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Abstract

As machine learning becomes prevalent in a widening array of sensitive applica-
tions such as job hiring and criminal justice, one critical aspect in the design of
machine learning classifiers is to ensure fairness: Guaranteeing the irrelevancy of
a prediction to sensitive attributes such as gender and race. This work develops
a kernel density estimation (KDE) methodology to faithfully respect the fairness
constraint while yielding a tractable optimization problem that comes with high
accuracy-fairness tradeoff. One key feature of this approach is that the fairness
measure quantified based on KDE can be expressed as a differentiable function
w.r.t. model parameters, thereby enabling the use of prominent gradient descent to
readily solve an interested optimization problem. This work focuses on classifi-
cation tasks and two well-known measures of group fairness: demographic parity
and equalized odds. We empirically show that our algorithm achieves greater or
comparable performances against prior fair classifers in accuracy-fairness tradeoff
as well as in training stability on both synthetic and benchmark real datasets.

1 Introduction

During the last decade, we have witnessed an unprecedented explosion of academic and popular
interests in machine learning. Machine learning is no longer just an engine behind image classifiers
and spam filters. It is now employed to make critical decisions that affect our lives, cultures, and
rights, e.g., screening job applicants, and informing bail & parole decisions. With a surge of such
applications, one major criterion in the design of machine learning algorithms is to ensure fairness.

A fair classifier aims at achieving the irrelevancy of a prediction to sensitive attributes such as race,
sex, age, and religion. Prior works in the fairness literature have developed several metrics that
capture various notions of discrimination. Three major fairness measures have been taken into
consideration: (i) group fairness [8, 3, 12, 42, 41] that intends to ensure similar statistics across
distinct demographics; (ii) individual fairness [7, 9, 33, 40] that targets nondiscriminatory predictions
across nearby examples; (iii) causality-based fairness counterparts [20, 24, 30, 37, 45, 46, 18]. This
work focuses on group fairness that has been widely explored in a variety of applications. Prominent
group fairness measures include demographic parity [8, 42], equal opportunity [12], and equalized
odds [12]. All of these intend to quantify how prediction outputs vary depending on sensitive
attributes.

There has been a proliferation of fair classifiers [12, 7, 5, 1, 28, 43, 17, 23]. One challenge that
arises in the prior algorithms is that they suffer from obtaining an explicit and possibly differentiable
fairness measure w.r.t. model parameters and the non-differentiability often prevents the use of popular
algorithms such as gradient descent. This naturally leads to a common approach: Incorporating an
expressible fairness proxy as a regularization term in an interested optimization. One pioneering
work along this direction [42] employs as a fairness proxy a covariance function between a sensitive
attribute and a prediction. However, such a proxy-based approach may not well respect fairness
constraints when it serves as a weak constraint as in [42]. A small covariance does not ensure
statistical independence although the reverse is always the case. Hence, any theoretical performance
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is not guaranteed for a wide range of real datasets in which the low correlation may not necessarily
ensure independence.

Contribution: To address the issue, we take a distinct approach that allows us to directly quantify
fairness measures without relying on such proxy. Our methodology is based on kernel density
estimation (KDE) [4] that serves to estimate a probability distribution. We emphasize three notable
aspects of our KDE-based framework. The first is that it enables a direct computation of an interested
fairness measure without introducing any proxy. Second, it yields high accuracy on the distribution
estimate. In the binary classifier of our consideration, a moderate sample size ensures a reasonably
precise estimate, in stark contrast to high-dimensional settings [34, 32, 14]; see Remark 1 for details.
Lastly, the fairness measure computed based on KDE can be expressed as a differentiable function
w.r.t. model parameters, thereby enabling the use of standard gradient descent to easily solve a
constrained optimization problem taking the fairness measure as a regularization term. Our extensive
experiments conducted both on synthetic and benchmark real datasets (Law School Admissions [36],
Adult Census [6], Credit Card Default [6, 39], and COMPAS [2]) demonstrate that our algorithm
achieves higher accuracy-fairness tradeoff relative to the states of the arts [42, 41, 44, 1, 25, 12], both
w.r.t. demographic parity and equalized odds. It also exhibits an enhanced performance in training
stability, compared to adversarial learning based frameworks [44, 11].

