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A Additional Experiment Results1

A.1 Conditional Mean Estimation With Synthetic Data2

We report in Figure A.1 the plot of mean estimation errors versus x0 for different training set sizes3

N = 50, 100, 200. In Figure A.2 we present the plot of the distribution of absolute estimation errors4

for x0 ∈ [0.28, 0.32]. For comparison, we also include the results of training set size N = 100 that5

are already reported in Figure 2 and 3. We remark that the estimation error of all the estimators6

becomes smaller when training set size is larger, and DRCME has best estimation performance7

among all the estimators around the jump point x = 0.3 for all different training set sizes.8

We report the hyper-parameters selected by cross-validation in Table A.1.9
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Figure A.1: Comparison of the mean absolute errors of conditional mean estimators for synthetic
data under different training set sizes. The gray shade shows the density of X .

A.2 Digit Estimation With MNIST Database10

The distinction between N-W and DRCME is also apparent in Figure A.3 which presents the11

normalized expected type-p deviation of the estimation error for each estimator, i.e.
√

2/p(E[|y −12

ŷ|p])1/p. Specifically, N-W slightly outperforms DRCME for deviation metrics of type p ≥ 1, e.g.13

with a root mean square error of 1.34 compared to 1.45 when N = 500. On the other hand, DRCME14

significantly outperforms N-W when p < 1 where high precision estimators are encouraged.15

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.
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Figure A.2: Comparison of the distributions of absolute estimation errors of conditional mean
estimators for synthetic data under different training set sizes.

Method H.P. N=50 N=100 N=200
k-NN k 1 3 5
N-W h 0.026 0.019 0.018
N-E h 0.078 0.055 0.038
BertEtAl k 1 3 5

ρ 0.063 0.016 0.000
γ hγ1(·) hγ2(·) hγ3(·)

DRCME ρ 0.031γ 0.063γ 0.063γ
Table A.1: Median of hyper-parameters (H.P.) for synthetic data experiment obtained with cross-
validation.
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Figure A.3: Comparison of normalized expected type-p deviation of the out-of-sample error of four
non-parametric conditional mean estimation methods for the MNIST database under different training
set sizes. E.g., at p = 2 is presented the root-mean square error.

We also include in Figure A.4 some additional examples of labels from DRCME and N-W. On the16

other hand, Figure A.5 compares the labels from DRCME and BertEtAl .17

2



B Proofs18

This section contains the proofs of all technical results presented in the main paper.19

B.1 Proofs of Section 220

Proof of Proposition 2.2. Using the definition of the type-∞Wasserstein distance, we can re-express21

the ambiguity set B∞ρ as22

B∞ρ =

{
Q ∈M(X × Y) :

∃π ∈ Π(Q, P̂) such that
ess sup

π
{DX (x, x′) + DY(y, y′)} ≤ ρ

}

=

Q ∈M(X × Y) :
∃πi ∈M(X × Y) ∀i ∈ [N ] such that Q = 1

N

∑
i∈[N ] πi

ess sup
1
N

∑
i∈[N] πi⊗δ(x̂i,ŷi)

{
DX (x, x′) + DY(y, y′)

}
≤ ρ

 ,

where in the second equality we exploit the fact that P̂ is an empirical measure and thus any joint23

probability measure π ∈ Π(Q, P̂) can be written as π = N−1
∑
i∈[N ] πi ⊗ δ(x̂i,ŷi), where each πi is24

a probability measure supported on X × Y . The last constraint can now be written as25

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ],

where supp(πi) denotes the support of the probability measure πi [1, Page 441]. We thus have26

B∞ρ =

{
Q ∈M(X × Y) :

∃πi ∈M(X × Y) ∀i ∈ [N ] such that Q = 1
N

∑
i∈[N ] πi

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ]

}
.

Suppose that ρ < mini∈[N ] κi,γ , then this implies by the last constraint of the feasible set that27

πi(Nγ(x0)× Y) = 0 for all i ∈ [N ]. As a consequence, any Q ∈ B∞ρ should satisfy28

Q(X ∈ Nγ(x0)) =
∑
i∈[N ]

πi(Nγ(x0)× Y) = 0.

Hence B∞ρ ∩ {Q ∈M(X × Y) : Q(X ∈ Nγ(x0)) > 0} = ∅.29

Suppose on the contrary that ρ ≥ mini∈[N ] κi,γ . Let i? = arg mini∈[N ] κi,γ , and consider the30

following set of probability measures31

∀i ∈ [N ] : πi =

{
δ(x̂pi ,ŷi) if i = i?,

δ(x̂i,ŷi) otherwise,

and set Q = 1
N

∑
i∈[N ] πi. It is easy to verify that Q ∈ B∞ρ , and that32

Q(X ∈ Nγ(x0)) ≥ 1

N
πi?(X ∈ Nγ(x0)) =

1

N
> 0.

This observation completes the proof.33

The proof of Theorem 2.3 relies on the following result.34

Lemma B.1 (Optimal solution of a fractional linear program). Let d be an strictly positive integer.35

The linear fractional program36

min

{
c+

∑K
i=1 viαi

d+
∑K
i=1 αi

: α ∈ [0, 1]K

}
admits the optimal solution37

∀i ∈ [K] : α?i =

1 if vi >
c+

∑
j:vj>vi

vj

d+ |{j : vj > vi}|
,

0 otherwise.
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Proof of Lemma B.1. Without loss of generality assume that vi are ordered decreasingly. Because38

the objective function is pseudolinear, the optimal solution is at some binary vertex [6, Lemma 3.3].39

Consider the equivalent problem40

max
k,α

{
c+

∑K
i=1 viαi

d+
∑K
i=1 αi

: α ∈ {0, 1}K ,
K∑
i=1

αi = k, k ∈ [K]

}
.

