A Omitted proofs

A.1 Proof of Proposition 1
We begin by plugging the disutility function ¢(t) = [t] to the definition of the inverted OCE risk
(Definition 2) to get

. 1 o
oz’ (f; Pa) = sup {A — 1 ;[A ~ f(Z) } 27)

While the optimum-achieving A may not be unique, we observe that \* = f(Z () achieves the
optimum. To see this, first observe that increasing A (non-strictly) increases the first term in the curly

bracket (\) and decreases the second term (f% le [A — f(Z;)]+). By increasing A* by A\, the
second term decreases at least by A, since at least & terms among {\ — f(Z;)}_; are nonnegative.
Likewise, by decreasing \* by A\, the increment in the second term is no bigger than A\.

Plugging in \* = f(Z (1)), we get what we want.

A.2 Proof of Proposition 2

We look at each inverted OCE separately.

1. Inverted entropic risk: From the elementary calculus, we know that
1 1
oce(f) = ——log E[e ¥ (9], A = ——log E[e /(9] (28)
v Y

The corresponding influence function is then given as

—f(2)
IF(z*) = L lim 1log ( Ble 777 > (29)

v e0t € £ -Ele= (D] 4. e f)
1 ) 1 - e—Vf(z")
Ty 'al—lgh € log (E * EE[e*vf(Z>] (30)

1 1 e &)
:;_;7]5[6_#(2)]. (31)

2. Inverted mean-variance: From the elementary calculus, we know that

oce(f) = R(f) —c-a>(f), A" =R(f). (32)

The corresponding influence function is then given as
IF(=0) = lim ~ [—e RO+ 2 f(7) e a?(f) — e (7"~ ROD?] 39
= (=) = R() + ¢ [0%() = (F(") = R()? - (34)
3. Inverted CVaR: Using the argument similar to [4 1], we get that

oce(f) = alo; fyp) — éEP[CI(Oé; fip) = f(Z)]+, A= q(a; fip)- (35)

We denote the z*-contaminated distribution by P. Then, the corresponding influence function can be
written as

IF(=") = Jim_~ [a(0 fyp) — alos for) + ~Brla(os fur) — F(2)]s

e—0t €
~ ZEplaai fyp) — F(2) — —lales fyp) = )] G36)
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By adding and subtracting £Ep|q(a; fip) — f(Z)]+, we can rewrite as
= “Eelalos fur) — (2)]: — ~alos for) — F)]s
+ tim = a0 fip) — a0 fir) + “Bp [la(0s fur) = S — lales fip) — F(2)14] |
(37

Now, notice that the limiting term is 0 whenever whenever fyp does not have a point mass around
q(a; fyp). Indeed, [q(e fyp) — f(Z)]+ — [a(es fy5) — f(Z)]+ is zero with probability 1 — c, and
q(a; fip) — a(es f,5) with probability ov. Taking the limit, remaining terms cancel out.

A.3 Proof of Lemma 3

We begin by giving the following technical lemma.
Lemma 9. Suppose that P, f satisfies f(Z) € [0, M| almost surely for Z ~ P. Then, we have

oce(f) = min {A+Epg(f(2) - N} (38)
oce(f) = max {}—Eré(A-f(2))}. (39)
Proof. See Appendix A.9. O

In other word, the search space of the variational parameter A appearing in the definition of OCE risk
(3) can be constrained to a finite length interval, given that the random variable f(Z) is also bounded.
Using this result, we can take a closer look at the one-sided deviation; for any f € F, we have

oce(f) ~ oce,(f) = min {A+Bpa(f(Z) - M)}~ min {A+Bp6(f(Z) - )} @0)

T €[o,M]

where the inequality holds by selecting the first A to be identical to the second A. Taking supremum
over F on both sides, we get

sup {oce(f) —ocen(f)} < sup {Eplpog(Z)] —Ep,[pog(2)]}, 42)

where G := {f(:) — A | f € F, XA € [0, M]} is a product hypothesis space constructed upon F and
[0, M]. To bound the (one-sided) uniform deviation, we first control its expectation via Rademacher
averages. As ¢(0) = 0 holds by definition, the contraction principle (see, e.g., [31, Eq. 4.20]) gives

Ezlelg {Ep[¢0g(2)] —Ep,[¢09(Z)]} < 2Lip(¢) - ER,(G(Z")). 43)

Now, the Rademacher average of G can be bounded as

1 & 1 &
ER,(G) =EE.. sup (=Y ef(Z)- BB (44)
Aé[eo],:zif] i=1 i=1
< EE.. s 12n: f(Z) | +Ee s A 1Zn: (45)
= en SUp | — € i e» Sup . €
fer \ i34 A€[0,M] n—
n M -
<ER(F(Z") +— Eer > e (46)
=1
M
< ER(F(Z")) + NGk 47)
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where the last line follows from the Jensen’s inequality (E|X|)? < E[|X|?] = E[X?]. Combining
(47) with (43), we get

