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Abstract

We determine statistical and computational limits for estimation of a rank-one
matrix (the spike) corrupted by an additive gaussian noise matrix, in a sparse limit,
where the underlying hidden vector (that constructs the rank-one matrix) has a
number of non-zero components that scales sub-linearly with the total dimension
of the vector, and the signal-to-noise ratio tends to in�nity at an appropriate
speed. We prove explicit low-dimensional variational formulas for the asymptotic
mutual information between the spike and the observed noisy matrix and analyze
the approximate message passing algorithm in the sparse regime. For Bernoulli
and Bernoulli-Rademacher distributed vectors, and when the sparsity and signal
strength satisfy an appropriate scaling relation, we �nd all-or-nothing phase
transitions for the asymptotic minimum and algorithmic mean-square errors.
These jump from their maximum possible value to zero, at well de�ned signal-to-
noise thresholds whose asymptotic values we determine exactly. In the asymptotic
regime the statistical-to-algorithmic gap diverges indicating that sparse recovery
is hard for approximate message passing.

1 Introduction and setting
In modern machine learning and high dimensional statistics one often faces regression, classi�cation,
or estimation tasks, where the dimension of the feature vectors is much larger than the e�ective
underlying dimensionality of the structure at hand. For example, hand-written MNIST digits are
presented as vectors consisting of 28× 28 pixels, in other words, they are binary vectors with 784
dimensions, whereas [1, 2] estimate their e�ective dimension to be in the orders of 10’s. Similarly
the ISOMAP face database consists of images (256 levels of gray) of size 64 × 64, i.e., vectors in
R4096, whereas the correct intrinsic dimension is only 3 (for the vertical, horizontal pause and
lighting direction). Natural images, which are generally sparse in a wavelet basis [3], are another
popular example of low e�ective dimensionality. For natural images, a very simple model of low-
dimensional structure, namely vectors with a sparse number of non-zero components, has proven
immensely useful for studying these types of data structures and has led to the development of the
whole area of compressed sensing [4,5]. Similarly, matrix completion can be performed successfully
when the number of sampled matrix elements is much smaller than the total number of elements,
as long as one assumes the matrix is low-rank [6].
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These and other developments have amply justi�ed the “bet on sparsity principle”, which, in a
nutshell, says that intrinsic low-dimensionality is often a crucial ingredient for the interpretability
of high dimensional statistical models [7, 8]. In this context, it is of great importance to determ-
ine computational limits of estimation and to establish fundamental information theoretical (i.e.,
statistical) limits as benchmarks. Broadly speaking, exact results in the direction of computational
or information theoretic limits usually fall in two categories. The �rst direction, traditional in
statistics and computer science, derives �nite size bounds on thresholds marking the onset of feasible
signal recovery or learning [9, 10]. Such results usually leave out exact constants or do not always
give the exact asymptotics. The second approach, is an average case approach (in the spirit of
the statistical mechanics treatment of high dimensional systems), that models feature vectors by
a random ensemble, taken as a set of random vectors with independently identically distributed
(i.i.d.) components, and a small but �xed fraction of non-zero components. For example, the
distribution might be a Bernoulli distribution, denoted Ber(ρn) with 0 < ρn < 1 and ρn → ρ > 0
�xed, as the dimension of the vectors n → +∞. In Bayesian settings with known priors and
hyper-parameters this approach has been highly successful, yielding exact formulas for the mutual
information and minimum mean-square error (MMSE), as well as exact expressions (with constants)
for statistical and computational message passing phase transition thresholds in the limit of in�nite
dimensions [11]. While the mathematical analysis of this approach is well developed in compressed
sensing, generalized linear estimation, or rank-one noisy matrix and tensor estimation [12–23], the
cited works all fall short of addressing the “true” sparse limit where ρn → 0 instead of the limit
being �xed (i.e., ρn → ρ > 0) as n → +∞; to be more precise we manage to tackle the regime
ρn = Ω(n−β) for β ∈ [0, 1/6) for the information-theoretic analysis, and ρn = Ω((lnn)−α) for
any positive �xed α for the algorithmic results. The terminology “true sparsity” is employed in
order to emphasize this contrast. To the best of our knowledge the only works addressing this
“true” sparse limit, in the average case approach for statistical phase transitions, are [24, 25] which
consider linear regression.
In this work, we address the issue of “true” sparsity in the average case approach for the problem of
rank-one matrix estimation from noisy observations of the entries. Low-rank matrix estimation (or
factorization) is an important problem with numerous applications in image processing, principal
component analysis (PCA), machine learning, DNA microarray data, and tensor decompositions.
We determine information theoretic limits of the problem as well as computational limits of an ap-
proximate message passing algorithm [26–31] for signal estimation in the case of a noisy symmetric
rank-one matrix model. Let us now introduce the model.
Setting: In the sparse spiked Wigner matrix model we consider a sparse signal-vector X =
(X1, . . . , Xn) ∈ Rn with i.i.d. components distributed according to PX,n = ρnpX + (1 − ρn)δ0,
where δ0 is the Dirac mass at zero and ρn ∈ (0, 1]N is a sequence of weights that will eventually
tend to 0; the signal has in expectation a sub-linear number nρn of non-zero components. For the
distribution pX we assume that i) it is independent of n, ii) it has �nite support in an interval
[−S, S], iii) it has second moment equal to 1 (without loss of generality). One has access to the
symmetric data matrix W ∈ Rn×n with noisy entries

