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Appendix A. Mutual Information Neural Estimation for Vertex Selection

An individual vertex is fully identified through its feature, which works as the vertex attribute. Given
an vertex set V that contains all the vertices on the graph and a vertex subset Ω ⊂ V which contains
the selected vertices, we let a random variable v to represent the vertex feature when we randomly
pick a vertex from Ω. Then we define the probability distribution of v as

Pv = P (v = xv), ∀v ∈ Ω

where xv is the feature value when we pick vertex v.

The neighborhood of any vertex u ∈ Ω is defined as Nu, which is the subgraph containing the
vertices in V whose geodesic distances to the central vertex u are no greater than a threshold R, i.e.
Nv = G({u}d(u,v)≤R,A{u},{u}). Let a random variable n be the neighborhood features when we
randomly pick a central vertex from Ω, then we define the probability distribution of n as

Pn = P (n = yNu
), ∀u ∈ Ω

where yNu
= [ANu,Nu

, {xν}ν∈Nu
] denotes the neighborhood feature value when we pick vertex

u’s neighborhood, including both the internal connectivity information and contained vertex features
in the neighborhood Nu.

Therefore, we define the joint distribution of the random variables of vertex features and neighborhood
features, which is formulated as

Pv,n = P (v = xv,n = yNv ), ∀v ∈ Ω

where the joint distribution reflects probability that we randomly pick the corresponding vertex
feature and neighborhood feature of the same vertex v together.

The mutual information between the vertex features and the neighborhood features is defined as the
KL-divergence between the joint distribution Pv,n and the product of the marginal distributions of
two random variable, Pv ⊗ Pn; that is

I(Ω) (v,n) = DKL (Pv,n||Pv ⊗ Pn) ,

This mutual information measures of the mutual dependency between vertices and neighborhoods in
the selected vertex subset Ω. The KL divergence admits the f -representation [1],

DKL (Pv,n||Pv ⊗ Pn) ≥ sup
T∈T

{
Exv,yNv∼Pv,n [T (xv,yNv

)]− Exv∼Pv,yNu∼Pn

[
eT (xv,yNu )−1

]}
, (1)

where T is an arbitrary class of functions that maps a pair of vertex features and neighborhood
features to a real value, and here we use T (·, ·) to compute the dependency of two features. It could
be a tight lower-bound of mutual information if we search any possible function T ∈ T .

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Note that the main target here is to propose a vertex-selection criterion based on quantifying the
dependency between vertices and neighborhood. Therefore instead of computing the exact mutual
information based on KL divergence, we can use non-KL divergences to achieve favourable flexibility
and convenience in optimization. Both non-KL and KL divergences can be formulated based on the
same f -representation framework. Here we start from the general f -divergence between the joint
distribution and the product of marginal distributions of vertices and neighborhoods.

Df (Pv,n||Pv ⊗ Pn) =

∫
PvPnf

(
Pv,n

PvPn

)
dxvdyNv

where f(·) is a convex and lower-semicontinuous divergence function. when f(x) = x log x, the
f -divergence is specificed as KL divergence. The function f(·) has a convex conjugate function
f∗(·), i.e. f∗(t) = supx∈domf

{xt− f(x)}, where domf is the definition domain of f(·). Note that
the two functions f(·) and f∗(·) is dual to each other. According to the Fenchel conjugate [6], the
f -divergence can be modified as

Df (Pv,n||Pv ⊗ Pn) =

∫
PxPn sup

t∈domf∗

{
t
Px,n

PvPn
− f∗(t)

}
≥ sup

T∈T

{
EPv,n [T (xv,yNv

)]− EPv,Pn [f∗(T (xv,yNu
))]
}

where T denotes any functions that map vertex and neighborhood features to a scalar, and the
function T (·, ·) works as a variational representation of t. We further use an activation function
a : R→ domf∗ to constrain the function value; that is T (·, ·)→ a(T (·, ·)). Therefore, we have

Df (Pv,n||Pv ⊗ Pn) ≥ sup
T∈T

{
EPv,n [a(T (xv,yNv

))]− EPv,Pn [f∗(a(T (xv,yNu
)))]
}

since the a(T (·, ·)) is also in T and its value is in domf∗ , the optimal solution satisfies the equation.
Suppose that the divergence function is f(x) = x log x, the conjugate divergence function is f∗(t) =
exp(t − 1) and the activation function is a(x) = x, we can obtain the f -representation of KL
divergence; see Eq. (1). Note that the form of activation function is not unique, and we aim to find a
proper one that helps to derivation and computation.

