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Abstract

A differentially private algorithm guarantees that the input of a single user won’t sig-
nificantly change the output distribution of the algorithm. When a user contributes
more data points, more information can be collected to improve the algorithm’s
performance. But at the same time, more noise might need to be added to the
algorithm in order to keep the algorithm differentially private and this might hurt
the algorithm’s performance. [AKMV19] initiates the study on bounding user
contributions and proposes a very natural algorithm which limits the number of
samples each user can contribute by a threshold.
For a better trade-off between utility and privacy guarantee, we propose a method
which smoothly bounds user contributions by setting appropriate weights on data
points and apply it to estimating the mean/quantiles, linear regression, and empirical
risk minimization. We show that our algorithm provably outperforms the sample
limiting algorithm. We conclude with experimental evaluations which validate our
theoretical results.

1 Introduction

The notion of Differential Privacy, introduced by [DMNS06], aims to capture the requirement that
the output of an algorithm should not reveal much about the information provided by a single user.
The classical definition of differential privacy assumes each user controls one row in the input data
set, and guarantees that the removal (or change) of one row in the data set does not change the output
significantly.

In many applications of differential privacy, a single user might contribute more than one data point.
A prominent example, which is the focus of this paper, is private machine learning, where a user
often provides several points in the training data set. While the standard definition of differential
privacy can still capture such settings by defining a row as the collection of all data points belonging
to the same user, an important and useful nuance is lost in this translation. Most importantly, when
a user contributes many data points, the algorithm designer must balance between the value of the
information contained in these data points, and the added noise it will have to add to the output to
make it private with respect to this user.
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[AKMV19] initiated the study of this problem, and proposed a natural algorithm which limits the
number of samples each user can contribute by a threshold. This threshold is then optimized to strike
the right balance between the error due to the noise, and the bias introduced by removing the samples.

This sample limiting algorithm has two drawbacks: (i) It completely discards some data points from
users who have too many data points and the information of these data points is lost. (ii) Some data
points may contain more useful information than the others but the sample limiting algorithm treats
all data points the same when deciding which data points to discard. Our goal in this paper is to
answer this question: is it possible to significantly improve over sample limiting by bounding the
contribution of each user in a way that is more smooth and careful about the information contained in
each sample?

To answer this question, we propose a weighted averaging method to smoothly bound user contribu-
tions. The main idea of this method is to set appropriate weights on data points instead of completely
discarding some data points.

1.1 Our results

In Section 3, as a warm-up, we study a simple problem: estimating the mean. For this problem,
finding the optimal algorithm corresponds to finding the right weights when averaging samples. We
compute the overall error of the algorithm in terms of these weights, and show how the optimal set of
weights can be found. We then compare the error of such an optimal algorithm with that of the best
sample limiting approach. We present examples showing that the error of the sample limiting method
can be asymptotically 1.5 times higher than that of our algorithm. However, as we prove, this gap
cannot exceed 4.

In Section 4, we extend the weighted averaging algorithm to empirical risk minimization by mini-
mizing a weighted version of empirical risk. Our main technical contribution is to prove a weighted
version of uniform convergence, which could be of independent interest. We also extend the weighted
averaging algorithm to estimating quantiles in a similar way (in Appendix B). Similarly as the warm-
up problem, for ERM and estimating quantiles, our weighted averaging algorithm has advantage over
the sample limiting algorithm, but the advantage is limited.

In Section 5, we study linear regression with label privacy (defined in Section 5). We show that
label privacy allows us to design the weights better based on the usefulness of data points and the
weighted averaging algorithm can have a much bigger advantage over the sample limiting algorithm.
In particular, we prove that the optimal algorithm can be parameterized by a matrix C, and calculate
the error as a function of this matrix C. Next, we prove that this function is convex, and therefore,
one can compute the optimal C in polynomial time. In Section 5.3, we study the gap between the
error of our algorithm and the sample limiting algorithm with the best possible threshold, and prove
that this gap can be unbounded. In other words, there are instances where our algorithm has an error
that is better than the best sample limiting algorithm by an arbitrary factor.