Related works: Fair classifiers are categorized broadly into the following three types: (1) pre-
processing; (2) post-processing; (3) in-processing. Pre-processing intends to correct biased and/or
possibly poisoned data (if any) for mitigating discrimination [16, 43, 8, 38] while post-processing
perturbs classifier’s output at test time while freezing the model [12, 28]. In-processing handles
a fairness constraint in the process of model training. Below we provide a list of in-processing
techniques most relevant to ours.

One common in-processing approach is to address a constrained optimization that incorporates
a fairness measure as a regularization term. Zafar et al. [42] takes this approach, yet utilizing
a covariance fairness proxy w.r.t. a prediction and a sensitive attribute. While such covariance
proxy yields convex optimization under the logistic regression and SVM frameworks to achieve the
optimality via gradient descent, it comes at a cost in enforcing a fairness constraint, as it serves only
as a weak constraint. Other approaches based on linear regression and SVM include [17, 5].

Another line of in-processing algorithms which yet take different approaches are [44, 1, 25, 29].
Zhang et al. [44] build upon an adversarial learning framework [11] to design a classifier and a
discriminator so that the discriminator cannot identify a sensitive attribute from a prediction. While it
may enjoy promising accuracy-fairness tradeoff with careful design, it suffers from a stability issue
in training as it is based on min-max optimization [11, 31]. See Section 4 for a relevant in-depth
discussion.

2 Problem Formulation

A fair classifier setting includes two types of data: (i) normal (and possibly objective) data; (ii)
sensitive data (or called sensitive attributes). We denote the normal data by x 2 Rd. In the case
of recidivism score prediction [2], such x may refer to a collection of the number of prior criminal
records and a criminal type, e.g., misdemeanor or felony. For sensitive data, we employ a different
notation, say z. In the above example, z may indicate a race type among white (z = 1) and black
(z = 0). In general, the alphabet size of z is arbitrary. There are many race types such as Black, White,
Asian, Hispanic, to name a few. Also, there could be multiple sensitive attributes like gender and
race (e.g., White male, White female, Black male, Black female). In order to reflect such scenarios,
we consider discrete-valued z 2 Z with an arbitrary alphabet size jZj. Let ŷ be the classifier output
which aims to represent the ground-truth conditional distribution p(yjx; z). Here y 2 Y denotes the
ground-truth label. In the recidivism score prediction, y = 1 means reoffending in the near future, say
within two years (y = 0 otherwise), while ŷ indicates the probability of such event occurring. We are
given m example triplets: f(x(i); z(i); y(i))gmi=1. We assume that both x and z are fed as the input,
although z may not be part of the input in an effort to automatically respect disparate treatment [42],
another fairness notion that captures an unequal treatment. For a clearer explanation, we first focus a
binary classification setting where Y = f0; 1g and then discuss on a multiclass setting as presented
in Section 5.
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This work focuses on two group fairness notions: demographic parity and equalized odds [8, 42, 12].
Their formal de�nitions rely on a few notations. LetZ 2 Z be a random variable that indicates a
sensitive attribute. LeteY 2 Y be a hard-decision value of the predictionbY at a certain threshold:
eY := 1f bY � � g where� 2 [0; 1].

De�nition 1 (Demographic Parity) A classi�er is said to satisfy demographic parity if its prediction
eY is independent of the sensitive attributeZ : Pr( eY = 1 jZ = z) = Pr( eY = 1) , 8z 2 Z .

One popular measure that captures the degree of violating demographic parity is the difference
between the conditional probability and its marginal. Similar to the namings in [5, 15], we call it the
difference w.r.t. demographic parity (DDP):

DDP :=
X

z2Z

j Pr( eY = 1 jZ = z) � Pr( eY = 1) j (1)

whereDDP � 0 and the equality holds when a classi�er fully respects demographic parity. One may
consider another measure which takes “max” operation instead of “

P
” in (1), or a different measure,

calleddisparate impact, which captures the degree of the statistical independence via the ratio of
probabilities of positive events among distinct sensitive attributes [1, 8, 42]. We focus onDDP in (1)
for tractability of an associated optimization problem that we will detail later.

