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A Additional Experiment Results

A.1 Conditional Mean Estimation With Synthetic Data

We report in Figure [A.T|the plot of mean estimation errors versus z, for different training set sizes
N = 50,100, 200. In Figure[A.2] we present the plot of the distribution of absolute estimation errors
for ¢ € [0.28, 0.32]. For comparison, we also include the results of training set size N = 100 that
are already reported in Figure 2] and [3] We remark that the estimation error of all the estimators
becomes smaller when training set size is larger, and DRCME has best estimation performance
among all the estimators around the jump point x = 0.3 for all different training set sizes.

We report the hyper-parameters selected by cross-validation in Table[A.T]
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Figure A.1: Comparison of the mean absolute errors of conditional mean estimators for synthetic
data under different training set sizes. The gray shade shows the density of X.

A.2 Digit Estimation With MNIST Database

The distinction between N-W and DRCME is also apparent in Figure [A.3] which presents the
normalized expected type-p deviation of the estimation error for each estimator, i.e. \/2/p(E[|y —

§|P])1/P. Specifically, N-W slightly outperforms DRCME for deviation metrics of type p > 1, e.g.
with a root mean square error of 1.34 compared to 1.45 when N = 500. On the other hand, DRCME
significantly outperforms N-W when p < 1 where high precision estimators are encouraged.
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Figure A.2: Comparison of the distributions of absolute estimation errors of conditional mean
estimators for synthetic data under different training set sizes.

Method | H.P. | N=50 | N=100 | N=200
T-NN 3 I 3 5
N-W k| 0026 | 0.019 | 0.018
NE h | 0078 | 0.055 | 0.038
BertEtAl | & I 3 5

p | 0063 | 0.016 | 0.000

v G [ () | A3()
DRCME | p | 0.0317y | 0.0637 | 0.063v

Table A.1: Median of hyper-parameters (H.P.) for synthetic data experiment obtained with cross-
validation.
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Figure A.3: Comparison of normalized expected type-p deviation of the out-of-sample error of four
non-parametric conditional mean estimation methods for the MNIST database under different training
set sizes. E.g., at p = 2 is presented the root-mean square error.

We also include in Figure [A-4]some additional examples of labels from DRCME and N-W. On the
other hand, Figure[A:5]compares the labels from DRCME and BertEtAl .
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B Proofs

This section contains the proofs of all technical results presented in the main paper.

B.1 Proofs of Section[2]

Proof of Proposition[2.2] Using the definition of the type-oo Wasserstein distance, we can re-express
the ambiguity set B7° as

. I € TI(Q, P) such that
B ={QeMX X V)1 esssup{Da(x,2') + Dy(y,y)} < p

Imi € M(X x V) Vi € [N] such that Q = 32,y i
=4QeMX xY): ess sup {Dx(z,2") + Dy(y,y)} < p ’
N Lie) Ti®,,5:)

where in the second equality we exploit the fact that Pis an empirical measure and thus any joint
probability measure 7 € II(Q, P) can be written as 7 = N ! >ie[N) Ti ® 0z, ,5,), where each 7; is
a probability measure supported on X x ). The last constraint can now be written as

Dx(z,Z;) + Dy(y,5:) < p V(z,y) € supp(m;) Vi€ [N],
where supp(7;) denotes the support of the probability measure 7; [[I} Page 441]. We thus have

3m € M(X x Y) Vi€ [N]suchthat Q = 5 37, c vy ™ }

B :{@EM(X “V)E Dy, 8) + Dy(y,5)) < p W(,y) € supp(m) Vi € [N]

Suppose that p < min;e[n) ki, then this implies by the last constraint of the feasible set that
(N5 (z0) x V) = 0 forall i € [N]. As a consequence, any Q € B7° should satisfy

QX €Ny () = 37 N, (o) x ) =0.
i1€[N]
Hence B° N {Q € M(X x V) : Q(X € N, (x0)) > 0} = 0.

Suppose on the contrary that p > min;e(n ki . Let i* = argmin;e[n K4, and consider the
following set of probability measures

Vi e [N]: m{?

if i = i*,
otherwise,

—~

z.7:)
(Z4,9:)

and set Q = % > ie(n) Ti- Itis easy to verify that Q € BJ°, and that

1 1
Q(X € N, (0)) > N (X € Ny(9)) = N 0.
This observation completes the proof. O

The proof of Theorem [2.3]relies on the following result.