Finally, in Section 6, we analyze the performance of our algorithm and its comparison with sample
limiting empirically using some real-world data sets as well as generated data for linear regression
with label privacy. This empirical study shows that our algorithms achieve lower loss compared to
the baseline methods (e.g., sample limiting) – confirming our theoretical results. We also include in
Appendix E experiment results on logistic regression using our ERM algorithm.

1.2 Related work

Differential privacy is proposed by the seminal work of [DMNS06]. For a detailed survey on
differential privacy, see [DR14].

Differentially private linear regression and its general form, empirical risk minimization have
been well-studied [CM08, CMS11, KST12, JKT12, TS13, SCS13, DJW13, JT14, BST14, Ull15,
TTZ15, STU17, WLK+17, WYX17, ZZMW17, Wan18, She19a, She19b, INS+19, BFTT19, WX19,
FKT20]. In particular, [WX19] studies label privacy which is similar to the setting we have in Sec-
tion 5. These results are in the case when each user has only one data point.

Motivated by federated learning, [AKMV19] initiates the study of bounding user contributions
in differential privacy. [TAM19, PSY+19] study how to adaptively bound user contributions in
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differentially private stochastic gradient descent for federated learning. For a detailed survey on
federated learning, see [KMA+19]. More broadly, our setting of each user having multiple data
points can be considered as a special case of personalized/heterogeneous differential privacy [JYC15,
SCS15, AGK17] and is very related to group privacy which is introduced in [Dwo06].

2 Preliminaries

2.1 Differential privacy

We define the notion of differential privacy for an algorithmA that takes as input a data setD from the
space D of all possible data sets, and produces an output A(D) in the space of outputs O. Typically,
D is a collection of n data points for some n. To define differential privacy, we need a notion of
neighboring data sets. In the classical setting of differential privacy, two data sets D,D′ ∈ D are
called neighboring data sets, denoted D ∼ D′, if one is obtained from the other by removing one
data point. In Section 2.2, we will discuss a more general notion that captures settings where a user
controls more than one data point.

Definition 1 (Differential Privacy [DMNS06]). A randomized algorithm A is (ε, δ)-differentially
private ((ε, δ)-DP for short) if for all neighboring data sets D,D′ ∈ D, and all subsets of outcomes
S ⊆ O,

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

When δ = 0, we say that A is ε-DP.

The Laplace mechanism [DMNS06] is a standard technique to achieve differential privacy by adding
Laplace noise of appropriate scale to the outcome of computation.

Definition 2 (`1-sensitivity). The `1-sensitivity of a function f : D → Rd is: ∆f =
maxD∼D′ ‖f(D)− f(D′)‖1.

Definition 3 (Laplace Mechanism [DMNS06]). Given any function f : D → Rd, the Laplace
mechanism is defined as f(D) + (W1, ...,Wd) where Wi’s are i.i.d random variables drawn from
Lap(∆f/ε). Here Lap(b) is the Laplace distribution with mean 0 and variance 2b2.

Theorem 1 ([DMNS06]). The Laplace mechanism is ε-DP.

2.2 User-level differential privacy

In this paper, we consider the setting in which there are m users owning n data points and m ≤ n.
Therefore, a single user can have more than one data point. For each user l ∈ [m], we use Sl to denote
the set of indices of data points owned by user l, and let sl = |Sl|. We assume Sl’s are publicly
known. We focus on the case when user data points are sampled from the same distribution. When
user data distributions are heterogeneous, additional bias need to be deal with (as in [AKMV19]),
and we do not consider this case.

The user-level differential privacy definition mostly follows Definition 1. The only difference is that
now two data sets D,D′ are considered to be neighboring data sets if they are the same except all
data points from a single user l.