De�nition 2 (Equalized Odds) A classi�er is said to satisfy equalized odds if its prediction is
conditionally independent of the sensitive attributeZ given the labelY : Pr( eY = 1 jZ = z; Y =
y) = Pr( eY = 1 jY = y), 8z 2 Z andy 2 f 0; 1g.

Similarly we de�ne the difference of the two probability quantities w.r.t. equalized odds (DEO) as:

DEO:=
X

y2f 0;1g

X

z2Z

j Pr( eY =1 jZ = z; Y = y) � Pr( eY =1 jY = y)j (2)

whereDEO � 0 and the equality holds when a classi�er respects equalized odds.

One natural approach to decreaseDDP or DEO is to incorporate the fairness-related constraint as a
regularizationterm into the conventional optimization which is often of the following form:

min
w

1
m

mX

i =1

`CE(y( i ) ; ŷ( i ) ) (3)

where`CE(y; ŷ) := �
P

j yj log ŷj indicates cross entropy loss [10], andw denotes weights of a
classi�er. Taking into accountDDP or DEO, we then obtain:

min
w

1 � �
m

mX

i =1

`CE(y( i ) ; ŷ( i ) ) + � L fair (4)

where the fairness-associated regularization termL fair takesDDP or DEO, and� 2 [0; 1] denotes a
normalized regularization factor that balances predication accuracy against the fairness constraint.
Here one challenge that arises is that expressingDDP andDEO in terms ofw is not that straightfor-
ward. One effort was made by [42] which introduced asurrogate yet expressiblefairness measure.
Speci�cally they employ a covariance function betweenbY andZ as a fairness proxy. However, this
covariance proxy serves only as a weak constraint and therefore it may not fully respect the fairness
constraint.

To overcome the challenge, we take a kernel density estimation (KDE) [4] trick which allows us
to faithfully quantify fairness measures. Our approach also enables the computed measures to be
differentiable w.r.t.w, thus enjoying a variety of gradient-based optimizers [10, 19].

3 Proposed Approach

The computations ofDDP andDEO require the knowledge ofPeY jZ andPeY jZ;Y , respectively. So the
question of interest boils down to: How to expressPeY jZ andPeY jZ;Y in terms ofw? To this end, we
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employ the KDE methodology that serves to estimate the pdf ofbY via samples. SinceeY is a function
of bY , the pmf ofeY can be represented also via the samples. A notable aspect of the KDE approach
(to be detailed in the sequel) is that it enablesP~Y jZ andP~Y jZ;Y to be expressed asdifferentiable
functions w.r.t.w. Let us start by reviewing the KDE.

De�nition 3 (Kernel Density Estimator (KDE) [4]) Let (ŷ(1) ; : : : ; ŷ(m ) ) be i.i.d. examples drawn
from a distribution with an unknown densityf . Its KDE is de�ned as:

f̂ (ŷ) :=
1

mh

mX

i =1

f k

�
ŷ � ŷ( i )

h

�
(5)

wheref k is a kernel function (see De�nition 4) andh > 0 is a smoothing parameter called bandwidth.

De�nition 4 (A kernel function) A kernel function is a non-negative real-valued integrable function
f k (�) that satis�es two requirements: normalization and symmetry.

Here we employ a prominent Gaussian kernel function:

f k (ŷ) :=
1

p
2�

exp
�

�
ŷ2

2

�
: (6)

To ease the computation of the cdf off k (ŷ), we approximate theQ-function as per [21]:

Fk (ŷ) :=
Z 1

ŷ
f k (y)dy = Q(ŷ) � e� aŷ2 � bŷ � c (7)

where(a; b; c) = (0 :4920; 0:2887; 1:1893).