For any value k ∈ [K], the corresponding optimal value of α dependent on k is41

α?i (k) =

{
1 if i ≤ k,
0 otherwise,

where we exploit the fact that vi are ordered decreasingly. The above optimization problem can be42

simplified to43

max
k

{
c+

∑k
i=1 vi

d+ k
: k ∈ [K]

}
. (A.1)

Now we need to show that the objective function g(k) , (c +
∑k
i=1 vi)/(d + k) becomes non-44

increasing once it starts decreasing. Indeed, the incremental improvement in the objective value45

of (A.1) at k can be written as46

∆g(k) = g(k + 1)− g(k) =
c+

∑k+1
i=1 vi

d+ k + 1
− g(k)

=
(d+ k)g(k) + vk+1

d+ k + 1
− g(k)

=
vk+1 − g(k)

d+ k + 1
.

If ∆g(k) < 0, this implies that vk+1 < g(k). We also know that vk+2 ≤ vk+1. So we can show that:47

∆g(k + 1) = g(k + 2)− g(k + 1) =
vk+2 − g(k + 1)

d+ k + 2

=
(d+ k + 1)vk+2 − (d+ k)g(k)− vk+1

(d+ k + 2)(d+ k + 1)

≤ (d+ k + 1)vk+1 − (d+ k)g(k)− vk+1

(d+ k + 2)(d+ k + 1)

=
(d+ k)(vk+1 − g(k))

(d+ k + 2)(d+ k + 1)
< 0.

Moreover, the above line of arguments also reveals that if vk+2 = vk+1 then both ∆g(k) and48

∆g(k + 1) have the same sign. Thus, the value k? that maximizes (A.1) is also the solution of49

max{k : ∆g(k − 1) ≥ 0}.
Leveraging on the formula of α?i (k), the solution α? of the original fractional linear program has the50

form51

∀i : α?i =

1 if vi >
c+

∑
j:j<i vi

d+ |{j : j < i}|
,

0 otherwise,

=

1 if vi >
c+

∑
j:vj>vi

vj

d+ |{j : vj > vi}|
,

0 otherwise,

where the second equality comes from the ordering of vi. This observation completes the proof.52

Proof of Theorem 2.3. A conditional measure µ0 of Y given X ∈ Nγ(x0) induced by a probability53

measure Q satisfying Q(X ∈ Nγ(x0)) > 0 can be written as54

Q(Nγ(x0)×A) = µ0(A)Q(Nγ(x0)× Y) ∀A ⊆ Y measurable.
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One can rewrite the worst-case conditional expected loss f(β) as55

f(β) =


sup

∫
Y
`(y, β) µ0(dy)

s. t. Q ∈ B∞ρ , Q(Nγ(x0)× Y) > 0

Q(Nγ(x0)×A) = µ0(A)Q(Nγ(x0)× Y) ∀A ⊆ Y measurable.

By decomposing the measure Q using the set of probability measures πi and exploiting the definition56

of the type-∞Wasserstein distance as in the proof of Proposition 2.2, we have57

f(β) =



sup

∫
Y
`(y, β) µ0(dy)

s. t. µ0 ∈M(Y), πi ∈M(X × Y) ∀i ∈ [N ]∑
i∈[N ]

πi(Nγ(x0)× Y) > 0∑
i∈[N ]

πi(Nγ(x0)×A) = µ0(A)
∑
i∈[N ]

πi(Nγ(x0)× Y) ∀A ⊆ Y measurable

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ].

For any set of feasible solutions {πi}i∈[N ], we have
∑
i∈[N ] πi(Nγ(x0) × Y) > 0. We can thus58

re-express µ0(A) for any Borel measurable set A ⊆ Y as59

µ0(A) =

∑
i∈[N ] πi(Nγ(x0)×A)∑
i∈[N ] πi(Nγ(x0)× Y)

∀A ⊆ Y measurable.

Thus, we can eliminate the variables µ0 from the above optimization problem to obtain the equivalent60

representation61

f(β) =


sup

1∑
i∈[N ] πi(Nγ(x0)× Y)

∑
i∈[N ]

∫
Y
`(y, β) πi(Nγ(x0)× dy)

s. t. πi ∈M(X × Y) ∀i ∈ [N ]
DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ]∑
i∈[N ] πi(Nγ(x0)× Y) > 0.

(A.2)

We now show that problem (A.2) now can be written as62

f(β) =



sup
1∑

i∈[N ] αi

∑
i∈[N ]

αiv
?
i (β)

s. t. α ∈ [0, 1]N

αi = 1 if DX (x0, x̂i) + ρ ≤ γ
αi = 0 if DX (x0, x̂i) > ρ+ γ∑
i∈[N ] αi > 0,

(A.3)

where the value v?i (β) is calculated as63

v?i (β) = sup {`(yi, β) : yi ∈ Y, DY(yi, ŷi) ≤ ρ− DX (x̂pi , x̂i)} .