3 Warm-up: estimating the mean

For warm-up, we consider a simple setting where we have n data points y1, ..., yn generated as
yi = β + ξi and we want to estimate the unknown mean β differentially privately. Here noise ξi’s are
independent with mean 0 and variance σ2. We assume all yi’s are bounded, i.e., yi ∈ [0, B].

We want to minimize the expected squared error of our estimate β̃: E[(β − β̃)2]. This is just the
variance of β̃ when β is unbiased (E[β̃] = β). The expectation is over the randomness of our
algorithm and ξi’s.
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3.1 The weighted averaging algorithm

In this subsection, we propose our weighted averaging algorithm WAc which is parameterized by
non-negative weights c1, ..., cn with

∑
i ci = 1. This algorithm simply computes the weighted

average of the input yi’s, and applies the Laplace mechanism to this average:

Algorithm 1 Weighted Averaging WAc
Input: y1, . . . , yn ∈ R
Parameters: c1, . . . , cn ∈ R≥0, with

∑n
i=1 ci = 1

1: β̂ ← c1y1 + · · ·+ cnyn

2: β̃ ← β̂ + Lap
(
B·maxml=1

∑
i∈Sl

ci

ε

)
3: return β̃

In the following two lemmas, we prove that WAc is ε-DP and analyze its variance.

Lemma 1. For every c, the algorithm WAc is ε-DP.

Proof. If some user l change its input yi’s for i ∈ Sl, β̂ would be changed additively by at most
B ·
∑
i∈Sl ci. Therefore, the `1-sensitivity of β̂ is B ·maxl

∑
i∈Sl ci. By Theorem 1, we know that

β̃ is ε-DP.

It is easy to check that β̃ is unbiased. We will just analyze its variance.

Lemma 2. For every c, the variance of the output of WAc can be written as: Var
(
β̃
)

= σ2(c21 +

· · ·+ c2n) + 2
(
B·maxml=1

∑
i∈Sl

ci

ε

)2
.

Proof. For the variance of β̃, since c1y1, ..., cnyn and the Laplace noise are independent, we have

Var
(
β̃
)

=

n∑
i=1

Var(ciyi) + Var
(

Lap
(
B ·maxml=1

∑
i∈Sl ci

ε

))

= σ2(c21 + · · ·+ c2n) + 2

(
B ·maxml=1

∑
i∈Sl ci

ε

)2

.

Next, we characterize the weight vector c that minimizes Var(β̃). The proof of Lemma 3 can be
found in the supplementary material.

Lemma 3. Let c∗ = (c∗1, ..., c
∗
n) be the vector that minimizes Var(β̃). There exists h, such that,

1. s1 ≤ h ≤ sm

2. For each data point i of user q, c∗i =
min(h,sq)

sq
∑m
l=1 min(h,sl)

.

Define nh =
∑m
l=1 min(h, sl). Using the characterization we get in Lemma 3, we show in the next

claim that minimizing Var(β̃) can be simplified into minimizing a function of a single variable h.

Claim 1. For the weighted averaging algorithm, the minimum of Var(β̃) equals to

minh:s1≤h≤sm v(h), where v(h) = σ2
∑m
l=1 sl ·

(
min(h,sl)
nh·sl

)2
+ 2

(
B·h
ε·nh

)2
.

Proof. For any h > 0, when setting ci =
min(h,sq)

sq
∑m
l=1 min(h,sl)

for any data point i of any user q, it is

easy to check that Var(β̃) = v(h). Then by Lemma 3, we get the claim.

4



Regarding weights computation, Lemma 3 and Claim 1 show that finding the optimal weight vector
c is equivalent to minimizing a function v(h) of a single parameter h ∈ [s1, sm]. Optimizing this
function of a single parameter can be simply done by setting the derivative to be 0 and considering
locations where the derivative is not continuous.