W =

√
λn
n
X ⊗X + Z , or componentwise Wij =

√
λn
n
XiXj + Zij , 1 ≤ i < j ≤ n (1)

where λn > 0 controls the strength of the signal and the noise is i.i.d. gaussian Zij ∼ N (0, 1)
for i < j and symmetric Zij = Zji. Notice that the matrix W can be viewed as a sum of a
gaussian matrix from the Wigner ensemble perturbed by a rank-one matrix, XXᵀ (the “spike”).
We focus, in particular, on binary X generated with i.i.d. Bernoulli entries Xi ∼ PX,n = Ber(ρn),
or Bernoulli-Rademacher entries, Xi ∼ PX,n = (1 − ρn)δ0 + ρn

1
2 (δ−1 + δ1). In the Bayesian

setting, we suppose that the prior PX,n and hyper-parameters are known. As we will see, when
ρn → 0, non-trivial estimation is possible only when λn → +∞.
The goal is to estimate the sparse spike X ⊗X from the data W . In the spiked Wigner model with
linear sparsity, a class of polynomial-time algorithms, referred to as approximate message passing
or AMP, have been shown to provide Bayes-optimal signal estimation for some problem settings
asymptotically as n→ +∞ [32–34]. Moreover, AMP algorithms have been applied successfully for
signal recovery to a number of other low-rank matrix estimation problems [35–38] and, based on bold
conjectures from the statistical physics literature, it is suggested that the estimation performance of
AMP is the best among polynomial-time algorithms. Again, AMP is also provably optimal in some