Lemma B.1 (Optimal solution of a fractional linear program). Let d be an strictly positive integer.

The linear fractional program
K
min § ST = 0 g K
d+3 2

admits the optimal solution

L ity > O e Y
VZG[K] CV;: ? d+|{j2’[}j>vi}|a
0 otherwise.
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Proof of Lemma|B.1} Without loss of generality assume that v; are ordered decreasingly. Because
the objective function is pseudolinear, the optimal solution is at some binary vertex [6, Lemma 3.3].
Consider the equivalent problem

c+ > v K
hax {m'ae{O,l}K, Zaizk, kE[K]}.
d+ Y., i=1

For any value k € [K], the corresponding optimal value of o dependent on % is

oo
af(k):{l ifi <k,

¢ 0 otherwise,

where we exploit the fact that v; are ordered decreasingly. The above optimization problem can be

simplified to
k
c+ Zi:l v; .

Now we need to show that the objective function g(k) £ (c + Zle v;)/(d + k) becomes non-

increasing once it starts decreasing. Indeed, the incremental improvement in the objective value
of (A) at k can be written as

k+1
+
R D =R
d+k+1
~ (d+k)g(k) +vpsr
- d+k+1 9(k)
_ Vg+1 — g(k?)
d+k+1 "

If Ay(k) < 0, this implies that v;1 < g(k). We also know that vjo < vg41. So we can show that:

Ag(k+1) =gk +2) — g(k +1) = ”’”j;—g(f;”
_ [d+k+Dvpyo — (d+E)g(k) — v

d+k+2)(d+k+1)
(d+k+ Dvggr — (d+ k)g(k) — vg+1

= Akt Dd+htl)
_ ([d+F) (k41 —g(k))
drkt2)(d+k+l)

Moreover, the above line of arguments also reveals that if viyo = wvi41 then both Ag(k) and
Ag4(k + 1) have the same sign. Thus, the value k* that maximizes (A.T) is also the solution of

max{k : Ay(k —1) > 0}.

Leveraging on the formula of o (k), the solution a* of the original fractional linear program has the
form

Dg(k) =gk +1) —g(k) =

<0

. c+ 2 j<iVi
. N 1 ify, > —m—r———
Vi : o = d+Hj:j<i}l
0 otherwise,
CH Dy s U
1 ifv; > i L
= d+[{j:vj > v}
0 otherwise,

where the second equality comes from the ordering of v;. This observation completes the proof. [

Proof of Theorem 2.3 A conditional measure zo of Y given X € N, (z¢) induced by a probability
measure Q satisfying Q(X € N, (x¢)) > 0 can be written as

QN (o) x A) = po(A)QWN4(z0) x Y) VA C Y measurable.



55 One can rewrite the worst-case conditional expected loss f(3) as

sup [ £(0,6) polcly)
FB) =1 st QeBr, QW (zo) x ) >0
QN5 (o) x A) = po(A)QN (z0) X V) VA C Y measurable.

s6 By decomposing the measure Q using the set of probability measures 7; and exploiting the definition
57 of the type-oo Wasserstein distance as in the proof of Proposition [2.2] we have

sup / (y, B) po(dy)
y .

s.t. o € M(Y), m € M(X x)Y) Vie][N]
Z Ti(Ny(20) X V) >0

1(8) = P
> Ny (o) x A) = po(A) Y mi(Ny(w9) x V) VA C Y measurable
i€[N] i€[N]
Dy(z,2;) + Dy(y,u:) < p V(z,y) € supp(m;) Vi € [N].

s For any set of feasible solutions {m;}ic|n), we have 3=,y (N5 (20) x V) > 0. We can thus
5o re-express po(A) for any Borel measurable set A C ) as

D ielN] i (N5 (o) x A)
Zie[N] Ti(Ny (o) X V)

60 Thus, we can eliminate the variables jo from the above optimization problem to obtain the equivalent
61 representation

wo(A) = VA C ) measurable.

1
Y4 T
sup Y iepv) TN (o) X V) g[;v]/y (y, B) mi(Ny (o) x dy)
fB) =19 st. meM@ExY) Vie[N] (A2)
Dy(z,z;) + Dy(y,y:) < p VY(z,y) € supp(m;) Vi € [N]

i TNy (o) X V) > 0.