3.2 The sample limiting algorithm

The sample limiting algorithm picks an integer threshold h between s1 and sm. For each user l, the
sample limiting algorithm arbitrarily selects min(sl, h) data points and apply the Laplace mechanism
to the average of nh =

∑m
l=1 min(h, sl) selected data points. In other words, if we let T denote the

set of selected samples, the sample limiting algorithm outputs β̃ = 1
nh

∑
i∈T yi + Lap

(
B·h
ε·nh

)
.

It is easy to see that the sample limiting algorithm is a special case of the weighted averaging
algorithm with weights ci = 1[i ∈ T ]/nh. Therefore, by Lemma 1, we know the output of the
sample limiting algorithm is ε-DP. By Lemma 2, the variance of β̃ can be written as follows.

Claim 2. For the sample limiting algorithm with integer threshold h, Var(β̃) can be written as the

following function: v′(h) = σ2

nh
+ 2

(
B·h
ε·nh

)2
.

3.3 Comparing the variances

In this subsection, we compare the minimum variances of two algorithms we describe earlier. By
Claims 1 and 2, we just need to compare minh:s1≤h≤sm v(h) and minh:s1≤h≤sm,h∈N v

′(h).

Since the sample limiting algorithm is a special case of the weighted averaging algorithm, we know
its variance is greater than or equal to that of the best weighted averaging algorithm. We now show
that there are examples where the variance of the sample limiting algorithm is larger than the variance
of the weighted averaging algorithm by a factor that asymptotically converges to 3/2.

Theorem 2. For every g ∈ N, there is an instance where the variance of the best weighted averaging
algorithm is less than 2g+1

4g2 , while the variance of the best sample limiting algorithm is at least 3
4g .

For every g, 3
4g ≥

2g+1
4g2 , and the ratio between these two numbers converges to 3/2 as g goes to

infinity.

On the other hand, we show that the gap between the two minimum variances is at most a factor of 4.

Theorem 3. In every instance, the variance of the best sample limiting algorithm is at most 4 times
the variance of the best weighted averaging algorithm.

4 Extension to empirical risk minimization

In this section, we extend the weighted averaging algorithm to empirical risk minimization. Missing
proofs and similar extension to estimating quantiles can be found in the supplementary material.

Here we give the setting of empirical risk minimization (ERM). We are given n data points D =
(X1, ..., Xn) from a universe X . They are sampled independently from an unknown distribution µ.
We need to optimize over a closed, convex set C bounded by B (i.e. for all θ ∈ C, ‖θ‖2 ≤ B) and
we are given a loss function l. For each data point X ∈ X , l(·, X) defines a loss function on C. We
assume l(·, X) is convex and L-Lipschitz. Our goal is to minimize the population risk Lµ(θ) =
EX∼µ[l(θ,X)] over θ ∈ C and we define θ∗ ∈ C to be the optimal solution: θ∗ ∈ arg minθ∈C Lµ(θ).

Now we describe our weighted ERM algorithm (Algorithm 2) parametrized by non-negative
weights c = (c1, ..., cn). The main idea is to consider the weighted empirical risk L̂(θ, c,D) =∑n

i=1 cil(θ,Xi) for dataset D = (X1, ..., Xn). In order to apply standard (record-level) differen-
tially private ERM algorithms and ensure differential privacy with respect to each user, we define
a new loss function l′. Let Mj to be the meta-data of user j: Mj = (Sj , {ci, Xi}i∈Sj ). We define
l′(θ,Mj) =

∑
i∈Sj cil(θ,Xi) (i.e. weighted empirical loss of each user). In general, we can use any

DP ERM algorithms for the new loss l′. For concreteness, we use Algorithm 1 of [BST14] which
achieves nearly optimal empirical risk bound.