3.1 Demographic Parity

We �rst estimatef bY jZ (ŷjz) using the KDE:

f̂ bY jZ (ŷjz) =
1

mzh

X

i 2 I z

f k

�
ŷ � ŷ( i )

h

�
(8)

whereI z := f i : z( i ) = zg andmz := jI z j. This together witheY := 1f bY � � g gives:

P̂eY jZ (1jz) =
Z 1

�
f̂ bY jZ (ŷjz)dŷ =

1
mz

X

i 2 I z

Fk

�
� � ŷ( i )

h

�

whereFk (ŷ) :=
R1

ŷ f k (y)dy.

Proposition 1 Sincef k (ŷ) is continuous and eacĥy( i ) is a differentiable function w.r.t.w, P̂eY jZ is
also differentiable. Using the chain rule, one can then compute its gradient as:

r w P̂eY jZ (1jz) =
1

mzh

X

i 2 I z

f k

�
� � ŷ( i )

h

�
� r w ŷ( i ) : (9)

Now let us consider theDDP constrained optimization:

min
w

1 � �
m

mX

i =1

`CE(y( i ) ; ŷ( i ) ) + � � DDP (10)

where

DDP �
X

z2Z

�
�
�P̂eY jZ (1jz) � P̂eY (1)

�
�
� andP̂eY (1) =

X

z2Z

mz

m
P̂eY jZ (1jz): (11)
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For tractability of the non-differentiable absolute functionj � j , we employ the Huber loss [13]:

DDP �
X

z2Z

H �

�
P̂eY jZ (1jz) � P̂eY (1)

�
whereH � (x) :=

�
1
2 x2 for jxj � � ;
� (jxj � 1

2 � ) otherwise:

This together with (9) and (11) yields an approximation of the gradient ofDDP:

r w DDP �
X

z2Z

H 0
�

�
P̂eY jZ (1jz) � P̂eY (1)

�
� r w

�
P̂eY jZ (1jz) � P̂eY (1)

�
: (12)

We employ a neural network (NN) forw and gradient descent for training the fair classi�er(10).
For a linear classi�er, we can indeed compute the gradient explicitly, so we provide the closed-form
of the gradient in the supplementary. For general multi-layer NNs, on the other hand, an explicit
formula is rather messy to express, while it can readily be implemented with autograd under machine
learning frameworks. Hence, we do not leave the detailed formula for general NNs.

3.2 Equalized Odds

Taking the KDE approach, similarly we obtain:

P̂eY jZ;Y (1jz; y) =
1

mzy

X

i 2 I zy

Fk

�
� � ŷ( i )

h

�
(13)

whereI zy := f i : z( i ) = z; y( i ) = yg andmzy := jI zy j. We can then compute the gradient w.r.t.w:

r w P̂eY jZ;Y (1jz; y) =
1

mzy h

X

i 2 I zy

f k

�
� � ŷ( i )

h

�
� r w ŷ( i ) : (14)

Now consider theDEO constrained optimization problem:

min
w

1 � �
m

mX

i =1

`CE(y( i ) ; ŷ( i ) ) + � � DEO: (15)

Again using the KDE together with the Huber loss, we approximate:

DEO �
X

y2f 0;1g

X

z2Z

H �

�
P̂eY jZ;Y (1jz; y) � P̂eY jY (1jy)

�
(16)

whereP̂eY jY (1jy) =
P

z2Z

m zy

m y
P̂eY jZ;Y (1jz; y) andmy := jf i : y( i ) = ygj. This then yields:

r w DEO �
X

y2f 0;1g

X

z2Z

H 0
�

�
P̂eY jZ;Y (1jz; y) � P̂eY jY (1jy)

�
� r w

�
P̂eY jZ;Y (1jz; y) � P̂eY jY (1jy)

�
:

(17)

Again we employ an NN forw and provide the explicit gradient formula for a linear classi�er in the
supplementary, while omitting complicated gradient expressions for general NNs. We use gradient
descent for training the fair classi�er (15).