Bsup (Bp{o0 0(2)] ~ B, 00 4(2)]} < Liv(e)- (2Em<f<2">> n 2\%) 48)

Combining with the McDiarmid’s inequality to control the residual term, we have

sup {Epl¢0g(2)] - Ep,[pog(2)]} (49)
< Lip(6) <2E§Rn(]—'(Z”)) L M@+ Y}@» wp. 1 — % (50)

The other direction can be derived similarly. Using the union bound, we get what we want.
To get the same bound with oce, we slightly modify Eqgs. (40) and (41) as follows.
oce(f) —oce,(f) = max {A—Epp(A— f(Z2))} — max {A—Ep,¢(A— f(Z))} (1)

A€[0,M] AE[0 M)
<Aén(?}1€4]{EP¢>‘ f(2)) = Epo(A = f(2 ))}7 (52)

where the inequality holds by selecting the second ) to be equal to the first A. The remaining steps
are identical to the proof of the claim for oce.

A.4 Proof of Theorem 4

The claim is a direct consequence of Lemma 3. Indeed, we can proceed as

OCG(ﬁom) - Oce(f;ce>
= [Oce(]/c;om) - OCen(ﬁom)} + [Ocen(feom) - ocen(fo*ce)] +[0Cen(f:ce) - OCG(f:Ce)]7 (53)

<0

where the nonpositivity of second term follows from the definition of feom. The remaining terms can
be bounded via Lemma 3 to get the claimed result.

The proof for f;im can be done equivalently, by
ﬁ(.}?eim) Oce(foce)
= [OT:e(feom) - ocen(f:om)} =+ [ﬁn(ﬁom) - ﬁn(f%)] +[ﬁ7t(f:ce) Oce(foce)] (54)

<0

A.5 Proof of Proposition 5

To get 0 < oce(f), plug in A = 0 to Definition 2 to observe that
oce(f) = —Epp(—f(Z)) = ~Epg(0) =0, (55)

where the second inequality holds as ¢ is a nondecreasing function.

To get oce(f) < R(f), we first observe that ¢(¢) > t holds for all ¢, as ¢ is a convex function with
#(0) = 0,1 € 9¢(0). Thus, we get

oce(f) <SUP{)\ Ep[A— f(Z2)]} =Epf(Z) = R(f). (56)

To get R(f) < oce(f), use again that ¢(¢) > ¢ to proceed as
il {A+ Epo(f(2) ~ N)} > inf {A+Bp[f(2) - X} = R(/). 57)
To get oce(f) < Lip(¢) - R(f), observe that
inf {2+ Epd(f(2) ~ N} < Epo(f(2)) < Liplé) - Erlf(2) 0| = Lip(0) - B(f).  (58)

where for the first inequality we plugged in the special case A = 0.
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A.6 Proof of Lemma 6

We first prove the bounds for oce. To get the lower bound, we start from Lemma 9 and proceed as

AEH(}fM] At Brolf N}z AEH(}fM] {)\ +Ep[f(2) =N +Co - Ep(f(Z) - /\)2} (59)
R(f)+Cy - A ]Ep<f(Z) —A)? (60)
R(f)+Cy-a*(f), (61)

where the inequality holds by the definition of C\s. To get the upper bound, plug in A = R(f) to the
variational definition (3) and observe that

oce(f) < R(f) + Ero(f(Z) — R(f)) (62)
< R(f) +Lip() - Ep[f(Z) — R()]+ (63)
= 8 + 2 B, (2) - RO (64)
< R(f)+ VE — R(f))2, (65)

where the last line holds by the Jensen’s 1nequahty.

The bounds for G¢ce can be proved similarly. For the lower bound, we plug in A = R(f) to get

oce(f) > R(f) — Bro(R(f) — f(2)) (66)
> R(f) — Lip() - B|R(f) — F(Z)], (©7)
> R(p) - 22q () (68)

For the upper bound, we use the definition of C'4 to get

sup {A=Epd(A~F(Z)} < swp {A=BplA= f(2)] - Cy-Br(A= f(2))*} (©9)
A€[0,M] A€[0,M]

=R(f) =Gy jnf Ep(r- f(2)) (70)
= R(f) = Cy-*(f) (71)

A.7 Proof of Theorem 7

To prove the first claim, we start with Lemma 6 to proceed as

R(Jeom) < Ry(Feom) + sup IR(f) — Ra(f)] (72)
< ocen (feom) — C0%(fom) + sup |R(f) — Ru(f)] (73)
feF
< ocen(fig) — Co02 (feom) + sup |R(f) — Ru(f)] (74)
Rulfag) + 220, (1) — Co02(Fom) + s R = Ru(H - 79)
Lip(¢)