5



Algorithm 2 Weighted ERM
Input: X1, ..., Xn ∈ X , loss function l,
Parameters: c1, . . . , cn ∈ R≥0, with

∑n
i=1 ci = 1

1: Define user-level weighted loss function l′ as stated in the above paragraph
2: Run (ε, δ)-DP-ERM algorithm (Algorithm 1 of [BST14]) over user-level loss l′ and m users,

and obtain its output θ̃
3: return θ̃

Theorem 4. Algorithm 2 is (ε, δ)-DP and ED∼µn,alg[Lµ(θ̃)]− Lµ(θ∗) is bounded by

O

LB√d ·
√√√√√ log4(m/δ)

(
maxmj=1

∑
i∈Sj ci

)2
ε2

+ log(d) log(n)

n∑
i=1

c2i

 .

To prove Theorem 4, we prove a weighted version of the uniform convergence result (Theorem 5 of
[SSSS09]) to give an upper bound on the generalization error of our weighted ERM algorithm and
this result might be of independent interest.

Theorem 5 (Weighted uniform convergence). For any γ > 0 and non-negative weights c =
(c1, ..., cn) with

∑n
i=1 ci = 1, with probability at least 1− γ over D ∼ µn, we have

sup
θ∈C
|L̂(θ, c,D)− Lµ(θ)| ≤ O

LB
√√√√d log(d/γ) log(n)

n∑
i=1

c2i

 .

Tradeoff weights. In ERM and also estimating quantiles (details in the supplementary material),
for optimizing the algorithm performance, we need to pick weights to minimize a formula in the form

of
(

maxmj=1

∑
i∈Sj ci

)2
+A ·

∑n
i=1 c

2
i , whereA depends on parameters of the problem (for example,

in Theorem 4, by simply moving terms around, A would be Θ(log(d) log(n)ε2/ log4(m/δ))). This
general form intuitively explains the tradeoff we need to make: A ·

∑n
i=1 c

2
i measures how hard it

is to optimize the weighted objective with a user-level private algorithm and
(

maxmj=1

∑
i∈Sj ci

)2
measures how well the weighted objective generalizes.

It is not hard to see that Var
(
β̃
)

in Section 3 is also in this form, and the results about characterizing
the minimizer and comparisons to the sample limiting algorithm also apply here. And we can also
use the same method to compute weights c = (c1, ..., cn).

5 Linear regression with label privacy

In this section, we consider linear regression. We are given n data points of the form (Xi, yi), where
Xi ∈ Rd and yi ∈ [0, B] for i = 1, . . . , n. The yi values are generated as yi = β ·Xi + ξi, for a
vector β ∈ Rd unknown to us, and random variables ξi representing noise. These random variables
are assumed to be independent, each with a mean of 0 and a variance of σ2. We provide a detailed
preliminaries to linear regression in the supplementary matirel.

We focus on label-privacy (introduced in [CH11]) in which we protect the privacy of label yi’s and
Xi’s are public data. In other words, D and D′ are considered to be neighboring databases if they
have the same Xi’s and their yi’s are also the same except data points from just one user l.

Our goal is to have an ε-DP algorithm which estimate β by outputting an unbiased estimator β̃ and
minimizes the squared error E

[∑d
j=1(βj − β̃j)2

]
. Since β̃ is unbiased, minimizing the squared

error is equivalent to minimizing the variance
∑d
j=1 Var(β̃j).
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5.1 The Algorithm

The weighted averaging algorithm of Section 3.1 generalizes the simple averaging algorithm and is a
generic linear unbiased estimator for the simple problem. Similarly, for linear regression, we need a
generalization of the OLS (ordinary least squared) estimator that provides a generic linear unbiased
estimator for β. Such a generalization has already been proposed by [Ait34], albeit for a different
purpose1.