The equivalence between the supremum problems (A.2) and (A.3) can be shown in two steps. First,64

for (A.2) ≤ (A.3), given any feasible solution of (A.2), one can construct a feasible solution of (A.3)65

using αi = πi(Nγ(x0)× Y). For this candidate we have66 ∑
i∈[N ]

∫
Y `(y, β) πi(Nγ(x0)× dy)∑
i∈[N ] πi(Nγ(x0)× Y)

≤
∑
i∈[N ] αi`(y

?
i , β)∑

i∈[N ] αi
.

Alternatively, given a feasible solution for (A.3), one can construct the following feasible solution for67

(A.2): for any ε > 0, let yεi ∈ Y be such that DY(yεi , ŷi) ≤ ρ−DX (x0, x̂i) and `(yεi , β) ≥ v?i (β)− ε,68

and let69

∀i ∈ [N ] : πεi =


δ(x̂pi ,yεi ) if DX (x0, x̂i) + ρ ≤ γ,
αiδ(x̂pi ,yεi ) + (1− αi)δ(xri ,ŷi) if DX (x0, x̂i) > ρ+ γ,

δ(x̂i,ŷi) otherwise,
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where xri is any point such that DX (xri , x̂i) ≤ ρ and xri /∈ Nγ(x0). Again, this candidate is feasible70

in (A.2) and we have that71

f(β) ≥ sup
ε>0

∑
i∈[N ]

∫
Y `(y, β) πεi (Nγ(x0)× dy)∑
i∈[N ] π

ε
i (Nγ(x0)× Y)

≥ sup
ε>0

∑
i∈[N ] αi(`(y

?
i , β)− ε)∑

i∈[N ] αi

=

∑
i∈[N ] αi`(y

?
i , β)∑

i∈[N ] αi
=

∑
i∈[N ] αiv

?
i (β)∑

i∈[N ] αi

Let I and I1 be the index sets defined as in (4a)-(4b), the value f(β) is equal to the optimal value of72

a fractional linear program73

f(β) = max

{∑
i∈I v

?
i (β)αi∑

i∈I αi
: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1,

∑
i∈I

αi > 0

}
(A.4a)

= max

{∑
i∈I1 v

?
i (β) +

∑
i∈I2 v

?
i (β)αi

|I1|+
∑
i∈I2 αi

: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1, |I1|+
∑
i∈I2

αi > 0

}
.

(A.4b)

Notice that the objective function and the constraints of (A.4b) depend only on αi for i ∈ I . Suppose74

that I1 6= ∅, Lemma B.1 indicates that the optimal solution α? that solves (A.4b) is75

∀i ∈ I : α?i =


1 if i ∈ I1,

1 if v?i (β) >

∑
i∈I1 v

?
i (β) +

∑
j:v?j (β)>v

?
i (β)

v?j (β)

|I1|+ |{j : v?j (β) > v?i (β)}|
,

0 otherwise.

(A.5)

Suppose that I1 = ∅, then the optimal solution of problem (A.4b) is76

∀i ∈ I : α?i =

{
1 if v?i (β) ≥ maxj∈I2 v

?
j (β),

0 otherwise.

Combining the above two cases, we can rewrite the optimal value of α that solves (A.4b) as in the77

statement of the theorem. This completes the proof.78

Proof of Corollary 2.4. Because DY is an absolute distance, we have79

{yi ∈ Y : |yi−ŷi| ≤ ρ−DX (x̂pi , x̂i)}=[max{a, ŷi−ρ+DX (x̂pi , x̂i)},min{b, ŷi+ρ−DX (x̂pi , x̂i)}],
where the equality follows from Y = [a, b]. Because both the ‖ · ‖22 and the quantile loss functions are80

convex, the value v?i (β) is thus attained at the extreme points of the interval. Calculating the value of81

`(·, β) at these two endpoints and taking the maximum between them completes the proof.82

Before proving Proposition 2.5, we need the following two results which asserts the analytical optimal83

value of maximizing a convex quadratic functions over a norm ball. These results can be found in the84

literature, the proof is included here for completeness.85

Lemma B.2 (Convex quadratic maximization over a norm ball). For any β ∈ Rm, ŷ ∈ Rm and86

r ∈ R+, the following assertions hold.87

(i) Over a ‖ · ‖2 ball, we have88

sup
{
‖y − β‖22 : ‖y − ŷ‖22 ≤ r2

}
= (r + ‖ŷ − β‖2)2.

(ii) Over a ‖ · ‖∞ ball, we have89

sup
{
‖y − β‖22 : ‖y − ŷ‖∞ ≤ r

}
=
∑
j∈[m]

max
{

(ŷj − βj − r)2, (ŷj − βj + r)2
}
,

where βj and ŷj denote the j-th element of the vector β and ŷ, respectively.90
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Proof of Lemma B.2. We first prove Assertion (i). First, the optimal value is upper bounded by91

(r + ‖ŷ − β‖2)2 because92

‖y − β‖2 ≤ ‖y − ŷ‖2 + ‖ŷ − β‖2 ≤ r + ‖ŷ − β‖2
by triangle inequality. Yet, it is equal to that amount since that amount is attained when y =93