2



parameters regimes. In this work, we study the properties of an AMP algorithm designed for signal
estimation for the spiked Wigner matrix model in the sub-linear sparsity regime and compare its
performance to benchmarks established by the information theoretic limits. This analysis provides
a better understanding of the computational vs. theoretical gaps posed by the problem.
Some background and related work: In recent years, there has been much progress in under-
standing such spiked matrix models, which have played a crucial role in the analysis of threshold
phenomena in high-dimensional statistical models for almost two decades, but most of this work
has focused on standard settings, by which we mean problem settings where the distribution PX is
�xed independent of the problem dimension n. This means that the expected number of non-zero
components of X , even if “small”, will scale linearly with n. Early rigorous results found in [39]
determined the location of the information theoretic phase transition point in a spiked covariance
model using spectral methods, and [40, 41] did the same for the Wigner case. More recently, the
information theoretic limits and those of hypothesis testing have been derived, with the additional
structure of sparse vectors, for large but �nite sizes [42–44]. A lot of e�orts have also been devoted
to computational aspects of sparse PCA with many remarkable results [33, 43–50]. The picture that
has emerged is that the information theoretic and computational phase transition regimes are not
on the same scale and that the computational-to-statistical gap diverges in the limit of vanishing
sparsity. However, the exact thresholds with constants as well as the behaviour of the mean-square
errors remained unknown.
Using heuristic methods from the statistical physics of spin glass theory (the so-called replica
method [51]), the authors of [52] observed an interesting phenomenology of the information
theoretical and computational limits with sharp phase transitions as n → +∞. The rigorous
mathematical theory of these phase transitions is now largely under control. On one hand, an
approximate message passing algorithm for signal recovery can be rigorously analyzed via its state
evolution [27,28,53], and on the other hand, the asymptotic mutual information per variable between
the hidden spike and data matrices has been rigorously computed in a series of works using various
methods (cavity method, spatial coupling, interpolation methods, PDE techniques) [16–23, 54–57].
The information theoretic phase transitions are then signaled by singularities, as a function of the
signal strength, in the limit of the mutual information per variable when n → +∞. The phase
transition also manifests itself as a jump discontinuity in the minimum mean-square error (MMSE)1.
Once the mutual information is known, it is usually possible to deduce the MMSE using so-called
I-MMSE relations [58, 59]. Essentially, the MMSE can be accessed by di�erentiating the mutual
information with respect to the signal-to-noise strength. Closed form expressions for the asymptotic
mutual information therefore allow to benchmark the fundamental information theoretical limits
of estimation. We also point the reader towards the works [60–62] which derive limits of detecting
the presence of a spike in a noisy matrix, rather than estimating it.
Finally, similar phase transitions in sub-linear sparsity regimes for binary signals have been studied
in the context of high-dimensional linear regression or compressed sensing for support recovery
[24, 25]. These works focus on the MMSE and prove the occurrence of the 0− 1 phase transition,
which they called an “all-or-nothing” phenomenon. We note that our approach is technically very
di�erent in that it determines the variational expressions for mutual informations and �nds the
transitions as a consequence. Moreover these works do not deal with algorithmic phase transitions,
while we consider here the one of AMP.
Our contributions: We provide new results in sparse limits along two main lines:

• The exact statistical threshold for the sharp all-or-nothing statistical transition at the level
of the MMSE. This follows from a rigorous derivation of the mutual information in the
form of a variational problem.

• The AMP algorithmic threshold and all-or-nothing transition at the level of the AMP mean-
square error. This follows from a “�nite sample” analysis of the approximate message
passing algorithm, allowing to rigorously track its performance in sparse regimes.

Let us explain these contributions in detail.

1This is the generic singularity and one speaks of a �rst order transition. In special cases the MMSE may
be continuous with a higher discontinuous derivative of the mutual information.
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In this work, we identify the correct scaling regimes of vanishing sparsity and diverging signal
strength in which non-trivial information theoretic and algorithmic AMP phase transitions occur.
Moreover, we determine the statistical-to-algorithmic gap in the scaling regime. These scalings,
thresholds, as well as formulas for the mutual information, were �rst heuristically and numerically
derived in [52] using the non-rigorous replica method of spin-glass theory and the state evolution
equations for AMP. However, it must be stressed that, not only were these calculations far from
rigorous, but more importantly the limit n→ +∞ is taken �rst for a �xed parameter ρn = ρ, and
the sparse limit ρ→ 0+ is taken only after. Although the thresholds found in this way agree with
our derivations, this is far from evident a priori. In contrast, our results are entirely rigorous and
valid in the truly sparse limit. Therefore the picture found in [52] is fully vindicated. In addition, we
also establish that the MMSE and AMP phase transitions are of the all-or-nothing type, a novelty of
the present work.
The information theoretic analysis is done via the adaptive interpolation method [19, 20, 22], �rst
introduced in the non-sparse matrix estimation problems, to provide for the sparse limit, closed
form expressions of the mutual information in terms of low-dimensional variational expressions
(theorem 1 in section 2). That the adaptive interpolation method can be extended to the sparse
limit is interesting and not a priori obvious. Using the I-MMSE relation and the solution of the
variational problems for Bernoulli and Bernoulli-Rademacher distributions of the sparse signal, we
then �nd that the MMSE displays an all-or-nothing phase transition (corollary 1) and we determine
the exact threshold (with constants).
A useful property of AMP is that in the large system limit n→ +∞, its performance can be exactly
characterized and rigorously analyzed through its so-called state evolution. When ρn → ρ > 0,
the validity of the state evolution analysis for AMP for low-rank matrix estimation follows from
the standard AMP theory [27, 28] (with some additional work needed to deal with technicalities
relating to the algorithm’s initialization [34]), however, in the sub-linear sparsity regime considered
here, proving the validity of the state evolution characterization requires a new and non-trivial
analysis using “�nite sample” techniques, �rst developed in [63]. We �nd that the algorithmic MSE,
denoted MSEAMP displays an all-or-nothing transition as well and we determine the scaling of
the threshold (the constant being obtained numerically). Interestingly, the transition is on a very
di�erent signal-to-noise scale as compared to the MMSE (theorem 2 found in section 3).
Let us describe in a bit more detail the sparse regimes we study and the corresponding thresholds.
To gain some intuition, we �rst note that for sub-linear sparsity, phase transitions can appear only if
the signal strength tends to in�nity. This can be seen from the following heuristic argument: notice
that the total signal-to-noise ratio per non-zero component2 scales as (λn/n)ρ2nn