UTL(fa*vg) - C¢Gi(.]?60m) + 2 sup |R(f) - Rn(f)| (76)

R *
(favg) + 9 fer

As f3¢ 1s a fixed object independent of the samples (for given P), Theorem 10 of [37] implies

21og(3/0) <o log(3/4)

n — n

)
Un(f:vg) - U(f:vg) <M w.p. 1- g )

Combining with standard symmetrization bounds on uniform deviation (see, e.g., [45]) with excess
risk probability 26 /3, we get the first claim.
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The second claim can be proved similarly, but without invoking the concentration of sample variance.
We proceed as follows.

R(feim) < Ro(foim) + sup IR(f) — Ru(f)] (78)
< 66, (feom) + Lip(9) - 7 (feom) + sup IR(f) — Ru(f)] (79)
< 68 (fig) + Lip(0) - 0 (feom) + sup IR(f) — Ru(f)] (80)
< Ru(fig) + Lip() - 00 (feom) + sup [R(f) — Ru(f)] (81)
feF
< R(f2e) +Lip(6) - 0 (feom) +2 sup IR(f) — Ru(f)]. (82)

Plugging in the standard Rademacher average bound, we get what we want.

A.8 Proof of Proposition 8

We begin by observing that §eom for CVaR reduces to the binomial tail probability.

Lemma 10. Let Seom be the excess risk probability of empirical CVaR minimization for some

a € (0,1). Then, we have deom = P[X < %}, where X ~ Bin(n, 136).

Proof. See Appendix A.10. O

To get the upper bound, observe that Lemma 10 can also be stated in the following form: the excess
risk probability of the empirical CVaR minimization is

1< 1
deom = P n;X,;gj , WhereXiNBern( ere) (83)

Then, the upper bound follows from the Hoeffding’s inequality.

For the lower bound, we bound the binomial tail from below by the largest term in the binomial sum.
Using the Stirling’s approximation, we have for any k£ < n,

n\ (1+e\" /1—e\"" 2mn El1+e
vz (1) (5°) (59) = MGXF’(”D(TLH 2 )) &

where 0(p||q) denotes the binary Kullback-Leibler (KL) divergence. To complete the lower bound,
we note the quadratic upper and lower bound on the binary KL divergence.

Lemma 11. For any p,q € (0, 1), we have 3(p||q) > 2(p — q)%. If we further assume q € (%, %),
then we also have 3(p||q) < 8(p — q)2.

Proof. See Appendix A.11. [

From Lemma 11, the binary KL divergence of our interest can be upper bounded as

2 >
na ||y 1 no a1 16
R 5] || 1+ e <3 te %) <g(ete, ! <4le+a)’+ =, (85
n 2 2 n 2 n n2

where the last inequality holds by the Jensen’s inequality. Combining Eq. (85) with Eq. (84), we can
proceed as

no 2mn ~\2 16
P{X§2} 2\/64L’l2°‘j(n—v§°‘])exp (4n(e+a) n) (86)
> \/gexp (—4n(6 + d)2 - % — log M) . (87



A.9 Proof of Lemma 9

We first prove Eq. (38). For simplicity, we use the shorthand notation
() =X +Epo(f(Z) — N). (88)

Note that ( is a continuous function, as the convexity of ¢ implies the convexity (and continuity) of
E¢. We prove the claim by contradiction; for any (supposedly optimal) A* ¢ [0, M], we show that

there exists a corresponding A € [0, M] such that ((X) < C(A\*).

Case (\* > M). We show that {(M +¢) > ¢(M) for any & > 0. Indeed, by considering a negative
random variable X := f(Z) — M lying in the interval [— M, 0], we get

(M+e)=M+e+Ep(X —e)>M+e+EpX)—e=((M), (89)
where the inequality holds because ¢ is a convex function having 1 as a subgradient at 0.
Case (\* < 0). Similarly, we show {(—¢) > ¢(0) for any € > 0. By considering a positive random
variable X := f(Z), we get
(=) = —e + E¢(X +¢) > Eo(X) = ((0), (90)
where the inequality follows from the fact that ¢ is a convex function having 1 as a subgradient at 0.

With ¢ being a continuous function and [0, M| being a compact search space, we can replace the
infimum by minimum. Eq. (39) can be proved in a similar manner.

A.10 Proof of Lemma 10

We begin by introducing the shorthand notation X := Z;L:l f2(Z;). From the setup, we know that

X ~ Bin(n, 1£<). From Lemma 9, we can proceed as

n

. 1
ocen(f2) = min {A+ ;mza ~ N+ } 1)
. 1—A
=i ) ©
:min{l,%}. (93)

Thus, oce,, (f2) < oce,(f1) = % holds if and only if X < 7.