ŷ + r(ŷ − β)/‖ŷ − β‖2.94

Consider now Assertion (ii). Using a change of variables z ← y − β and a change of parameters95

w ← ŷ − β, we find96

sup
{
‖y − β‖22 : ‖y − ŷ‖∞ ≤ r

}
= max

{
‖z‖22 : ‖z − w‖∞ ≤ r

}
, (A.6)

where the maximization operators are justified by Weierstrass’ maximum value theorem [1, Theo-97

rem 2.43] because the feasible set is compact and the objective function is continuous. By extending98

the norm constraint into the vector form, we have the equivalence99

max
{
‖z‖22 : w − r1m ≤ z ≤ w + r1m

}
,

where the inequalities in the constraints are understood as element-wise inequalities, and 1m is an100

m-dimensional vector of ones. This maximization problem is separable in the decision variables and101

can be decomposed into m independent univariate subproblems of the form102

max
{
z2j : wj − r ≤ zj ≤ wj + r

}
for each j ∈ [m]. It is easy to verify that the optimal value of each univariate subproblem is equal to103

max
{

(wj − r)2, (wj + r)2
}
,

and summing up the optimal values over j completes the proof.104

We are now ready to prove Proposition 2.5.105

Proof of Proposition 2.5. Following from equation (A.4a) in the proof of Theorem 2.3, we have106

f(β) = max

{∑
i∈I v

?
i (β)αi∑

i∈I αi
: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1,

∑
i∈I

αi > 0

}

By applying the Charnes-Cooper transformation [4] with107

zi =
αi∑
i∈I αi

, and t =
1∑
i∈I αi

to reformulate this fractional linear problem, we have108

f(β) =


max

∑
i∈I v

?
i (β)zi

s. t.
∑
i∈I zi = 1, t ≥ 0

zi − t = 0 ∀i ∈ I1
0 ≤ zi ≤ t ∀i ∈ I2.

=


min λ
s. t. λ ∈ R, ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2

λ+ ui ≥ v?i (β) ∀i ∈ I∑
i∈I ui ≤ 0,

where the second equality follows from linear programming duality. Using the last minimization109

reformulation of f(β), problem (2) is now equivalent to110

min
β

f(β) =


min λ
s. t. β ∈ Rm, λ ∈ R, ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2

λ+ ui ≥ v?i (β) ∀i ∈ I∑
i∈I ui ≤ 0,

When DY is a 2-norm, each value v?i (β) calculated from (5) becomes111

v?i (β) = sup
{
‖y − β‖22 : ‖y − ŷi‖2 ≤ ρ− DX (x̂pi , x̂i)

}
∀i ∈ [N ].

7



For any i ∈ I , the value v?i (β) is finite and v?i (β) can be re-expressed by exploiting Lemma B.2(i) as112

v?i (β) = (ρ− DX (x̂pi , x̂i) + ‖ŷi − β‖2)
2
.

Problem (2) is now equivalent to113

min λ
s. t. β ∈ Rm, λ ∈ R, ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2

λ+ ui ≥ (ρ− DX (x̂pi , x̂i) + ‖ŷi − β‖2)
2 ∀i ∈ I∑

i∈I ui ≤ 0.

(A.7)

To obtain a second-order cone program formulation, it now suffices to add the hypergraph formulation114

ti ≥ ‖ŷi − β‖2 with ti ≥ 0, and reformulate the quadratic constraint into a second-order cone115

constraint using results from [2, Section 2]. This completes the proof for claim (i).116

We now proceed to prove claim (ii). When DY is the∞-norm, each value v?i (β) becomes117

v?i (β) = sup
{
‖y − β‖22 : ‖y − ŷi‖∞ ≤ ρ− DX (x̂pi , x̂i)

}
∀i ∈ [N ].

For any i ∈ I, the value v?i (β) is finite and v?i (β) can be re-expressed using Lemma B.2(ii) as118

v?i (β) =
∑
j∈[m]

max
{

(ŷij − βj − ρ+ DX (x̂pi , x̂i))
2, (ŷij − βj + ρ− DX (x̂pi , x̂i))

2
}
.

By adding auxiliary variables Tij with the constraints119

(ŷij − βj − ρ+ DX (x̂pi , x̂i))
2 ≤ T 2

ij , and (ŷij − βj + ρ− DX (x̂pi , x̂i))
2 ≤ T 2

ij ,

problem (2) is now equivalent to120

min λ

s. t. β ∈ Rm, λ ∈ R, T ∈ R|I|×m+ , ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2∑
i∈I ui ≤ 0

λ+ ui ≥
∑
j∈[m] T

2
ij ∀i ∈ I

(ŷij − βj − ρ+ DX (x̂pi , x̂i))
2 ≤ T 2

ij ∀(i, j) ∈ I × [m]
(ŷij − βj + ρ− DX (x̂pi , x̂i))

2 ≤ T 2
ij ∀(i, j) ∈ I × [m].

The last two constraints can be re-expressed as linear constraints of the form121

−Tij ≤ ŷij − βj − ρ+ DX (x̂pi , x̂i) ≤ Tij ∀(i, j) ∈ I × [m]
−Tij ≤ ŷij − βj + ρ− DX (x̂pi , x̂i) ≤ Tij ∀(i, j) ∈ I × [m].

Formulating the quadratic constraint λ + ui ≥
∑
j∈[m] T

2
ij using [2, Section 2] completes the122

proof.123

Proof of Proposition 2.6. For the purpose of this proof, define the following sets124

Yi , {yi ∈ Y : DY(yi, ŷi) ≤ ρ− DX (x̂pi , x̂i)} ∀i ∈ I.