2/(ρnn) = λnρn,
meaning that λn → +∞ is necessary in order to have enough energy to estimate the non-zero
components. Our analysis shows that non-trivial information theoretic and AMP phase transitions
occur at di�erent scales:

• Statistical phase transition regime: While our results are more general (see appendix
A and theorem 3) our main interest is in a regime of the form

λn = 4γ| ln ρn|ρ−1n , ρn = Ω(n−β), (2)

for β, γ ∈ R≥0 and β small enough. We prove that in this regime a phase transition occurs
as function of γ.

• Algorithmic AMP phase transition regime: We control the performance of AMP for
a number of time-iterations t = o( lnn

ln lnn ) and rigorously prove that the all-or-nothing
transition occurs for

λn = wρ−2n , ρn = Ω((lnn)−α), (3)

where w,α ∈ R≥0 are �xed constants (note that we can take any α > 1). Controlling the
AMP iterations in this regime is already highly non-trivial, however, we conjecture that
the result still holds when ρn = Ω(n−β) for β > 0 small enough, but re�ning the analysis
in appendix K to �nd the stronger result is left for future work.

2In more detail, this is equal to the signal-to-noise ratio per observation (λn/n)ρ2n times the number of
observations Θ(n2) divided by the expected number of non-zero components ρnn.
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The relation λn ∼ ρ−2n for the AMP threshold was obtained in [52] based on a stability analysis of
the linearized state evolution. However, we recall that in their setting ρn = ρ, n→ +∞, and not
only is the sparse limit ρ→ 0+ taken after the high-dimensional limit, but also the AMP iterations
are not controlled. In appendix G in the supplementary material we provide a simpler alternative
argument that does not require linearizing the recursion.
We focus in particular on binary signals with PX,n equal to Ber(ρn) or Bernoulli-Rademacher
(1 − ρn)δ0 + ρn

1
2 (δ−1 + δ1). For these distributions we prove the existence of all-or-nothing

transitions for the MMSE and MSEAMP for the speci�c sparsity regimes stated above. This is
illustrated in �gures 1 and 2, found in sections 2 and 3, which display, for the Bernoulli prior, the
explicit asymptotic values to which the �nite n mutual information and MMSE converge. The
results are similar for the Bernoulli-Rademacher distribution. In �gure 1, we see that as ρn → 0+
the (suitably normalized) mutual information approaches the broken line with an angular point at
λ/λc(ρn) = 1 where λc(ρn) = 4| ln ρn|/ρn. Moreover the (suitably normalized) MMSE tends to
its maximum possible value 1 for λ/λc(ρn) < 1, develops a jump discontinuity at λ/λc(ρn) = 1,
and takes the value 0 when λ/λc(ρn) > 1 as ρn → 0. In �gure 2, we observe the same behavior for
MSEAMP as a function of λ/λAMP(ρn), but now the algorithmic threshold is λAMP(ρn) = 1/(eρ2n),
where the constant 1/e is approximated numerically. Note that the same asymptotic behavior
is observed in the related problem of �nding a small hidden community in a graph, see �gure 5
in [64].