62 We now show that problem (A:2)) now can be written as

LS aur(8)

ElE[N] a; iE[N]
N

(@) =4 st. ac [07.1] R (A3)

) a; = 1if Dy (xo,75) +p < v

o; = OifID)X(xo,Ei) >p+

Zie[N] o > 07

sup

63 where the value v () is calculated as
v; (B) = sup {£(yi, B) :yi € Y, Dy(yi,4i) < p— Da (3], 73)} .

64 The equivalence between the supremum problems (A.2) and (A.3) can be shown in two steps. First,
o5 for (A2) < (A3), given any feasible solution of (A.2)), one can construct a feasible solution of (A.3)
66 using a; = m; (N, () x V). For this candidate we have

Zie[]v] fy Uy, B) mi(Ny (o) x dy) < Zie[N] by, B)
iy TN (20) X V) B Dien %
67 Alternatively, given a feasible solution for (A23), one can construct the following feasible solution for

68 (A2): forany e > 0, let y§ € Y be such that Dy (ys, 7;) < p—Dx(xo,Z;) and £(ys, B) > vf(B) —e,
69 and let

O@? s) if D (w0, %) + p <7,
Vi € [N] : ﬂ'f = azé(?fﬂf) + (1 — Oél)(s(m:,@) if Dx(xm@) >p+,
1) (F4,55) otherwise,



70 where 27 is any point such that Dy (z],Z;) < p and z ¢ N, (). Again, this candidate is feasible
71 in (A2) and we have that

v Jy Ly, B) w5 (Ny (o) x dy)

>

16) = 328 S P <N7< ) <)
> Zie[N] ai(g(yzvﬂ) —€)
> sup

>0 Eie[N] (€7}
_ Zie[N] ail(y;, B) _ Zz’e[N] ;07 ()
Diein) iern

72 Let Z and 7, be the index sets defined as in (@a)-(@D)), the value f(3) is equal to the optimal value of
73 a fractional linear program

f(B) = max {W:QE[O,I]N, o; =1Vie I, Zai>0} (A.4a)
Dier ieT

_ Zzel’l 4 ( ) + Zzgl’z i ﬁ)al .
= Imax Mye
0] + ez, i

€N, i =1Vie Dy, [Tl + > o >0}.
i€Ls
(A.4b)

74 Notice that the objective function and the constraints of @) depend only on «; for i € Z. Suppose
75 that Z; # (), Lemmal[B.1]indicates that the optimal solution o* that solves (A.4b) is

1 ifieZy,
Zzezl z( )+ZJU (B)>vr(B) ](5)

|Il|+|{j.'uj( ) > i( ) ) (A.5)

Viel: of=(1 ifv(B)>
0 otherwise.

76 Suppose that Z; = (), then the optimal solution of problem (A.4b) is

Viel: af= 1 ifvl*(ﬁ) > MaX;e7, U;(ﬁ),
' ! 0 otherwise.

77 Combining the above two cases, we can rewrite the optimal value of « that solves (A4b) as in the
78 statement of the theorem. This completes the proof. O

79 Proof of Corollary[2.4] Because Dy is an absolute distance, we have
{yi €Y1 lyi—7i| < p—Da (3}, 7;)} = [max{a, Ji—p+Dx (27, 7:) }, min{d, Ji+p—Dx (37, 7:) }],

80 where the equality follows from ) = [a, b]. Because both the || - ||3 and the quantile loss functions are
81 convex, the value v} () is thus attained at the extreme points of the interval. Calculating the value of
s2 (-, 3) at these two endpoints and taking the maximum between them completes the proof. O

83 Before proving Proposition2.3] we need the following two results which asserts the analytical optimal
84+ value of maximizing a convex quadratic functions over a norm ball. These results can be found in the
85 literature, the proof is included here for completeness.

ss Lemma B.2 (Convex quadratic maximization over a norm ball). For any 5 € R™, j € R™ and
g7 1 € Ry, the following assertions hold.

88 (i) Overa || - ||2 ball, we have

sup {[ly = Bl3 : lly =713 <r*} = (v + 17 - Bll2)*.

