GANs (Nguyen-Phuoc et al., 2019)
to simultaneously predict camera poses for high-quality free-viewpoint rendering results.

22