2 Statistical phase transition
The phase transition manifests itself as a singularity (more precisely a discontinuous �rst order
derivative) in the mutual information I(X ⊗X;W ) = H(W ) − H(W |X ⊗X). Note that
because the data W depends on X only through X ⊗X we have H(W |X ⊗X) = H(W |X)
and therefore I(X ⊗X;W ) = I(X;W ). From now on we use the form I(X;W ).
To state the result, we de�ne the potential function:

ipotn (q, λ, ρ) ≡ λ

4
(q − ρ)2 + In(X;

√
λqX + Z) , (4)

where In(X;
√
λqX + Z) is the mutual information for a scalar gaussian channel, with X ∼ PX,n

and Z ∼ N (0, 1). The mutual information In is indexed by n because of its dependence on PX,n.
Theorem 1 (Mutual information for the sparse spiked Wigner model). Let the sequences λn and ρn
verify (2) with β ∈ [0, 1/6) and γ > 0. There exists C > 0 independent of n such that

1

ρn| ln ρn|

∣∣∣ 1
n
I(X;W )− inf

q∈[0,ρn]
ipotn (q, λn, ρn)

∣∣∣ ≤ C (lnn)1/3

n(1−6β)/7
. (5)

The mutual information is thus given, to leading order, by a one-dimensional variational problem
I(X;W ) = nρn| ln ρn| inf

q∈[0,ρn]
ipotn (q, λn, ρn) + correction terms .

The factor ρn| ln ρn| is related to the entropy (in nats) of the support of the signal given by
−n(ρn ln ρn + (1 − ρn) ln(1 − ρn)), which behaves like nρn| ln ρn| for ρn → 0+. In particu-
lar, for both the Bernoulli and Bernoulli-Rademacher distributions an analytical solution of the
variational problem, given in appendix F, shows that (ρn| ln ρn|)−1 infq∈[0,ρn] i

pot
n (q, λn, ρn) tends

to the singular function γI(γ ≤ 1) + I(γ ≥ 1) as n → +∞ and ρn → 0, where we recall that
λn = 4γ| ln ρn|ρ−1n . See �gure 1. Let us mention that β < 1/6 is probably not a fundamental limit
to the validity of the result but rather is an artefact of the sub-optimality of our proof technique.
We now turn to the consequences for the MMSE. It is convenient to work with the “matrix” MMSE
de�ned as MMSE((XiXj)i<j |W ) ≡ E‖(XiXj)i<j−E[(XiXj)i<j |W ]‖2F. This quantity satis�es
the I-MMSE relation [58, 59] (see also appendix I for a self-contained derivation),

d

dλn

1

n
I(X;W ) =

1

2n2
MMSE((XiXj)i<j |W ) .

In appendix J we prove:
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Figure 1: A sequence of suitably normalized asymptotic mutual information (ρ| ln ρ|)−1 infq∈[0,ρ] i
pot
n (q, λ, ρ)

(left) and associated minimum mean-square error (MMSE) ρ−2 d
dλ

infq∈[0,ρ] i
pot
n (q, λ, ρ) (right) curves as a

function of λ/λc(ρ) with λc(ρ) = 4| ln ρ|/ρ for the modelXi ∼ Ber(ρ) and various ρ = ρn values (that can be
converted to signal sizes through ρn = Ω(n−β) given a sparsity scaling β) using the potential function de�ned in
(4). These are the curves towards which, respectively, the �nite size mutual information (nρ| ln ρ|)−1I(X;W )
and minimum mean-square error (nρ)−2MMSE((XiXj)i<j |W ), converge: see theorem 1 and corollary 1. In
the sparse limit ρ→ 0, the MMSE curves approach a 0–1 phase transition with the discontinuity at λ = λc(ρ).
This corresponds to an angular point for the mutual information (by the I-MMSE relation).

Corollary 1 (Minimum mean-square error for the sparse spiked Wigner model). Let 1
2mn(λ, ρn) ≡

ρ−2n
d
dλ infq∈[0,ρn] i

pot
n (q, λ, ρn). Let ε > 0 and sequences λn and ρn verifying (2) with β ∈ [0, 1/13).

There exists C ′ > 0 independent of n such that

mn(λn + ε, ρn)− C ′

ε

(lnn)4/3

n(1−13β)/7
≤ MMSE((XiXj)i<j |W )

(nρn)2
≤ mn(λn − ε, ρn)+

C ′

ε

(lnn)4/3

n(1−13β)/7
.