Remark 1 (Estimate accuracy of the KDE approach)In general, the KDE approach yields an
inaccurate distribution estimate underhigh-dimensionalsettings with a moderate amount of samples,
as the sample size required for a reasonably good estimate should scale exponentially with the
dimension [34, 32, 14]. However, this is not the case in our setting that emphasizes the binary
classi�er. In our binary classi�er settinĝy 2 R, the required sample size is not prohibitively large
even for a highly accurate estimate.�

Remark 2 (On the choice of the bandwidthh) While it is crucial to make a careful choice onh
for an accurate pdf estimate ofbY , it is not the case in our setting which targets only a “pmf” estimate
of a hard-decision valueeY . In fact, we �nd via experiments that a rough choice onh suf�ces to yield
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a good enough estimate of the pmf. The left plot in Fig. 1 shows a high sensitivity of the estimated
pdf of bY w.r.t. differenth's, while the right table demonstrates the robustness of the estimated pmf of
eY (:= 1f bY > 0:5g) against varioush's. Nevertheless, a more accurate “pdf” estimate based on an
in-depth analysis revealing the bias-variance tradeoff [34, 35] would de�nitely yield a better pmf
estimate, thereby leading to enhanced performance. Hence, we conduct such theoretical analysis and
provide an in-depth discussion on the choice ofh in the supplementary.�

Figure 1: (Left) The pdf estimates ofbY via KDE using 10,000 examples from the normal distribution
N (0:5; 1) for different bandwidthsh 2 f 0:1; 0:01; 0:001g; (Right) The pmf estimates ofeY(:=
1f bY > 0:5g) via KDE for differenth's; (Implication) Relative to the pdf estimate ofbY , the pmf
estimate ofeY is much more robust to a choice ofh.

Remark 3 (Faithful implementation of fairness measures & bene�cial consequences)One key
bene�t of our approach is that it enables direct computation of interested fairness measures without
relying on any fairness proxies such as covariance function [42]. Hence, we can ease training with
standard gradient-based optimizers such as stochastic gradient descent (SGD) and Adam optimizer.
We conduct extensive experiments on synthetic and benchmark real datasets to demonstrate that: (1)
our algorithm outperforms prior fair classi�ers in tradeoff performance both w.r.t.DDP andDEO;
(2) it ensures stability in training unlike adversarial learning approaches; (3) the performance of our
algorithm is robust to a choice of hyperparameters employed in the approach.�

4 Experiments

We provide experimental results conducted on synthetic and four benchmark real datasets (COM-
PAS [2], Adult Census [6], Law School Admissions [36], and Credit Card Default [6, 39]). We
implement our algorithm in PyTorch [26], and all experiments are performed on a server with GeForce
GTX 1080 Ti GPUs. All of our results are on a separate test set.

4.1 Synthetic Dataset

We employ a simple yet non-trivial dataset (called the Moon dataset [27]) in which data are not
linearly separable. See the left �gure in Fig. 2. We consider a setting in whichx has two non-sensitive
attributes (sayx1 andx2), z is ternary, andy is binary (sayy = 1 for a positive outcome;y = 0
otherwise). We leave a more detailed explanation of synthetic data generation in the supplementary.
The dataset includes 15,000 examples, which are then split into two subsets: 80% train set (mtrain =
12; 000) and 20% test set (mtest = 3 ; 000). We train fair classi�ers with a 2-layer NN with 16 hidden
nodes. For our approach, we set hyperparameters� (of the Huber function) andh to be 1 and 0.1,
respectively. A theoretical insight on the choice ofh is provided in the supplementary. We use the
batch size of 512. We use Adam optimizer and its default parameters(� 1; � 2) = (0 :9; 0:999)with
the learning rate of10� 2.

Fig. 2 demonstrates accuracy-fairness tradeoff w.r.t.DDP, evaluated on the synthetic test set. In our
approach, we sweep the tuning knob� from 0 and 1. Here each point corresponds to a particular�
and it represents an average value over 5 trials with different seeds in training. We observe that our
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