
A Proofs

Proof of Theorem 1. Throughout, we use the notation Φ(T, h) :=
∫
f ◦ T dθ +

∫
h ◦ T dθ −∫

h dµ =
∫
f dθT +

∑J
j=1

∫
ej · (hj ◦ πj) dθT −

∫
ej · (hj ◦ πj) dµ.

Proof of (i): We show that, for a given ε > 0, there is m ∈ N such that both (PL)
(a)

≥ (PmL)− ε and

(PL)
(b)

≤ (PmL)− ε hold.

Regarding (a), choose m such that any L-Lipschitz function on the compact set K can be approxi-
mated up to accuracy ε/(2J maxj=1,...,J ‖ej‖∞) in ‖·‖∞ by neural networks with hidden dimension
m, which is possible by [Eckstein, 2020, Theorem 1]. Then, for all T , it holds for any j = 1, . . . , J
that

inf
hj∈LipmL

∫
ej ·(hj◦πj) dθT+

∫
ej ·(hj◦πj) dµ− inf

hj∈LipL

∫
ej ·(hj◦πj) dθT+

∫
ej ·(hj◦πj) dµ ≤ ε/J

and thus infh∈HL
Φ(T, h) ≥ infh∈Hm

L
Φ(T, h)− ε. This implies

(PL) ≥ sup
T∈Nm

K,d

inf
h∈HL

Φ(T, h) ≥ sup
T∈Nm

K,d

inf
h∈Hm

L

Φ(T, h)− ε = (PmL)− ε,

and hence (a) follows.

Regarding (b), choose an optimizer ν̂ = T̂∗θ of (PL). Since T is compact-valued, T ∈ L1(θ),
and hence we can choose Tm ∈ Nm

K,d such that Tm → T for m → ∞ in L1(θ), which implies
νm := (Tm)∗θ

w→ ν̂ and since the measures are supported on K also W1(νm, ν̂)→ 0 for m→∞.
It holds∣∣∣∣ inf
h∈HL

φ(T̂ , h)− inf
h∈HL

φ(Tm, h)

∣∣∣∣ ≤ J∑
j=1

sup
hj∈LipL(R

dj)

∣∣∣∣∣
∫
ej ·(hj◦πj) dν̂−

∫
ej ·(hj◦πj) dνm

∣∣∣∣∣ =: (∗)

Note further that there exists some L̂ > 0 such that all hj ◦ πj are L̂-Lipschitz. Since hj are centered
and compact-valued, their infinity norms are bounded uniformly, say by some S > 0. Hence any
ej · (hj ◦ πj) is (L̂‖ej‖∞ + LejS)-Lipschitz. We denote the maximum of these constants by L̄.
Thus (∗) ≤ JL̄W1(νm, ν̂) ≤ ε/2 for m large enough. Also, |

∫
f dν̂ −

∫
f dνm| ≤ ε/2 for m large

enough, since f restricted to K is continuous and bounded. Hence

(PL) = inf
h∈HL

Φ(T̂ , h) ≤ inf
h∈HL

Φ(Tm, h) + ε ≤ inf
h∈Hm

L

Φ(Tm, h) + ε ≤ (PmL) + ε,

which yields the claim.

Proof of (ii): The proof builds heavily on the fact that ej are assumed to be non-negative, which
allows for a reformulation of (Pψ) in terms of divergences. For ν ∈ P(Rd), we define the measure
νej by dνej

dν = ej . We get

sup
hj∈Cb(Rdj)

∫
ej · (hj ◦ πj) dθT −

∫ (
ej · (hj ◦ πj) + ej · ψ∗j (hj ◦ πj)

)
dµ

= sup
hj∈Cb(Rdj)

∫
hj ◦ πj dθ

ej
T −

∫ (
hj ◦ πj + ψ∗j (hj ◦ πj)

)
dµej

= sup
hj∈Cb(Rdj)

∫
hj d

(
(πj)∗θ

ej
T

)
−
∫ (

hj + ψ∗j (hj)
)
d
(
(πj)∗µ

ej
)

= Dψ̃j

(
(πj)∗θ

ej
T , (πj)∗µ

ej
)
,

13

where ψ̃∗j (x) = x+ψ∗j (x), Dψ̃j
(ν, µ) =

∫
ψ̃
(
dν
dµ

)
dµ for ν � µ, and the last equality follows by the

dual representation for divergences.8 The above shows that

(Pψ) = sup
T :RK→Rd

∫
f dθT −

J∑
j=1

Dψ̃j

(
(πj)∗θ

ej
T , (πj)∗µ

ej
)
.

Now, choose an optimizer T and a sequence Tm ∈ Nm
K,d as in the assumption of the theorem.