Because DY is coercive and continuous, each set Yi is compact. Because the loss function is125

continuous, there thus exists y?i satisfying y?i ∈ Yi and `(y?i , β) = v?i (β) for any i ∈ I. Following126

from Equation (A.4a) in the proof of Theorem 2.3, we have127

f(β) = max

{∑
i∈I v

?
i (β)αi∑

i∈I αi
: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1,

∑
i∈I

αi > 0

}

= max

{∑
i∈I `(yi, β)αi∑

i∈I αi
: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1,

∑
i∈I

αi > 0, yi ∈ Yi ∀i ∈ I

}
.

If I1 = ∅, then we have128

f(β) = `(yi? , β) ∀i? ∈ arg max
i∈I2

v?i (β),

and a subgradient of f is ∂f(β) = ∂β`(yi? , β) for any i? ∈ arg maxi∈I2 v
?
i (β). By incorporating129

the optimal value of α in the statement of Theorem 2.3, we have ∂f(β) = αi∂β`(y
?
i , β).130
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If I1 6= ∅, then we have131

f(β) = max

{∑
i∈I1 v

?
i (β) +

∑
i∈I2 v

?
i (β)αi

|I1|+
∑
i∈I2 αi

: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1

}

= max

{∑
i∈I1 `(yi, β) +

∑
i∈I2 `(yi, β)αi

|I1|+
∑
i∈I2 αi

: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1, yi ∈ Yi ∀i ∈ I

}
Notice that the function132

β 7→
∑
i∈I1 `(yi, β) +

∑
i∈I2 `(yi, β)αi

|I1|+
∑
i∈I2 αi

is convex for any feasible value of (α, y) in the above optimization problem. Moreover, by Ty-133

chonoff’s theorem [1, Theorem 2.61], the feasible set of the above optimization problem is a compact134

set in the product topology. One can now apply [3, Proposition A.22] to conclude that a subgradient135

of f in this case is136

∂f(β) =

∑
i∈I1 ∂β`(yi, β) +

∑
i∈I2 ∂β`(yi, β)αi

|I1|+
∑
i∈I2 αi

.

Combining the two cases, we have the postulated result.137

B.2 Proofs of Section 3138

Proof of Proposition 3.1. Under the conditions of the proposition, we have P(X ∈ Nγ(x0)) > 0139

because P admits a density, and thatNγ(x0) ∩ X is a set with non-empty interior for any γ > 0. The140

proof now follows trivially from [5, Theorem 1.1]. Indeed, under the conditions of the proposition,141

with probability of at least 1−O(N−c), we have P ∈ B∞ρ , and hence the bound follows.142

Proof of Example 3.2. For the purpose of this proof, we let P∞ = P⊗P⊗· · · be the joint distribution143

of (x̂1, ŷ1), (x̂2, ŷ2), · · · . The selection of parameter γ = 0 implies that I = I2, and for any fixed144

ρ > 0 we have P∞ (limN→∞ |I| = +∞) = 1 by Borel-Cantelli lemma. In this example, the DRO145

problem is feasible if I is nonempty, and we have an explicit optimal solution146

β?N =
1

2
min
i∈I
{ŷi − ρ+ DX (x̂i, x0)}+

1

2
max
i∈I
{ŷi + ρ− DX (x̂i, x0)}

Notice that with probability 1 we have147

min
i∈I
{ŷi − ρ+ DX (x̂i, x0)} ≥ −ρ and max

i∈I
{ŷi + ρ− DX (x̂i, x0)} ≥ max

i∈I
{ŷi} .

Consequently we have β?N ≥ 1
2 maxi∈I {ŷi} − 1

2ρ. For all y > 0, we have148

P∞
(

lim
N→∞

β?N > y
)
≥ P∞

(
lim
N→∞

max
i∈I
{ŷi} > 2y + ρ

)
= lim
N→∞

P∞
(

max
i∈I
{ŷi} > 2y + ρ

)
= lim
N→∞

1− P(Y ≤ 2y + ρ)|I| = 1.

Let y tend to infinity concludes the proof.149

Before proving Proposition 3.4, we first present the following minimax result.150

Lemma B.3 (Minimax result). Suppose that `(y, ·) is convex and coercive for any y ∈ Y , and that151

DY(·, ŷ) is convex and coercive for any ŷ. For any ρ ≥ mini∈[N ] κi,γ , we have152

min
β∈Rm

sup
Q∈B∞

ρ ,Q(X∈Nγ(x0))>0

EQ
[
`(Y, β)|X ∈ Nγ(x0)

]
= sup

Q∈B∞
ρ ,Q(X∈Nγ(x0))>0

min
β∈Rm

EQ
[
`(Y, β)|X ∈ Nγ(x0)

]
.

To facilitate the proof of Lemma B.3, we define the following conditional ambiguity set induced by153

B∞ρ as154

Bx0,γ(B∞ρ ) ,

{
µ0 ∈M(Y) :

∃Q ∈ B∞ρ , Q(Nγ(x0)× Y) > 0
Q(Nγ(x0)×A) = µ0(A)Q(Nγ(x0)× Y) ∀A ⊆ Y measurable

}
,

(A.8)
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where the last constraint defining the set Bx0,γ(B∞ρ ) is from the dis-integration of the joint measure155

into a marginal distribution and the corresponding conditional distributions [8, Theorem 9.2.2].156

The proof of Lemma B.3 relies on the following two results which assert the convexity of the joint157

ambiguity set B∞ρ and its induced conditional ambiguity set Bx0,γ(B∞ρ ).158

Lemma B.4 (Convexity of B∞ρ ). The ambiguity set B∞ρ is convex.159

Proof of Lemma B.4. Because the nominal probability measure is an empirical measure, the ambigu-160

ity set B∞ρ can be represented as161

B∞ρ =

Q ∈M(X × Y) :
∃πi ∈M(X × Y) ∀i ∈ [N ] such that :
Q = N−1

∑
i∈[N ] πi,

∑
i∈[N ] πi(Nγ(x0)× Y) > 0

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ]

 .

