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1 Additional Results on SVHN

Table 1 reports the experimental results on the SVHN dataset for ResNet-18 and ResNet-18(1/3)
architectures. ResNet-18(1/3) is simply ResNet-18 [1], with the number of filters in each layer reduced
by 3 times [2]. We use SGD optimizer in all our experiments. In all cases, we run experiments for
5 random task orders and report the average accuracy. From the results, we can see that even with
ResNet-18(1/3), which has lesser parameters than ResNet-18, results are comparable for CCLL<1,1>
model. CCLL<4,1> with ResNet-18(1/3) performs even better as compared to CCLL<1,1> with
ResNet-18.

Methods Architecture 1 2 3 4 Final (A5)

CCLL<1,1> ResNet-18 98.77 98.54 98.44 98.48 98.20

CCLL<1,1> ResNet-18(1/3) 98.57 98.25 98.34 98.13 98.15
CCLL<4,1> ResNet-18(1/3) 98.77 98.86 98.64 98.61 98.50

Table 1: Experimental results on SVHN dataset with ResNet-18 and ResNet-18(1/3) architectures.
There are 5 tasks, and the reported accuracy for each task is the average of all accuracies up to that
task.

2 Additional Results on CIFAR-100

Fig. 1 shows the experimental results for CIFAR-100 incremental learning tasks using 10, 20 and
50 classes at a time using ResNet-18(1/3) architecture. CCLL with larger values of α such as 2,4,8,
performs better as shown in Fig. 1.

3 Additional Results on ImageNet-100/10

The results in Table 2 indicate that our method CCLL<4,1> performs better than CCLL<1,1> for
ImageNet-100/10. However, CCLL<1,1> introduces 0.51% more parameters per task and CCLL<4,1>
introduces 1.66% more parameters per task.
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Figure 1: Experimental results on CIFAR-100 dataset with tasks containing 10, 20 and 50 classes
with ResNet-18(1/3) architecture.

Methods 1 2 3 4 5 6 7 8 9 Final (A10)

CCLL<1,1> 99.8 99.0 99.2 98.6 98.4 98.5 98.2 97.7 97.8 97.9
CCLL<4,1> 99.2 99.2 98.9 98.9 99.0 98.9 98.6 98.5 98.6 98.7

Table 2: Large-scale lifelong learning experiments on ImageNet dataset using ResNet-18 architecture.
There are 10 tasks, and the reported accuracy for each task is the average of all accuracies up to that
task.
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