Here, we consider another form of divergence based on f -representation; that is, GAN-like divergence,
where we have specific form of divergence function f(x) = x log x − (x + 1) log(x + 1) and
conjugate divergence function f∗(t) = − log(1 − exp(t)) [11]. We let the activation be a(·) =
− log(1 + exp(·)). The GAN-like divergence is formulated as

DGAN (Pv,n||Pv ⊗ Pn)

≥ sup
T∈T

{
EPv,n [a(T (xv,yNv

))]− EPv,Pn [f∗(a(T (xv,yNu
)))]
}

= sup
T∈T

{
EPv,n [− log(1 + exp(−T (xv, yNv

)))] + EPv,Pn log(1− exp(− log(1 + eT (xv,yNu ))))
}

= sup
T∈T

{
EPv,n log

1

1 + e−T (xv,yNv )
+ EPv,Pn log(1− 1

1 + e−T (xv,yNu )
)

}
= sup

T∈T

{
EPv,n

[
log σ (T (xv,yNv

))
]

+ EPv,Pn

[
log (1− σ (T (xv,yNu

)))
]}

where σ(·) is the sigmoid function that maps a real value into the range of (0, 1). Eventually, the
GAN-like divergence converts the f -divergence to a binary cross entropy, which is similar to the
objective function to train the discriminator in GAN [5].

To determine the form of the function T (·, ·), we parameterized T (·, ·) by trainable neural networks
rather than design it manually. The parameterized function is denoted as Tw(·, ·), where w generally
denotes the parameterization. In this work, Tw(·, ·) is constructed with three trainable functions:
1) A vertex embedding function Ew(·); 2) A neighborhood embedding function Pw(·); and 3) a
vertex-neighborhood affinity function Cw(·, ·); which are formulated as

Tw(xv,yNu) = Sw(Ew(xv),Pw(yNu))

= Sw

(
Ew(xv),

1

R

R∑
r=0

∑
ν∈Nu

(
(D̃−1/2ÃD̃−1/2)r

)
ν,u

W(r)Ew(xν)

)
.

2



Table 1: The detailed information of graph datasets used in the experiments of graph classification
Dataset IMDB-B IMDB-M COLLAB D&D PROTEINS ENZYMES

# Graphs 1000 1500 5000 1178 1113 600
# Classes 2 3 3 2 2 6

Max # Vertices 139 89 492 5748 620 126
Min # Vertices 12 7 32 30 4 2
Avg. # Vertices 19.77 13.00 74.49 284.32 39.06 32.63
# Train Graphs 900 1350 4501 1061 1002 540
# Test Graphs 100 150 499 111 117 60

Vertex Dimensions 1 1 1 82 3 3
Max Degrees 66 60 370 - - -

where Ew(·) is modeled by a Multi-layer perceptron (MLP), Pw(·) is modeled by a R-hop graph
convolution layer and Sw(·, ·) is also modeled by an MLP. In Pw(·), Ã = A+ I is the self-connected
graph adjacency matrix and D̃ is the degree matrix of Ã; W(r) ∈ Rd×d is the trainable weight
matrix associated with the rth hop of neighborhood. The neighborhood embedding function Pw(·)
aggregates neighborhood information with in a geodesic distance threshold R. Note that Pw(·)
separately use neighborhood features yNu in form of connectivity information and vertex features.

In this way, the GAN-like-divergence-based mutual information between graph vertices and neigh-
borhoods can be represented with the parameterized GAN-like divergence, which is a variational
divergence and works as a lower bound of of the theorical GAN-like-divergence-based mutual
information; that is,

I
(Ω)
GAN(v,n) = DGAN(Pv,n||Pv ⊗ Pn) ≥ Î

(Ω)
GAN(v,n)

= max
w

{
EPv,n

[
log σ (Tw(xv,yNv ))

]
+ EPv,Pn

[
log (1− σ (Tw (xv,yNu)))

]}
= max

w

1

|Ω|
∑
v∈Ω

log σ(Tw(xv,yNv )) +
1

|Ω|2
∑

(v,u)∈Ω

log(1− σ(Tw(xv,yNu)))

Since we consider the dependency between vertices and neighborhoods within a specific vertex set,
the possible outcomes of the joint distribution and the two marginal distributions are countable. We
thus use the summation to aggregate all the possible cases. To maximize Î(Ω)

GAN(v,n) by training
the internal function in Tw(·, ·), that is, Ew(·), Pw(·), and Sw(·, ·), we can maximally approximate
the mutual information between individual vertex and neighborhood for vertex selection in our
VIPool. Note that the value of Î(Ω)

GAN(v,n) is not very close to the exact KL-divergence-based mutual
information, but it has the consistency to I(Ω)(v,n) to reflect the pair of vertex-neighborhood with
high or low mutual information, leading to effective vertex selection.