Without loss of generality, we can choose a representative among the almost-sure equivalence class,

such that dθTm

dθT
→ 1 holds point-wise for m→∞. Elementary calculation yields that (πj)∗θ

ej
Tm

(πj)∗θ
ej
T

→
1 holds point-wise as well, and hence by dominated convergence Dψ̃j

((πj)∗θ
ej
Tm , (πj)∗µ

ej) →
Dψ̃j

((πj)∗θ
ej
T , (πj)∗µ

ej) form→∞ follows. We can choosem ∈ N such that (Pψ) ≤
∫
f dθTm−∑J

j=1Dψ̃j
((πj)∗θ

ej
Tm , (πj)∗µ

ej) +ε. By again plugging in the dual formulation for Dψ̃j
, and noting

that the infimum only gets larger when restricted to neural network functions,

(Pψ) ≤ inf
hj∈Nm

dj,1

∫
f dθTm −

J∑
j=1

(∫
ej · (hj ◦ πj) dθTm

−
∫
ej · (hj ◦ πj) + ej · ψ∗j (hj ◦ πj) dµ

)
+ ε ≤ (Pmψ) + ε,

which yields the claim.

B Specifications of numerical examples

Here we provide a quick overview of the specifications for the numerical experiments discussed in Sec-
tion 5. Further details can be seen within the code on https://github.com/stephaneckstein/
minmaxot.

In all examples, we use the Adam optimizer (Kingma and Ba [2015]) with learning rate α = 10−5

and β1 = 0.5, β2 = 0.999 and ε = 10−9. Both generator and discriminator consist of 4 layer
feed-forward networks with hidden dimension 64 (for Section 5.1) or 128 (for Section 5.2). Network
weights are initialized using the GlorotNormal initializer. For the generator networks, we choose
the hyperbolic tangent activation function. For the discriminator networks, we choose the ReLU
activation function. Computations are performed in Python 3.7 using TensorFlow 1.15.0.

B.1 Specification of the experiment in Section 5.1

For (PL), we take L = 1, and implement the Lipschitz constraint as described in Appendix B.5.
Although L = 1 appears low, since f is also 1-Lipschitz we found this choice to be sufficient. If
L is chosen larger, the obtained objective value does not appear to change significantly, but the
stability during training gets slightly worse. For (Pψ), we take ψ∗j (x) = x2

25 for j = 1, 2, 3, and
we found other choices (see, e.g., Table 1 of Yang and Uhler [2019] for a list of candidates) to be
comparable regarding the improved stability during training. For intuition regarding both choices,
see also Appendix C.

As latent measure, we choose θ = U([−1, 1]2) (the uniform distribution on [−1, 1]2).

The graphs in Figure 1 are constructed as follows: For each supremum iteration t of Algorithm 1, we
evaluate and save the term 1

min{t,Nr}
∑N
s=N−min{t,Nr}+1 Φms (f ; wh,wT) (where Nr is set to 500),

which would be the output value of the algorithm if iteration t were the final iteration. The resulting
list of values in dependence on the iteration is plotted in the graphs.

8See for instance [Broniatowski and Keziou, 2006, Chapter 4], and note that while the dual formulation
therein is based on bounded and measurable functions, on the compact set K standard approximation arguments
using Lusin’s and Tietze’s theorems yield that continuous functions are sufficient.

14

https://github.com/stephaneckstein/minmaxot
https://github.com/stephaneckstein/minmaxot

Table 2: Runtimes for the numerical experiments

DCOT, Section 5.1 Runtime

(Pm), Ninf = 1 83
(Pm), Ninf = 10 464
(Pmψ), Ninf = 1 85
(Pmψ), Ninf = 10 481
(PmL), Ninf = 1 137
(PmL), Ninf = 10 909

MOT, Section 5.2 Runtime

Base 551
Mixtures 918
Unrolling 4546
Combined 4901

Reported runtimes (in seconds) for the different experiments in Section 5. All programs were run
using an intel Core i7-6700HQ CPU@2.60GHz.

B.2 Specification of the experiment in Section 5.2

As latent measure, we choose θ = U([−1, 1]2).

The first column in Table 1 describes the integral value of the numerical optimizer, i.e., if T (· ; wT) is
the fully trained network from Algorithm 1 (we chose N = 15000, Nr = 500, Ninf = 1, Ns = 0),
then the first column reports

∫
f dθT (· ;wT) approximated using 105 many samples. The second and

third column are explained in Section B.4. The final column reports the standard deviation of the
values Φmt (f ; wh,wT) for t = N − 2499, ..., N given within Algorithm 1, which characterizes the
stability of the convergence.

B.3 Algorithm

Algorithm 1 shows how to compute problem (Pm) using GDA and the Adam optimizer. The
returned value yields the proxy value for (Pm). The fully optimized function T (· ; wT) serves as the
approximate supremum optimizer of (Pm) in the MinMax setting. Hence θT (· ;wT) is the numerically
obtained optimal measure maximizing (Pm).

The problems (PmL) and (Pmψ) are implemented accordingly, while only the terms Φm and Φmt are
altered. Namely, for (Pmψ), we add the divergence terms as given in (10), while for (PmL), we add the
gradient penalty as described in Section B.5. To include the unrolling procedure and/or the mixture
of generators, adjustments according to Metz et al. [2017] and/or Ghosh et al. [2018] have to be
included.

B.4 Numerical evaluation of feasibility

The numerical optimal measure ν̂ := θT (· ;wT) as given by Algorithm 1 should theoretically lie in Q.
To test this numerically, we (approximately) evaluate the feasibility constraint " ∀h ∈ H :

∫
h dµ =∫

h dν̂ " for a subset of test functions h.