89 (ii) Overa || - || ball, we have
sup {lly =Bl : lly = Flloo <7} = D max{(G — B —r)°, @ — B +1)°},
jelm]
90 where 3; and g; denote the j-th element of the vector 3 and ¥, respectively.



ot Proof of Lemma|B.2] We first prove Assertion First, the optimal value is upper bounded by
92 (r+ ||y — B|2)* because

ly = Bll2 < lly = ¥ll2 + 15 = Bll2 < 7 + (5 = Bl

93 by triangle inequality. Yet, it is equal to that amount since that amount is attained when y =
w J+r@—B)/17- Bl

95 Consider now Assertion [(11)} Using a change of variables z < y — 3 and a change of parameters
96 w < y — 3, we find

sup {[ly = B3 : lly = Jlloe < 7} = max {[|2]3 : Iz — wlloe <7}, (A.6)

97 where the maximization operators are justified by Weierstrass’ maximum value theorem [1, Theo-
98 rem 2.43] because the feasible set is compact and the objective function is continuous. By extending
99 the norm constraint into the vector form, we have the equivalence

max {23 & — 1Ly < 2 S w11},

100 where the inequalities in the constraints are understood as element-wise inequalities, and 1,, is an
101 m-dimensional vector of ones. This maximization problem is separable in the decision variables and
102 can be decomposed into m independent univariate subproblems of the form

max{zjz cwy —r < zy S wj +r}
103 foreach j € [m]. Itis easy to verify that the optimal value of each univariate subproblem is equal to
max { (w; —7)*, (w; +7)°},
104 and summing up the optimal values over j completes the proof. [

105 We are now ready to prove Proposition [2.5]

106 Proof of Proposition[2.5] Following from equation (A.4a)) in the proof of Theorem[2.3] we have

M;aé (0,11, a; = 1Vi € T4, Zai >0
Dier @i ieT

107 By applying the Charnes-Cooper transformation [4] with

o 1
—, and t= —<—
2ier W Dier i
108 to reformulate this fractional linear problem, we have

max Yo, v (8)x
S. t. Zi = 1, t>0

Z; =

— i€l
1(8) = et=0 VieT
0<z <t Vi € I,
min A

N s. t. )\ER,uiERWGL,uiERJFWEIQ
- Atu, >vf(B) Viel
>ier i <0,

109 where the second equality follows from linear programming duality. Using the last minimization
110 reformulation of f(f3), problem (2)) is now equivalent to

min A
. B s.t. BER™ MNeR, u; eRVieZy, u; e Ry VieTy
min f(f) = Aw > or(8) VieT
Ziel’ui <0,

111 When Dy, is a 2-norm, each value v} (/3) calculated from (3)) becomes

vi(B) =sup{lly = Bl3: lly =Gl < p—Dx(3},7:)}  Vie[N]
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For any i € Z, the value v} (/) is finite and v} () can be re-expressed by exploiting Lemma [B.2(1)|as

* ~p = 2
vi () = (p = Dx (37, ) + 15 — Bll2)” -
Problem () is now equivalent to
min A\
s.t. BeER™ NeR, u; e RVieIy, u; e Ry Viel,
Atui > (p—Dy(@. ) + |5 — Bll2)” VieT
Diez i <0
To obtain a second-order cone program formulation, it now suffices to add the hypergraph formulation

t; > ||yi — B2 with t; > 0, and reformulate the quadratic constraint into a second-order cone
constraint using results from [2 Section 2]. This completes the proof for claim (D}

(A7)

‘We now proceed to prove claim m )} When Dy, is the co-norm, each value v} (3) becomes

vi(B) =sup{lly = BI3: lly = Gillo < p—Dx(3,2:)}  Vie[N].
For any i € Z, the value v} (/3) is finite and v} (3) can be re-expressed using Lemma [B.2[iD)] as
vi(B) = > max{(Gi; — B — p+ Dx(&, ), (ij — B; + p — D (T, 7))} .
jelm]
By adding auxiliary variables T;; with the constraints
@i — B —p+Dx(@, %) < T, and (Ji; — B +p—Da(2,2:))* < T3,

problem (2)) is now equivalent to

min A
st. BER™ AeR, TeRI™ u, eRVieT,, v, eR, VieT
Zzezuz <0
Mty > Y e T2 vi'ez
(Uij — By — p+Dx (2}, 7:))* < T3 V(i,j) € T x [m)]
(Bij — Bj + p—Da(2},2:))> < Tj; V(i,j) € T x [m)].

The last two constraints can be re-expressed as linear constraints of the form

Tz_] = yij _ﬁj +]D)X(-T 1‘1) < Ej v(lhj) €ZIx [m]
Ty < G — B+ p—Dx(E3) < Ty ¥(ij) € T x [m].