Appendix B. Detailed Information of Experimental Graph Datasets

Here we show more details about the graph datasets used in our experiments of both graph classifica-
tion and vertex classification. We first show the six datasets for graph classification in Table 1. We
see that, we show the numbers of graphs, graph classes, vertices, numbers of graphs in training/test
datasets and feature dimensions of all the six datasets. Note that, three social network datasets, IMDB-
B, IMDB-M and COLLAB do not provide specific vertex features, where the vertex dimension is
denoted as 1 and the maximum vertex degrees are shown in addition. In our experiments, we use
one-hot vectors to encode the vertex degrees in these three datasets as their vertex features which
explicitly contains the structure information.

We then show the details of three citation network datasets used in the experiments of vertex
classification in Table 2. We see that, we present the numbers of vertices, edges, vertex classes and
feature dimensions of the three datasets, as well as we show the separations of training/validation/test
sets, where ‘# Train Vertices (full-sup.)’ denotes the number of training vertices for full-supervised
vertex classification and ‘# Train Vertices (semi-sup.)’ denotes the number of training vertices for
semi-supervised vertex classification.
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Table 2: The detailed information of graph datasets used in the experiments of vertex classification
Dataset Cora Citeseer Pubmed

# Vertices 2708 3327 19717
# Edges 5429 4732 44338

# Classes 7 6 3
Vertex Dimension 1433 3703 500

# Train Vertices (full-sup.) 1208 1827 18217
# Train Vertices (semi-sup.) 140 120 60

# Valid. Vertices 500 500 500
# Test Vertices 1000 1000 1000

Table 3: Vertex classification accuracies (%) of different methods, where ‘full-sup.’ and ‘semi-sup.’
denote the scenarios of full-supervised and semi-supervised vertex classification, respectively.

Dataset Cora Citeseer Pubmed
# Vertices (Classes) 2708 (7) 3327 (6) 19717 (3)

Supervision full-sup. semi-sup. full-sup. semi-sup. full-sup. semi-sup.
DeepWalk [12] 78.4± 1.7 67.2± 2.0 68.5± 1.8 43.2± 1.6 79.8± 1.1 65.3± 1.1

ChebNet [3] 86.4± 0.5 81.2± 0.5 78.9± 0.4 69.8± 0.5 88.7± 0.3 74.4± 0.4
GCN [9] 86.6± 0.4 81.5± 0.5 79.3± 0.5 70.3± 0.5 90.2± 0.3 79.0± 0.3
GAT [13] 87.8± 0.7 83.0± 0.7 80.2± 0.6 73.5± 0.7 90.6± 0.4 79.0± 0.3

FastGCN [2] 85.0± 0.8 80.8± 1.0 77.6± 0.8 69.4± 0.8 88.0± 0.6 78.5± 0.7
ASGCN [8] 87.4± 0.3 - 79.6± 0.2 - 90.6± 0.3 -

Graph U-Net [4] - 84.4 - 73.2 - 79.6
GXN 88.9± 0.4 85.1± 0.6 80.9± 0.4 74.8± 0.4 91.8± 0.3 80.2± 0.3

GXN (gPool) 88.0± 0.4 84.4± 0.6 79.7± 0.5 74.4± 0.6 90.6± 0.4 79.8± 0.4
GXN (SAGPool) 87.8± 0.6 84.7± 0.4 80.0± 0.5 74.2± 0.4 90.9± 0.3 80.1± 0.3
GXN (AttPool) 88.4± 0.3 84.6± 0.5 80.6± 0.4 74.5± 0.5 91.3± 0.3 80.2± 0.4

Appendix C. More GXN Variants for Vertex Classification

Here we show more results of vertex classification of more variants of the proposed GXN associated
with different pooling methods; that is, we test different pooling methods with the same GXN model
framework, where the pooling methods include gPool [4], SAGPool [10] and AttPool [7]. The
full-supervised and semi-supervised vertex classification accuracies of different algorithms on three
citation networks are shown in Table 3. We see that, comprared to the previous pooling methods,
the proposed GXN which uses VIPool could provide higher average classification accuracies for
both full-supervised and semi-supervised vertex classification. Different GXN variants with different
pooling methods tend to consistently outperform most state-of-the-art models for vertex classification,
reflecting the effectiveness of the proposed GXN architecture.