Concretely the derivative (d/dλn) infq∈[0,ρn] i
pot
n (q, λn, ρn) is computed, using the envelope the-

orem [65], as (∂/∂λn)ipotn (q∗n, λn, ρ) where q∗n = q∗n(λn, ρn) is the solution of the variational
problem, which is unique almost everywhere (except at the phase transition point, see e.g. [15]
for such proofs). For Bernoulli and Bernoulli-Rademacher distributions, we easily compute the
limiting behavior mn(λn, ρn) from the solution of the variational problem stated above, and �nd
that (nρn)−2MMSE((XiXj)i<j |W ) tends to I(γ ≤ 1) as n→ +∞.
Figure 1 shows the mutual information and MMSE computed from the numerical solution of the
variational problem for a sequence of Ber(ρn) distributions. We check that the limiting curves
are indeed approached as ρn → 0 and, in particular, the suitably rescaled MMSE displays the
all-or-nothing transition at λ/λc(ρn) = 1 as n → +∞ with λc(ρn) = 4| ln ρn|/ρn. For the
Bernoulli-Rademacher distribution the transition location is the same, suggesting that the hardness
of the inference is only related, for discrete priors, to the recovery of the support. For more generic
distributions than these two cases the situation is richer. Although one generically observes phase
transitions in the same scaling regime, the limiting curves appear to be more complicated than the
simple staircase shape and the jumps are not necessarily located at γ = 1. A classi�cation of these
transitions is an interesting problem that is out of the scope of this paper.

3 AMP algorithmic phase transition
Approximate message passing (AMP) is a low complexity algorithm that iteratively updates estimates
of the unknown signal, which, in the case of the spiked Wigner model is X , from the noisy data
W . The iterative estimates are denoted {xt}t≥1. Let A ≡ W /

√
n and initialize with f0(x0)

independent of W , such that 〈f0(x0),X〉 > 0. Then let x1 = Af0(x0), and for t ≥ 1, compute

xt+1 = Aft(x
t)− btft−1(xt−1), bt =

1

n

n∑
i=1

f ′t(x
t
i), (6)

where the scalar function ft : R → R is applied elementwise to vector input, i.e., ft(x) =
(ft(x1), . . . , ft(xn)) for a vector x ∈ Rn, and its exact value is given in what follows (in (9)). We
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Figure 2: Left: The mean-square error towards which the suitably normalized matrix-MSE of the AMP algorithm,
MSEAMP, converges for various sparsity levels, see theorem 2. An all-or-nothing transition appears as ρ =
ρn → 0 at λAMP(ρ) = 1/(eρ)2. Comparing to �gure 1 the transition becomes sharper much faster as ρ
decreases. Right: Horizontal axis is on a log scale. The statistical-to-algorithmic gap diverges as ρ→ 0.

refer to the functions {ft}t≥0 as “denoisers”, for reasons that will become clear momentarily. Notice
that (6) gives both matrix estimates X̂X̂ᵀ = ft(x

t)[ft(x
t)]ᵀ and signal estimates X̂ = ft(x

t).
A key property of AMP is that, asymptotically as n→∞, a deterministic, scalar recursion referred
to as state evolution exactly characterizes its performance, in the sense that the estimates xti converge
to random variables with mean and variance governed by the state evolution. For the sub-linear
sparsity regime, we introduce an n-dependent state evolution, re�ecting that our sparsity level ρn
and signal strength λn both now change as n grows. We will show, based on measure concentration
arguments, that the usual asymptotic characterization also gives a �nite sample approximation,
meaning that for any n �xed but large, xti is approximately distributed as a xti

d
≈ µntXn

0 +
√
τnt Z

where µnt and τnt are characterized by the state evolution below with Xn
0 ∼ PX,n independent of

standard gaussian Z . The n-dependent state evolution is de�ned as follows: for t ≥ 1,

µn1 =
√
λn〈f0(x0),X〉/n, τn1 = ‖f0(x0)‖2/n, (7)

µnt+1 =
√
λn E

{
Xn

0 ft
(
µntX

n
0 +

√
τnt Z

)}
, τnt+1 = E

{[
ft
(
µntX

n
0 +

√
τnt Z

)]2}
, (8)

where we include the n superscript to emphasize the dependence.
A well-motivated choice of denoiser functions {ft}t≥0 are the conditional expectation denoisers.
Namely, given that we have knowledge of the prior distribution of the signal elements, and consid-
ering the approximate characterization of the estimate xti via the state evolution, the Bayes-optimal
way to update our signal estimate at any iteration is the following: for t ≥ 1,

ft(x) = E
{
Xn

0 | µntXn
0 +

√
τnt Z = x

}
, (9)

with Xn
0 ∼ PX,n independent of standard gaussian Z . Strictly speaking, ft(·) also has an n-

dependency, so to be consistent we should label ft(·) ≡ fnt (·), however we drop this for simplicity.
With this choice of denoiser function, the state evolution (8) simpli�es: by the Law of Total
Expectation, E{Xn