Pick any arbitrary Q0 and Q1 from B∞ρ . Associated with Qj , j ∈ {0, 1} is a collection of probability162

measures {πji } ∈ M(X × Y)N satisfying163 {
Qj = N−1

∑
i∈[N ] π

j
i ,
∑
i∈[N ] π

j
i (Nγ(x0)× Y) > 0

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πji ) ∀i ∈ [N ].

Consider any convex combination Qλ = λQ1 + (1− λ)Q0 for λ ∈ (0, 1). It is easy to verify that164

the joint measure πλi = λπ1
i + (1− λ)π0

i for any i ∈ [N ] satisfies165 {
Qλ = N−1

∑
i∈[N ] π

λ
i ,
∑
i∈[N ] π

λ
i (Nγ(x0)× Y) > 0

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πλi ) ∀i ∈ [N ],

where the last constraint is satisfied by noticing that supp(πλi ) = supp(π0
i ) ∪ supp(π1

i ). This166

observation implies that Qλ ∈ B∞ρ .167

Lemma B.5 (Convexity of Bx0,γ(B∞ρ )). The conditional ambiguity set Bx0,γ(B∞ρ ) is convex.168

Proof of Lemma B.5. Let µ0
0, µ

1
0 ∈ Bx0,γ(B∞ρ ) be two arbitrary probability measures. Associated169

with each µj0, j ∈ {0, 1}, is a corresponding joint measure Qj ∈M(X × Y) such that170

Qj(Nγ(x0)× Y) > 0 and
Qj(Nγ(x0)×A)

Qj(Nγ(x0)× Y)
= µj0(A).

Select any λ ∈ (0, 1). We proceed to show that µλ0 = λµ1
0 + (1 − λ)µ0

0 ∈ Bx0,γ(B∞ρ ). Indeed,171

consider the joint measure172

Qλ = θQ1 + (1− θ)Q0

with θ being defined as173

θ =
λQ0(Nγ(x0)× Y)

λQ0(Nγ(x0)× Y) + (1− λ)Q1(Nγ(x0)× Y)
∈ [0, 1].

By definition, we have Qλ(Nγ(x0)× Y) > 0, and by convexity of B∞ρ from Lemma B.4, we have174

Qλ ∈ B∞ρ . Moreover, we have175

Qλ(Nγ(x0)×A)

Qλ(Nγ(x0)× Y)
=
θQ1(Nγ(x0)×A) + (1− θ)Q0(Nγ(x0)×A)

θQ1(Nγ(x0)× Y) + (1− θ)Q0(Nγ(x0)× Y)

=
λQ0(Nγ(x0)× Y)Q1(Nγ(x0)×A) + (1− λ)Q1(Nγ(x0)× Y)Q0(Nγ(x0)×A)

Q0(Nγ(x0)× Y)Q1(Nγ(x0)× Y)

=
λQ1(Nγ(x0)×A)

Q1(Nγ(x0)× Y)
+

(1− λ)Q0(Nγ(x0)×A)

Q0(Nγ(x0)× Y)

= λµ1
0(A) + (1− λ)µ0

0(A),

where the second equality follows from the definition of θ. This implies that µλ0 ∈ Bx0,γ(B∞ρ ), and176

further implies the convexity of Bx0,γ(B∞ρ ).177
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We are now ready to prove Lemma B.3.178

Proof of Lemma B.3. By the definition of the conditional ambiguity set Bx0,γ(B∞ρ ), it suffices to179

prove the equivalence180

min
β∈Rm

sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0 [`(Y, β)] = sup
µ0∈Bx0,γ(B∞

ρ )

min
β∈Rm

Eµ0 [`(Y, β)].

First, consider the mapping β 7→ supµ0∈Bx0,γ(B∞
ρ ) Eµ0

[`(Y, β)]. The properties of ` implies that181

this mapping is lower semi-continuous and coercive. As a consequence, without loss of optimality,182

we can restrict the feasible set β to some convex, compact ball S , {β : ‖β‖2 ≤ R} for some radius183

R ∈ R++ sufficiently big.184

We now consider the mapping µ0 7→ Eµ0 [`(Y, β)] parametrized by β. For any β, it is a linear function185

of µ0, and hence it is concave. It is also weakly continuous. To see this, notice that when D(·, ŷ) is186

coercive, the set187

A ,
⋃
i∈[N ]

{y : DY(y, ŷi) ≤ ρ},

being a finite union of bounded sets, is bounded. Pick any Q ∈ B∞ρ , by the definition of the type-∞188

Wasserstein distance, we have Q(A) = 1. Consider the conditional measure µQ
0 induced by Q, then189

we have190

µQ
0 (A ∩ Y) =

Q(Nγ(x0)× (A ∩ Y))

Q(Nγ(x0)× Y)
≥ Q(Nγ(x0)× (A ∩ Y))