Appendix D. Effects of Neighborhood Radius for Vertex Classification

Here we show how the accuracy of vertex classification varies with different neighborhood radius R
in the vertex infomax pooling. We tune R from 1 to 7, and we test our model for fully-supervised and
semi-supervised vertex classifcation on both Cora and Citeseer datasets. The classification results
are illustrated in Figure 1. We see that, the proposed model achieves the best vertex classification
performance when R equals 3 or 4. Thus we use R = 3 as the default hyper-parameter in our model.

Appendix E. Use A Few Selected Vertices for Semi-supervised Vertex
Classification Training

Here we consider active-sample-based semi-supervised classification, where we are allowed to select
a few vertices and obtain their corresponding labels as supervision to train a classifier for vertex
classification. In other words, we actively select training data in a semi-supervised classification task.
Intuitively, since a graph structure is highly irregular, selecting a few informative vertices would
potentially significantly improve the overall classification accuracy. Here we compare the proposed
VIPool to random sampling. Note that for this task, we cannot compare with other graph pooling
methods. The reason is that previous pooling pooling methods need a subsequent task to provide
an explicit supervision; however, the vertex selection here should be blind to the final classification
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Figure 1: Effects of R for vertex classification
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(a) Semi-supervised vertex classification on Cora. (b) Semi-supervised vertex classification on Citeseer.
Figure 2: Comparison of semi-supervised vertex classification accuracies with a few selected and labeled data
by using different vertex selection methods.

labels. The proposed VIPool is rooted in mutual information neural estimation and can be trained in
either an unsupervised or supervised setting.

Specifically, given a graph, such as a citation network, Cora or Citeseer, we aim to show the
classification accuracy as a function of the number of selected vertices. For example, there are 7
classes in Cora, we can select 7, 14, 21, 28 and 35 vertices (1, 2, 3, 4 and 5 times of 7) and use their
ground-truth labels as supervision for semi-supervised vertex classification. As for Citeseer, there are
6 classes and we can select 6, 12, 18, 24 and 30 vertices. During evaluation, we test the performances
on all the unselected vertices. We compare two method for vertex selection and classification: 1)
the proposed VIPool method, where we use greedy algorithm to optimize C(Ω) for vertex selection;
and 2) Random Sampling, where we randomly select each vertex with the same probability on the
whole graph. We conduct semi-supervised vertex classification on the datasets of Cora and Citeseer.
Figure 2 shows the the classification accuracies varying with the numbers of selected vertices for two
vertex selection methods. We see that, when we select only a few vertices, such as fewer than 3 times
of the number of vertex classes (i.e. 21 for Cora and 18 for Citeseer), the proposed VIPool method
could select much more informative vertices than randomly sampling the same number of vertices,
leading to over 10% higher vertex classification accuracies. If we select more vertices by using the
two vertex selection methods, the classification results corresponding to the two methods become
closer to each other, indicating that a large number of selected vertices tend to potentially provide
sufficient information to represent the rich patterns of the graphs and we could obtain more similar
classification results than only selecting a few vertices.
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Appendix F. Illustration of Vertex Selection

To show the pooling effects of different pooling algorithms, we conduct a toy experiments to
reconstruct three spatial mesh graphs with an encoder-decoder model. The encoder employs different
pooling methods to squeeze the original graph into a few vertices (10 vertices) and the decoder
attempt to reconstruct the original graphs based on the pooled vertex features and graph structures.
To train the encoder-decoder model, we use an L2-norm loss to measure the distances between the
vertex coordinates of reconstructed graphs and ground-truth graphs.

The three mesh graphs have vertex features as the 2D Euclidean coordinates and the specific vertex
distributions are that 1) 88 vertices uniformly distribute in a circle region; 2) 503 vertices distribute in
a hollow square region, where the vertices densely distribute around the center and sparsely distribute
near the margins; 3) 310 vertices distribute in a circle, where the vertices densely distribute near the
center and sparsely distribute around. The specific topologies are shown in the first row of Figure 3.

We compare the proposed VIPool operation with several baseline methods: random sampling,
gPool [4], SAGPool [10] and AttPool [7]. The selected vertices are colored blue and illustrated in
Figure 3. We see that, VIPool can abstract the original graphs more properly, where the preserved
vertices distribute dispersely in both dense and sparse regions to cover the overall graphs. As for the
baselines, we see that, 1) random sampling tends to select more vertices in dense regions, since each
vertex is sampled with equal probability and the dense regions include more vertices and chances for
vertex selection; 2) gPool and SAGpool calculate the importance weight for each vertices mainly
based on vertex information itself without topological constraints, thus the selected vertices tends
to distributed concentrated in local regions. 3) AttPool considers to model the local attentions and
select more representative vertices, thus it can abstract graph structures to some extent, but the vertex
distributions still slightly collapse the dense region.
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