Formulating the quadratic constraint A\ 4+ u; > > je[m] T using [2, Section 2] completes the
proof. O

Proof of Proposition|2.6] For the purpose of this proof, define the following sets
V2 {yi € V: Dy i) < p—Da(@, 7)) VieL.

Because Dy is coercive and continuous, each set ); is compact. Because the loss function is
continuous, there thus exists y; satisfying y* € Y; and {(y}, 8) = v} (B) for any i € Z. Following
from Equation (A4a)) in the proof of Theorem 2.3] we have

£(8) = max {W:ae 0.1, a;=1VieT;, 3 o >0}

Diez i i€l
i E 79 7
= max z:Z'EI(—yB)OZ:OzE [0,1}N7 o; =1Vi eI, Zai >0,y €EVVielsy.
Dier @i i€l
If Z; = 0, then we have
f(B) =L(y;=,B) Vi € arg ggggv?(ﬂ%

and a subgradient of f is 9f(8) = 9sl(y;~, B) for any ¢* € arg max;ez, v} (8). By incorporating
the optimal value of « in the statement of Theorem we have 0f(8) = a;0pL(y}, ).



131 If Z; # 0, then we have
Yier, Vi(B) + e, vi(B)ay
max
72| + ZieIg @

o ZiEIl g(ylv B) + Ziélz g(y“ B)QZ
= Imax
Zh| + Ziezz Q;

f(B) =

ca e 0,1V, aizlweIl}

cae0,1)N, y=1VieT, yiej))iWEI}

132 Notice that the function
s Yier, Wi B) + D iez, Ui, Bai
|I1| + Zi€I2 Qy
133 is convex for any feasible value of («,y) in the above optimization problem. Moreover, by Ty-

134 chonoff’s theorem [1, Theorem 2.61], the feasible set of the above optimization problem is a compact
135 set in the product topology. One can now apply [3l Proposition A.22] to conclude that a subgradient

136 of f in this case is
Zi 1 855(3/1-,5) + Zz 5 55€(yi,ﬁ)ai
af(ﬁ) _ cT cZ. : )
7] + Zielg Q;

137 Combining the two cases, we have the postulated result. ]

138 B.2 Proofs of Section[3]

139 Proof of Proposition[3.1] Under the conditions of the proposition, we have P(X € N, (z¢)) > 0
140 because [P admits a density, and that N, (z) N X’ is a set with non-empty interior for any v > 0. The
141 proof now follows trivially from [5, Theorem 1.1]. Indeed, under the conditions of the proposition,
142 with probability of at least 1 — O(N~°¢), we have P € IB;O, and hence the bound follows. O

143 Proof of Example[3.2] For the purpose of this proof, we let P> = PQP®- - - be the joint distribution
144 of (Z1,41), (Z2,Y2), - - - . The selection of parameter v = 0 implies that Z = 7, and for any fixed
145 p > 0 we have P (limy_,o |Z| = +00) = 1 by Borel-Cantelli lemma. In this example, the DRO
146 problem is feasible if 7 is nonempty, and we have an explicit optimal solution

1. ~ 1 ~ ~
Ay = gmin{yi — p+ D (s, 20)} + 5 max {yi + p — D (i, 20)}
147 Notice that with probability 1 we have
min {y; — p + D (T, 20)} > —pand max {y; + p — D (T, 20)} = max {yi} -

14s Consequently we have 33, > % max;ez {U:} — %p. For all y > 0, we have

N—oo i€

o (1 o = oo . oo N

P (ngrg)oﬂzv>y)_ﬂ3’ <hm ma§<{yz}>2y+p> Jim P (I}leag{yl}>2y+p)
= lim 1-PY <2y+p)* =1.
N—o0

149 Let y tend to infinity concludes the proof. O

150 Before proving Proposition 3.4} we first present the following minimax result.
151 Lemma B.3 (Minimax result). Suppose that £(y, -) is convex and coercive for any y € ), and that
152 Dy(+,y) is convex and coercive for any y. For any p > min;c[nj .4, We have

min sup Eq[((Y, B)|X € N (20)]
BER™ QeBge QX EN, (20))>0

= sup min Eq[((Y, 8)|X € N, (z0)].
QEB QX EN () >0 BER™

153 To facilitate the proof of Lemma|[B.3] we define the following conditional ambiguity set induced by
154 BS° as
P

o\ A 3Q e B, QN4 (z9) x ) >0
Bazo,’Y(Bp )= {Mo e M(Y): Q(N,y(;o) X A)’Y: l(L)o(A)@(Nw(xo) x V) VA C ) measurable }’
(A.8)
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where the last constraint defining the set By, (B5°) is from the dis-integration of the joint measure
into a marginal distribution and the corresponding conditional distributions [[8, Theorem 9.2.2].