0 ft(µ
n
tX

n
0 +
√
τnt Z)} = E{[ft(µntXn

0 +
√
τnt Z)]2}, thus µnt =

√
λnτ

n
t , and so

τnt+1 = E
{[

E
{
Xn

0 |
√
λnτ

n
t X

n
0 +

√
τnt Z

}]2}
. (10)

The performance guarantees given by the state evolution are stated informally in what follows, with
a more formal result given in appendix K. The proof extends and re�nes3 the �nite sample analysis
of AMP given in [63, Theorem 1]. These guarantees concern the convergence of the empirical

3The result in [63] is a general AMP algorithm with a “rectangular” structure that does not cover the
“symmetric” AMP in (6). However, extensions of this result to the symmetric case are straightforward, as
discussed in [63, Section 1], but technical. Moreover, the dependence on n for the state evolution requires that
these values are tracked carefully through the proof, whereas this was not done in [63], as these values were
assumed to be universal constants. For simplicity of exposition in this document, we do not elaborate further
on these technicalities at this point and put these details in appendix K.
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distribution of xti to its approximating distribution determined by the state evolution and speci�cally
apply to the AMP algorithm using the denoiser in (9). For all order 2 pseudo-Lipschitz functions4,
denoted ψ : R2 → R with Lipschitz constant Lψ > 0, we have that for ε ∈ (0, 1) and t ≥ 1,

P
(∣∣∣ 1
n

n∑
i=1

ψ(Xi, ft(x
t
i))−E

{
ψ
(
Xn

0 , ft(µ
n
tX

n
0 +

√
τnt Z)

)}∣∣∣ ≥ ε) ≤ CCt exp
{−cctnε2

L2
ψγ

t
n

}
(11)

where X = (X1, . . . , Xn) is the true signal and C,Ct, c, ct are universal constants not depending
on n or ε, but with Ct, ct depending on the iteration t and whose exact value is given in theorem 2.
Finally, γtn characterizes the way the bound depends on the state evolution parameters and its exact
value is given in (14). We want to consider, speci�cally, the vector-MSE and matrix-MSE of AMP,
namely 1

n‖X − ft(x
t)‖2 and 1

n2 ‖XXᵀ − ft(xt)[ft(xt)]ᵀ‖2F , for any t ≥ 1.
Theorem 2 (Finite sample state evolution). Consider AMP in (6) using the conditional expectation
denoiser in (9). Then for ε ∈ (0, 1) and t ≥ 1, let boundt ≡ CCt exp{−cctnε2/γtn}, then

P
(∣∣∣ 1
n
‖X − ft(xt)‖2 − (ρn − τnt+1)

∣∣∣ ≥ ε) ≤ boundt, (12)

P
(∣∣∣ 1

n2
‖XXᵀ − ft(xt)[ft(xt)]ᵀ‖2F − (ρ2n − (τnt+1)2)

∣∣∣ ≥ ε) ≤ boundt, (13)

whereXn
0 ∼ PX,n and τnt is de�ned in (10). The values C, c are universal constants not depending on

n or ε with Ct, ct given by Ct = Ct1(t!)C2 , ct = [ct1(t!)c2 ]−1. Finally,

γtn ≡ λ2t−1n (νn + τn1 )(νn + τn1 + τn2 ) · · · (νn +

t∑
i=1

τni )

×max{1, b̂1}max{1, b̂2} · · ·max{1, b̂t−1},

(14)

where νn is the variance factor of sub-Gaussian Xn (for PX,n = Ber(ρn) we have νn ≤ 1/4; see
lemma 14 in the supplementary material and b̂t = E{f ′t(µntXn

0 +
√
τnt Z)}.