Q(Nγ(x0)× (A ∩ Y))
= 1,

which implies that µQ
0 has a bounded support. This implies that Bx0,γ(B∞ρ ) ⊆M(A), whereM(A)191

is the set of all probability measures supported on a bounded set A. Because `(·, β) is continuous,192

there exists a bound U ∈ R++ such that |`(y, β)| ≤ U for every y ∈ A. Define now the function193

`U (·, β) = max{−U,min{`(·, β), U}}, which is continuous and bounded. Consider any sequence194

of conditional measures {µk0} ∈ M(A) that weakly converges to µ∞0 , we have195

lim
k↑∞

Eµk0
[`(Y, β)] = lim

k↑∞
Eµk0

[`U (Y, β)] = Eµ∞
0

[`U (Y, β)] = Eµ∞
0

[`(Y, β)],

which implies that the function µ0 7→ Eµ0
[`(Y, β)] is weakly continuous overM(A).196

This line of argument suggests that197

min
β

sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0
[`(Y, β)] = min

β:‖β‖2≤R
sup

µ0∈Bx0,γ(B∞
ρ )

Eµ0
[`(Y, β)]

= sup
µ0∈Bx0,γ(B∞

ρ )

min
β:‖β‖2≤R

Eµ0 [`(Y, β)] (A.9a)

= sup
µ0∈Bx0,γ(B∞

ρ )

min
β

Eµ0 [`(Y, β)], (A.9b)

where equality (A.9b) follows from the coercivity of the loss function, thus the constraint on β can be198

dropped for R sufficiently big. Equality (A.9a) holds by Sion’s minimax theorem [7]. This finishes199

the proof.200

Proof of Proposition 3.4. Because the loss function is coercive and convex in β, we have201

min
β∈R

sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0
[(Y − β)2] = sup

µ0∈Bx0,γ(B∞
ρ )

min
β∈R

Eµ0
[(Y − β)2]

= sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0 [(Y − Eµ0 [Y ])2]

= Varianceµ?0 (Y ),

where the first equality follows from Lemma B.3, the second equality follows from the fact that for202

any µ0 ∈ Bx0,γ(B∞ρ ), the estimate β?(µ0) = Eµ0
[Y ] minimizes the objective Eµ0

[(Y − β)2]. The203

last equality follows from the definition of µ?0.204
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Let β? be the optimal estimate that solves (2), we now have205

Varianceµ?0 (Y ) = sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0 [(Y − β?)2]

≥ Eµ?0 [(Y − β?)2] = Varianceµ?0 (Y ) + (β? − Eµ?0 [Y ])2,

where the last equality follows from the bias-variance decomposition. This implies that β? = Eµ?0 [Y ]206

and completes the proof.207

C Golden-section Search for Univariate Conditional Estimate208

We elaborate here on the procedure of applying a golden-section search to solve a one-dimensional209

local conditional estimation with a convex loss function `. We suppose that Y = [a, b] for some finite210

values −∞ < a < b < ∞, that `(y, ·) is convex for every y and that we have access to an oracle211

that solves (5). Given any β, the worst-case conditional expected loss f(β) can be computed using212

Theorem 2.3. Algorithm 1 can be used to find the optimal conditional estimate β? to any arbitrary213

precision.214

Algorithm 1 Golden-section Search Algorithm

Input: Range [a, b] ∈ R, tolerance ε ∈ R++

Initialization: Set r ← 0.618, β1 ← a, β4 ← b
while |β4 − β1| > ε do

Set β2 ← rβ1 + (1− r)β4, β3 ← (1− r)β1 + rβ4
if f(β2) ≤ f(β3) then Set β4 ← β3 else Set β1 ← β2 endif

end while
Set β? ← (β1 + β4)/2
Output: β?
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(5.0, 5.0) (4.1, 5.0) (3.3, 3.4) (3.0, 3.0) (3.0, 3.0)

(9.0, 9.0) (7.3, 8.6) (7.0, 8.0) (7.2, 8.0) (7.9, 8.0)

(1.0, 1.0) (3.3, 3.4) (5.6, 6.0) (5.9, 6.0) (6.0, 6.0)

(4.0, 4.0) (4.5, 4.0) (6.2, 6.8) (7.6, 9.0) (8.9, 9.0)

(3.0, 3.0) (3.2, 3.0) (4.1, 4.9) (6.0, 8.0) (7.9, 8.0)

(3.0, 3.0) (2.4, 3.0) (1.6, 1.0) (1.4, 0.7) (0.2, 0.0)

(2.0, 2.0) (2.4, 2.5) (2.6, 3.0) (2.7, 3.0) (2.9, 3.0)

(6.0, 6.0) (4.0, 3.9) (1.9, 1.9) (0.6, 0.0) (0.1, 0.0)

(9.0, 9.0) (8.6, 9.0) (8.0, 8.0) (7.9, 8.0) (8.0, 8.0)

(0.0, 0.0) (0.4, 0.0) (1.0, 1.9) (1.9, 3.0) (2.9, 3.0)

(9.0, 9.0) (8.4, 9.0) (7.9, 8.0) (7.9, 8.0) (8.0, 8.0)

(1.0, 1.0) (2.1, 1.0) (4.7, 6.0) (5.6, 6.0) (6.0, 6.0)

(2.0, 2.0) (1.9, 2.0) (2.0, 2.5) (2.2, 3.0) (2.9, 3.0)