As a fact (see the supplementary material for details), any linear unbiased estimator can be written as
β̂ = Cy, for a d× n matrix C = [ci,j ]d×n satisfying CX = Id. Our generalization of the weighted
averaging algorithm to the higher-dimensional case is to use such an estimator followed by the
Laplace mechanism:

Algorithm 3 Generalized Weighted Averaging GWAC

Input: X ∈ Rn×d, y ∈ Rn×1
Parameters: C ∈ Rd×n satisfying CX = Id

1: β̂ ← Cy

2: b← Bε−1 ·maxl
∑d
j=1

∑
i∈Sl |cj,i|

3: independently draw values W1, . . . ,Wd from Lap(b)

4: β̃ ← β̂ + (W1, . . . ,Wd)

5: return β̃

In the following theorem, we provide the performance of our algorithm and its proof can be found in
the supplementary material.
Theorem 6. For every d× n matrix C satisfying CX = Id, the algorithm GWAC is ε-DP, and the
total variance

∑d
j=1 Var(β̃j) of the vector β̃ produced by the algorithm GWAC can be written as:

σ2
d∑
j=1

n∑
i=1

c2j,i + 2d

Bε−1 ·max
l

d∑
j=1

∑
i∈Sl

|cj,i|

2

.

This total variance is a convex function and can be minimized in polynomial time.

5.2 The sample limiting algorithm

We generalize the sample limiting algorithm in Section 3.2 to higher dimensions. The sample limiting
algorithm is parameterized by an integer threshold h. For each user l, it randomly picks min(h, sl)
data points from the user. Let U be the features and v be the labels of the sample data points. The
sample limiting algorithm first computes the OLS of the sample data β̂s = (UTU)−1UT v. Let
Cs = (UTU)−1UT . For each user l ∈ [m], let S∗l be the set of corresponding row numbers in U and
v. The algorithm finally outputs a vector β̃s obtained by adding to each entry of β̂s a value drawn
i.i.d. from Lap(b), for b = Bε−1 ·maxml=1

∑d
j=1

∑
i∈Ssl
|csj,i|.

Similarly to Section 3.2, after fixing the selected points, the sample limiting algorithm can be
considered as a special case of the GWAC algorithm if we expand Cs to n rows. Therefore the
output of the sample limiting algorithm is ε-DP and

∑d
j=1 Var(β̃sj ) is

σ2
d∑
j=1

n∑
i=1

csj,i
2 + 2d

Bε−1 · m
max
l=1

d∑
j=1

∑
i∈Sl

|csj,i|

2

.

5.3 An unbounded gap

Here we give an example which shows that the optimal GWA algorithm can have a much smaller
variance than the sample limiting algorithm. This advantage of GWA algorithm can also be seen in
the experiments mentioned in Section 6.

1[Ait34] proposed the Generalized Least Squares method to solve linear regression when the noise in different
observations are correlated.
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In this example (Example 1), data points are from two orthogonal directions (i.e. Xi’s have either
Xi,1 = 0 or Xi,2 = 0). To control the user contributions, the sample limiting algorithm wants to
pick h big for the first dimension and to pick h small for the second dimension. The sample limiting
algorithm has to pick the same threshold h for both dimensions. Intuitively, it cannot avoid big user
contributions. A formal proof is provided in the supplementary material.

Example 1. d = 2. Set σ = 0 and 2d(B/ε)2 = 1. Let g be some integer parameter and set the
number of users to be m = 2g2 + 2. Now consider the data points of users:

• User 1 has 1 data point with Xi = (g, 0).

• Each of user 2, ..., g2 + 1 has g data points with same Xi = (1, 0)

• User g2 + 2 has g data points with same Xi = (0, 1).

• Each of user g2 + 3, ..., 2g2 + 2 has 1 data point with Xi = (0, 1)

Claim 3. In Example 1, the minimum variance of the sample limiting algorithm is at least 1/4g3

and the minimum variance of the generalized weighted averaging algorithm is at most 1/g4.

Example 1 contained one data point whose norm of Xi is much larger than the others. We provide a
different example in the supplementary material to show that a gap still exists even when |Xi| = 1
for all data points.

6 Experiments

In this section we perform an empirical evaluation of our algorithm and we compare it with the
sample limiting algorithm for linear regression in the label-privacy case. In Appendix E, we also
provide experimental results on logistic regression using our ERM algorithm of Setion 4.