Theorem 2 follows from the �nite sample guarantees given in (11), and, in appendix K, we discuss
in more detail the proof of theorem 2 and result 11. We make a few remarks on the result here.
Remark 1: ρn normalization and all-or-nothing transition. To be consistent with the previ-
ously stated results, we could renormalize the MSEs as follows and the result still holds as

P
(∣∣∣ 1

ρnn
‖X − ft(xt)‖2 −

(
1−

τnt+1

ρn

)∣∣∣ ≥ ε) ≤ CCt exp{−cctnρ2nε2/γtn},

P
(∣∣∣ 1

(ρnn)2
‖XXᵀ − ft(xt)[ft(xt)]ᵀ‖2F −

(
1−

(τnt+1

ρn

)2)∣∣∣ ≥ ε) ≤ CCt exp{−cctnρ4nε2/γtn}.

In appendix G we show that τnt+1/ρn → 0 for λnρ2n → 0 and τnt+1/ρn → 1 for λnρ2n → +∞. This
is consistent with the numerics on �gure 2 where we see a transition for λnρ2n = 1/e2.
Remark 2: AMP regime and statistical-to-algorithmic gap. We apply theorem 2 in the regime
where t = o( lnn

ln lnn ), which, as discussed in [63], is the regime where the state evolution predictions
are meaningful with respect to the values of Ct, ct and the constraints they specify on how large t
can be compared to the dimension n. In our work, we also have constraints related to the γtn value
in (14) that appears in the denominator of the rate of concentration. Considering these constraints,
we apply theorem 2 for signal strength and sparsity scaling like λnρ2n = w and ρn = Ω((lnn)−α)
with w,α ∈ R+, and show that the above probabilities indeed tend to zero as n→ +∞. Appendix
L provides the details of this calculation.
Note that since theorem 1 and corollary 1 hold for ρn = Ω(n−β) and thus for ρn = Ω((lnn)−α)
as well, then both the statistical and algorithmic transitions (and therefore the statistical-to-
computational gap) are proven for ρn = Ω((lnn)−α).
Remark 3: λn, τn dependence. The λn dependence in γtn de�ned in (14) comes from the (pseudo-)
Lipschitz constantsLf in (11). The dependence on the Lipschitz constants, and on the state evolution

4For any n,m ∈ N>0, a function φ : Rn → Rm is pseudo-Lipschitz of order 2 if there exists a constant
L > 0 such that ||φ(x)− φ(y)|| ≤ L (1 + ‖x‖+ ‖y‖) ‖x− y‖ for x,y ∈ Rn.
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parameters τnt , was not stated explicitly in the original concentration bound in [63, Theorem 1] as
the authors assume these values do not change with n and, thus, can be absorbed into the universal
constants. By examining the proof of [63, Theorem 1], one gets that the dependence takes the form
in (14). More details on how we arrive at the rates in theorem 2 can be found in appendix K.
Remark 4: Algorithm initialization. We assume that the AMP algorithm in (6) was initialized
with f0(x0) independent of W such that 〈f0(x0),X〉 > 0. The second condition ensures that
µn0 6= 0 (which would mean µnt = 0 for all t ≥ 0). If PX,n is Ber(ρn), one could use, for example,
f0(x0) = 1, since the mean of the signal elements is positive. However, if PX,n is Bernoulli-
Rademacher, a more complicated initialization procedure is needed since initializing in this way
would cause the algorithm to get stuck in an unstable �xed point. We refer the reader to [34] for a
discussion of an appropriate spectral initialization for this setting. However, such an initialization
violates the assumption of independence with W . The theoretical idea in [34] that allows one
to get around this dependence is to analyze AMP in (6) with a matrix Ã that is an approximate
representation of the conditional distribution of A given the initialization, and then to show that
with high probability the two algorithms will be close each other. We believe that incorporating
these ideas with the �nite sample guarantee in (11) would be straightforward, and theorem 2 could
be extended to the setting of AMP with a spectral initialization.

Broader impact
One cannot underestimate the relevance of sparse estimation in modern technology, and although
this work is valid within the limits of a theoretical model, it participates towards better fundamental
understanding of necessary resources in terms of energy and quantity of data when this data is
sparse. Besides radical transitions in behaviour under small changes of control parameters, we also
show that an estimation task can become computationally hard or impossible, even with (practically)
unbounded signal strengths. Broadly speaking, such results provide guidelines for better design
and less wasteful engineering systems.
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