The proof of Lemma[B3|relies on the following two results which assert the convexity of the joint
ambiguity set Bo° and its induced conditional ambiguity set B, - (B5°).

Lemma B.4 (Convexity of B)°). The ambiguity set B)® is convex.

Proof of Lemma|B.4] Because the nominal probability measure is an empirical measure, the ambigu-
ity set B)° can be represented as

Jm; € M(X x Y) Vi € [N] such that :
B;O = Q c M(X X y) : Q = N:l ZiE[N] ﬂ',fi ZlE[N] Wi(Nry(JUO) X y) >0 .
Dx(z,Z;) + Dy(y,v:) < p V(z,y) €supp(m;) Vi€ [N]
Pick any arbitrary Q® and Q' from B2°. Associated with Q7, j € {0, 1} is a collection of probability
measures {7 } € M(X x V)N satisfying

lzze T Yieln) ! (N (o) x y) >0
Dx(ﬂf xz) +Dy(y i) <p V(z,y) €supp(w]) Vi€ [N].

Consider any convex combination Q* = AQ* + (1 — X\)Q° for A € (0, 1). It is easy to verify that
the joint measure 7} = A} + (1 — \)7? for any i € [N] satisfies

{ N7 e s Diein T Ny (@0) x V) >
]D)X(:c zi) +ID)y(y,yl) <p V(x y) € supp(m}) VZ € [N],

where the last constraint is satisfied by noticing that supp(7) = supp(n?) U supp(7}). This
observation implies that Q* € B2°. O

Lemma B.5 (Convexity of By, ,(B5°)). The conditional ambiguity set B, - (B5°) is convex.

Proof of Lemma[B3] Let ud, u§ € B., ~(B5°) be two arbitrary probability measures. Associated
with each 1), j € {0, 1}, is a corresponding joint measure Q/ € M(X x ))) such that

QN (xo) x 4)
ORI = (A)
QI (N5 (w0) X V)

Select any A € (0,1). We proceed to show that ug = Auj + (1 — A)pg € Bay o (BS°). Indeed,
consider the joint measure

Q/ (N, (29) x ¥) >0 and

Q*=6Q" + (1 -6)Q°
with € being defined as
AQU(N (o) x V)
AQY (N5 (o) x V) + (1 = A)QM (N5 (o) x V)
By definition, we have Q* (N, (zo) x V) > 0, and by convexity of By from Lemma | we have
Q* e BJ°. Moreover, we have

QMW (o) x A) _ Q" (N (o) x A) + (1 = )QO (N (o) x A)
QMN5(z0) x Y) QLN (o) x V) + (1 = 0)QO (N5 (wo) x V)

_ AQYWV (o) X 3’)@1(/\/ (z0) X A) + (1 = MQIWN; (x0) x V)QU(N; (w0) x A)

QN5 (o) x Y)QH (N5 (o) x V)
QN (a0) X A) | (L= NGO (o) x A)
QN5 (o) x D) QO (N5 (o) x V)

= Mtg(A) + (1= N)pg(A),
where the second equality follows from the definition of §. This implies that 1 € By ~(B5°), and
further implies the convexity of By, ~ (B5°). O

0= € [0,1].
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We are now ready to prove Lemma [B23]

Proof of Lemma (B3| By the definition of the conditional ambiguity set Bwoﬂ(Bgo), it suffices to
prove the equivalence

min sup E,.[(Y,B)] = sup min E, [¢(Y, 5)].
BeR™ 10 € Bay - (B) o MDEBIO,W(B,?")BERW 1o

First, consider the mapping 3+ sup,,,cp, _ (8) Epuo[€(Y,3)]. The properties of £ implies that
0> P
this mapping is lower semi-continuous and coercive. As a consequence, without loss of optimality,

we can restrict the feasible set 3 to some convex, compact ball S = {3 : ||3||2 < R} for some radius
R € R, sufficiently big.