A.11 Proof of Lemma 11

To get the lower bound, we view d(p||¢) as a function of p and use the Taylor’s theorem. The partial
derivatives of the binary KL divergence with respect to p are as follows.
= 2
N (pllg) og?d 2 opllg) _ 1 1 94)
op pq op? p D
Note that as p € (0, 1), the second derivative is bounded from below by 4. Evaluating 9(-||q) at g, we
have for some p* in the interval between p and ¢,

o(olle) = o(all) + 2 L@ - 0)+

%%}qu)(p*)(p—ﬁ >2(p—q)® (99

To get the upper bound, we view d(p||q) as a function of ¢ and use the Taylor’s theorem again. The
partial derivatives with respect to ¢ are

o0 9% p
(plle) _ P _ P (192||Q) 2, P 96)
dq a q dq g
Given that q € (%, %), we know that the second derivative is uniformly upper bounded as
PP <i6p+ap<is. 97)
q q

Evaluating 9(p||-) at p in the same manner as Eq. (95), we get the upper bound.
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Figure 2: Trajectories of test/train CVaR (left/right) for hypotheses trained on ResNet18 and CIFAR-
10 (a = {0.4,0.6}).

B Additional plots and other experimental details

We now provide extra experimental details that are not given in Section 4. Unless stated otherwise, we
follow PyTorch default parameters. One may also find our (primitive) PyTorch-based implementation
at the following URL: https://github.com/jaeho-lee/oce.

Dataset. We use CIFAR-10 image classification dataset [29], normalized using the constants
(0.4914,0.4822,0.4465), (0.247,0.243,0.261). We used random cropping (with padding of 4) and

random horizontal flipping for augmentation.

Optimization. We use mini-batch gradient descent, i.e. sampling without replacement until every
samples are drawn.
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C Related work

Here, we give a slightly extended overview of the related work, in addition to what has been already
introduced in the main text. In particular, we focus on the following three topics: optimization of
OCE risks, comparisons with another risk-sensitivity framework, and connections to the algorithmic
fairness literature.

Optimization of OCE. The OCE risk measures belong to a wider class of convex risk measures [ 18],
which was originally proposed as a relaxation of the notion of coherent risk measures [3]. Under
classic setups equipped with convexity assumptions on the loss function, the fact that “the composite
function of convex functions are also convex” enables one to use standard optimization techniques
developed for the expected loss. In modern machine learning applications which accompanies batch-
based nonconvex optimization, the optimization can be done with some additional tricks. In [14],
the authors propose to use DPP-based techniques for a more accurate estimation of the conditional
value-at-risk. In [33], the authors give a stochastic optimization algorithm which often outperforms
the batch-based version.

Comparison with rank-based measures. The utility-theoretic framework of OCE risks (and their
inverses) is complementary to another class of risk measures revolving around the quantile function
of the loss population. Known as spectral risk measures [2] in the financial mathematics and as
L-statistics (see, e.g., [26, 27]) in the statistics literature, the quantile-based approach focuses on the
risk measures that can be written as

1
My(f,P) = /O B(1) - alt: fypdt, (98)

for some weighting function ¢ : [0,1] — R (satisfying varying degree of assumptions). While two
frameworks share some commonalities (e.g., having the conditional value-at-risk as its special case),
there is a subtle yet important difference: the utility-based framework allows the relative weight of
the samples to depend on the loss value itself, while the quantile-based framework does not. In this
sense, the OCE framework can be viewed as having a little more room for adaptation with respect to
different distributions of loss. On the other hand, it is also true that the quantile-based framework
covers some risk measures that are not describable via the OCE framework, e.g., risk measures
trimming both samples with small and large loss values. An in-depth comparative study on the
theoretical and empirical benefits of two frameworks may be an interesting direction of future study.

Connections to algorithmic fairness. In [53], Williamson and Menon give an axiomatic definition
of fairness risk measures for group fairness. In particular, they argue that the fairness risk measure
should be convex, positively homogeneous, monotonic, lower semi-continuous, translation invariant,
averse, and law invariant. From the axioms, the authors propose a fairness-aware objective based on
minimizing the conditional value-at-risk, which is a special case of the OCE risk with the disutility
function ¢(¢) = L[t];.. Indeed, the conditional value-at-risk can be simply viewed as a solution of

max Ep[f(Z)| Z € U] 99)
P(U)=a

(given that P has a density on Z), which is the worst-case subgroup error over all subgroups of
fraction «. In another concurrent work [33], Li et al. also empirically observe that minimizing the
entropic risk (instead of the expected loss) mitigates the disparate impact of the learned hypothesis
on subgroups.
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