Datasets We evaluated all methods on two publicly-available datasets containing real-world data
as well as synthetic datasets with ground-truth generated with standard open-source libraries. We
stress that no private data has been used in these experiments. We only briefly describe our and
experimental setup here, more details are available in Appendix E.

Synthetic data: We generated regression problem instances with sklearn’s make_regression
(n ∈ [600, 3000] samples, d = 10 features, bias=0.0 and noise=20). To model user contributions
we used the Zipf’s (power law) distribution for the number of rows of a user (users contributions
are often heavy tailed [AH02]). Real-world datasets: We used also two UCI Machine Learning
Datasets. drugs [GKMZ18] (n = 3107, d = 8, m = 502 users with min 1 and max 63 samples) and
news [MT18] (n = 3452, d = 10, m = 297 users with min 1 and max 878 samples).
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Figure 1: Average squared errors—synthetic
dataset, α = 1.5 and ε = 1.

Experimental set up Experiments are re-
peated 10 times and we report mean of each
metric computed. For quality we use the aver-
age squared error for the prediction. We evaluate
our general setting algorithm in Section 5 using
ε = 1, 2, 3 values. For σ2, we treat it as public
knowledge and compute it with OLS regression.
For sample limiting we evaluate the best thresh-
old h∗ and the whole datasets (i.e. h set to max
user contribution).

Results on the synthetic dataset We com-
pare all methods on datasets with varying num-
bers of samples n and different parameter α of
the Zipf’s distribution. Lower α values corre-
spond to more uneven distributions (i.e. some
users may many more data points than others).

The results for α = 1.5, ε = 1, are plot in Figures 1. As expected, the larger the number of samples
the lower the loss of all methods, however in every setting our method has always significantly lower
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Dataset ε Our method Sample limit h∗ Sample limit hmax

drugs
1 3.1 24.8 95.4
2 2.5 7.7 25.2
3 2.3 4.5 12.4

news
1 1696.3 96344.4 4862670.7
2 440.1 24110.0 1201568.9
3 166.2 10648.3 550989.2

Table 1: Average squared errors for our method, sample limit with best threshold (h∗), and using all
data (hmax).

squared error, even orders of magnitude lower (notice the y-axis is in log scale). We now fix ε = 1
and n = 3000 samples and analyze the effect of the parameter α in Figure 2. Recall that α controls
the inequality in the distribution of the user’s contributions. As expected, our method is comparatively
much better for low α (i.e., more unequal distributions of user contributions), but it performs always
better.
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Figure 2: Average squared errors—Synthetic
dataset, α = 1.5, ε = 1, n = 3000.

Results on real-world datasets We now re-
port the results for the real-world datasets. Our
results are summarized in Table 1. The results
confirm all empirical observations on the syn-
thetic datasets: the loss decreases for increasing
ε for all methods, but our method has always
significantly lower loss than both sample limit-
ing with best and max threshold. Notice that the
squared error is overall larger for news than for
drugs, this is explained by the larger range of
the y’s values (in news the values are in [0, 71]
vs [1, 10] for drugs).

7 Conclusion

In this paper, we propose the weighted averaging
method for smoothly bounding user contribution in differential privacy. We apply this method to
estimating the mean and quantiles, empirical risk minimization, and linear regression. We show it
has advantage over the sampling limiting algorithm, especially in the label-privacy case.

Broader Impact

Privacy is a fundamental concern in machine learning. Respecting the privacy of the users is a
requirement of any real system and differential privacy allows to formalize such requirement. In
this paper we provided algorithms with improved trade-offs of utility vs differential privacy. This
may enable better outcomes for the users of a system at the same level of privacy. We stress that
privacy is only one of the requirements of a real system. Any machine learning technology must also
responsibly ensure utility of the system and fairness of the system to the users. Privacy requirements
may negatively affect utility, and it is known that differential privacy potentially disparately impacts
certain users [BPS19]. Such considerations are beyond the scope of the paper and we refer to the
emerging literature on responsible machine learning for addressing them [KR19].
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