We now consider the mapping 1o — I, [¢(Y, 3)] parametrized by (. For any /3, it is a linear function
of 119, and hence it is concave. It is also weakly continuous. To see this, notice that when (-, 3) is
coercive, the set

A2 {y:Dy(y.5) < p},
1€[N]
being a finite union of bounded sets, is bounded. Pick any Q € B°, by the definition of the type-oo
Wasserstein distance, we have Q(.A) = 1. Consider the conditional measure ug’ induced by @, then
we have
QW (z0) X (ANY)) _ QW5 (x0) X (AN D))

Q — 2l -
HoANY) = =M @) x 3~ QN (@) x (AnY) -

which implies that ;1 has a bounded support. This implies that B,,, - (B3°) € M(A), where M(A)
is the set of all probability measures supported on a bounded set .A. Because £(-, 3) is continuous,
there exists a bound U € R, such that [{(y, 5)| < U for every y € A. Define now the function
Ly (-, 8) = max{—U, min{£(-, 3), U}}, which is continuous and bounded. Consider any sequence
of conditional measures {yf} € M(A) that weakly converges to ug°, we have

lim B, [¢(Y, B)] = lim Byl (Y. )] = Eyir (Y. B)] = Eyir (Y, 8))

which implies that the function po — K, [¢(Y, 3)] is weakly continuous over M (A).

This line of argument suggests that

min sup E Y4 Y,,B = min sup IE)L V4 Y,ﬂ
B o€Byy .~ (B) ol ) BilIBl2SR o €Bay 4 (BS) oA )]
= _oup min I, [((Y, 5 (A.92)
[0€Bog - (B) BillBll2<R wolU(Y, )]
= suwp min B, [(Y,8)], (A.9b)

ILOGBJO,'V(]B?)C)

where equality (A.9b) follows from the coercivity of the loss function, thus the constraint on 3 can be
dropped for R sufficiently big. Equality (A-9a) holds by Sion’s minimax theorem [7]]. This finishes
the proof. [

Proof of Proposition Because the loss function is coercive and convex in 3, we have
min sup E, Y -B)? = sup min E, [(Y - 8)?]
BER HoEBag,(B5®) o €Bag . (B2) BER

= s Bl — B, Y]
HOEBmO,W(B;O)

= Variance,,; (Y),

where the first equality follows from Lemma[B.3] the second equality follows from the fact that for
any fg € By, (B5°), the estimate 5*(19) = IE,,,[Y'] minimizes the objective IE,,,[(Y — 3)?]. The
last equality follows from the definition of 1.
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Let 8* be the optimal estimate that solves @), we now have

Variance s (V) = sup E,[(Y — 8%
P«OGBIQW(BSO)

> By [(Y — 6%)%] = Variance,; (V) + (8" — By [Y])?,

where the last equality follows from the bias-variance decomposition. This implies that 3* = I .5 Y]
and completes the proof.

C Golden-section Search for Univariate Conditional Estimate

We elaborate here on the procedure of applying a golden-section search to solve a one-dimensional
local conditional estimation with a convex loss function £. We suppose that ) = [a, b] for some finite
values —0co < a < b < oo, that ¢(y, -) is convex for every y and that we have access to an oracle
that solves (5). Given any £, the worst-case conditional expected loss f(/3) can be computed using
Theorem [2.3] Algorithm[I]can be used to find the optimal conditional estimate 5* to any arbitrary
precision.

Algorithm 1 Golden-section Search Algorithm

Input: Range [a, b] € R, tolerance e € R |
Initialization: Set r < 0.618, 81 < a, B4 < b
while ‘64 — ﬂ1| > edo
Set B2 <= rB1 + (1 —7)Ba, B3 < (1 —7)B1 + 154
if f(B2) < f(B3) then Set 84 < B3 else Set 81 < (s endif
end while

Set 8% « (B1 + B4)/2
Output: g*
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Figure A.4: Comparison of estimations from N-W and DRCME on entropic regularized Wasserstein
barycenters of pairs of images from the training set. Estimations are presented above each image in
the format “(N-W, DRCME )”.
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Figure A.5: Comparison of estimations from BertEtAl and DRCME on entropic regularized Wasser-
stein barycenters of pairs of images from the training set. Estimations are presented above each image
in the format “(BertEtAl , DRCME )”.
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