(7.0, 7.0) (7.2, 7.0) (7.5, 8.0) (7.1, 8.0) (7.9, 8.0)

(3.0, 3.0) (3.5, 3.3) (4.7, 5.8) (5.2, 6.0) (6.0, 6.0)

(7.9, 8.0) (3.7, 4.8) (3.3, 4.1) (2.5, 2.0) (2.1, 2.0)

(6.0, 6.0) (4.7, 4.6) (2.8, 2.0) (2.1, 2.0) (2.0, 2.0)

(9.0, 9.0) (8.6, 9.0) (7.8, 7.8) (7.2, 7.0) (7.0, 7.0)

(0.2, 0.0) (0.8, 0.0) (1.9, 2.2) (3.6, 6.0) (5.8, 6.0)

(5.0, 5.0) (3.0, 2.7) (2.6, 2.0) (2.2, 2.0) (2.0, 2.0)

(6.0, 6.0) (5.0, 6.0) (3.4, 3.6) (1.6, 0.0) (0.2, 0.0)

(7.0, 7.0) (6.1, 6.1) (4.0, 4.3) (2.6, 2.9) (2.0, 2.0)

(6.0, 6.0) (4.1, 6.0) (2.0, 0.0) (0.7, 0.0) (0.1, 0.0)

(1.0, 1.0) (3.5, 4.0) (6.3, 8.0) (7.1, 8.0) (7.9, 8.0)

(7.9, 8.0) (6.2, 8.0) (4.2, 4.6) (3.2, 3.0) (3.0, 3.0)

(7.0, 7.0) (7.3, 7.0) (8.5, 9.0) (8.9, 9.0) (9.0, 9.0)

Figure A.4: Comparison of estimations from N-W and DRCME on entropic regularized Wasserstein
barycenters of pairs of images from the training set. Estimations are presented above each image in
the format “(N-W, DRCME )”.

13



(3.5, 5.0) (3.5, 5.0) (3.5, 3.4) (3.5, 3.0) (3.0, 3.0)

(9.0, 9.0) (8.8, 8.6) (8.2, 8.0) (8.0, 8.0) (8.0, 8.0)

(2.2, 1.0) (2.7, 3.4) (3.5, 6.0) (4.8, 6.0) (6.0, 6.0)

(6.5, 4.0) (6.0, 4.0) (6.0, 6.8) (6.0, 9.0) (8.5, 9.0)

(3.0, 3.0) (3.0, 3.0) (4.2, 4.9) (5.5, 8.0) (8.0, 8.0)

(2.3, 3.0) (2.0, 3.0) (1.5, 1.0) (1.5, 0.7) (0.0, 0.0)

(2.2, 2.0) (2.5, 2.5) (2.5, 3.0) (2.8, 3.0) (2.8, 3.0)

(6.0, 6.0) (3.0, 3.9) (3.0, 1.9) (0.0, 0.0) (0.0, 0.0)

(8.8, 9.0) (8.5, 9.0) (8.2, 8.0) (8.0, 8.0) (8.0, 8.0)

(0.0, 0.0) (0.0, 0.0) (0.7, 1.9) (2.3, 3.0) (2.8, 3.0)

(9.0, 9.0) (8.8, 9.0) (8.2, 8.0) (8.0, 8.0) (8.0, 8.0)

(2.5, 1.0) (4.8, 1.0) (4.8, 6.0) (6.0, 6.0) (6.0, 6.0)

(1.2, 2.0) (1.3, 2.0) (1.8, 2.5) (1.8, 3.0) (2.8, 3.0)

(7.2, 7.0) (7.5, 7.0) (8.0, 8.0) (8.0, 8.0) (8.0, 8.0)

(3.7, 3.0) (3.7, 3.3) (3.7, 5.8) (3.7, 6.0) (6.0, 6.0)

(5.2, 8.0) (4.5, 4.8) (4.0, 4.1) (2.0, 2.0) (2.5, 2.0)

(6.0, 6.0) (5.0, 4.6) (3.5, 2.0) (1.0, 2.0) (1.0, 2.0)

(8.0, 9.0) (7.5, 9.0) (7.5, 7.8) (7.5, 7.0) (7.5, 7.0)

(0.0, 0.0) (0.0, 0.0) (1.5, 2.2) (1.5, 6.0) (3.0, 6.0)

(3.7, 5.0) (1.7, 2.7) (2.5, 2.0) (0.5, 2.0) (1.0, 2.0)

(6.0, 6.0) (3.0, 6.0) (3.0, 3.6) (1.5, 0.0) (0.0, 0.0)

(3.8, 7.0) (3.2, 6.1) (3.2, 4.3) (3.2, 2.9) (2.2, 2.0)

(6.0, 6.0) (3.0, 6.0) (1.5, 0.0) (0.0, 0.0) (0.0, 0.0)

(1.0, 1.0) (2.7, 4.0) (6.3, 8.0) (8.0, 8.0) (5.2, 8.0)

(8.0, 8.0) (5.5, 8.0) (4.2, 4.6) (4.2, 3.0) (3.0, 3.0)

(8.0, 7.0) (8.0, 7.0) (8.2, 9.0) (8.5, 9.0) (9.0, 9.0)

Figure A.5: Comparison of estimations from BertEtAl and DRCME on entropic regularized Wasser-
stein barycenters of pairs of images from the training set. Estimations are presented above each image
in the format “(BertEtAl , DRCME )”.
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