For Table 1 in Section 5.2, we use the first 50 Chebyshev polynomials g1, . . . , g50 normalized
to the interval [−6, 6], instead of [−1, 1]. For the marginal errors, the reported error is the sum
1
2

∑2
i=1

1
50

∑50
j=1 |

∫
gj dµi −

∫
gj dν̂i| where all integrals are approximated using 105 many sample

points. Similarly, the martingale error is the sum 1
50

∑50
j=1 |

∫
gj(x1) · (x2 − x1) ν̂(dx1, dx2)|.

B.5 Modeling Lipschitz functions

Two methods have shown to be prevalent in the literature to enforce Lipschitz continuity: Gradient
penalty (Gulrajani et al. [2017]) and spectral normalization (Miyato et al. [2018]). We found that
for our purposes a one-sided gradient penalty works well. To this end, enforcing hj ∈ LipL(Rdj) is
done via adding the penalty term

λ

∫ (
(‖∇hj‖ − L)+

)2
d
(
(πj)∗µ

)
+ λ

∫ (
(‖∇hj‖ − L)+

)2
d
(
(πj)∗θT

)
,

for some λ > 0, where ‖ · ‖ denotes the Euclidean norm.

15

Algorithm 1 MinMax optimization for OT and beyond: Problem (Pm)

Inputs: cost function f ; measure µ; latent measure θ; batch size n; total number of iterations N ;
number of infimum steps Ninf ; number of steps for return value Nr; number of warm-up steps
Ns.
Require: random initialization of neural network weights wh,wT .
for t = 1, . . . , N do

if t > Ns then
for _ = 1, . . . , Ninf do

sample {xi}ni=1 ∼ µ
sample {yi}ni=1 ∼ θ
evaluate Φm(f ; wh,wT) = 1

n

∑n
i=1

(
f(T (yi ; wT)) +h(T (yi ; wT) ; wh) −h(xi ; wh)

)
wh ← Adam(Φm(f ; wh,wT))

end for
end if
sample {xi}ni=1 ∼ µ
sample {yi}ni=1 ∼ θ
evaluate Φmt (f ; wh,wT) = 1

n

∑n
i=1

(
f(T (yi ; wT)) + h(T (yi ; wT) ; wh) − h(xi ; wh)

)
wT ← Adam(−Φmt (f ; wh,wT))

end for
Return: 1

Nr

∑N
s=N−Nr+1 Φms (f ; wh,wT)

C Theoretical approximations of (P) by (PL) and (Pψ)

For completeness, an analysis of the approximation of (P) by (PL) and (Pψ) is required. While a
full analysis is beyond the scope of this paper, we still state fundamental results:

Remark 4 The definitions of (PL) and (Pψ) immediately reveal the following:

(i) For L1 ≤ L2, it holds (PL1
) ≥ (PL2

) ≥ (P).

(ii) For ψ̃∗j ≥ ψ∗j ≥ 0, j = 1, . . . , J , it holds (Pψ̃) ≥ (Pψ) ≥ (P).

(iii) For (PL) to be a sensible approximation to (P), f has to be of linear growth, i.e., f(x)/(1 +
|x|) has to be bounded (or even stronger restrictions have to be imposed). Otherwise it
may hold (PL) = ∞ for all L, while (P) is finite. E.g., a classical OT problem on R2

with cost function f(x) = |x2 − x1|2 exhibits this behavior. On the other hand, numerical
experiments indicate that whenever f, π1, . . . , πJ , e1, . . . , eJ are Lipschitz continuous, it
may hold (P) = (PL) for finite L (see, e.g., Section 5.1).

D List of problems of the form (P)

Table 3 lists several instances of problems of the form (P) and how they fit into the framework of this
paper, i.e., how the setH is chosen. Notably, we list the simplest representatives, which means, for
instance, in optimal transport we list the case with one dimensional marginal distributions. A similar
class of problems as (P) is studied in Ekren and Soner [2018], Eckstein and Kupper [2019], Zaev
[2015].

E 2-Wasserstein distance in Rd

In this section, we consider the problem of computing the 2-Wasserstein distance in Rd. To do so,
we set the cost function f(x1, x2) = −

∑d
i=1

(
xi1 − xi2

)2
. The marginal distributions µ1 and µ2

16

Table 3: Variations of problems of the form (P) from the literature

Description H Reference

Static basket options
{∑n

i=1 αi(w
T
i x−Ki)

+ : αi ∈ R
}

d’Aspremont and El Ghaoui [2006]
Moment-constrained DRO

{
c+ αx+ βx2 : c, α, β ∈ R

}
Popescu [2007]

Optimal transport (OT) {h1(x) + h2(y) : h1, h2 ∈ Cb(R)} Villani [2008]

Symmetric OT

{∑d
i=1 hi(xi) + (g(x1, ..., xd)− g(x2, ..., xd, x1)) :

hi ∈ Cb(R), g ∈ Cb(Rd)
} Ghoussoub and Maurey [2012]

Martingale OT {h1(x) + h2(y) + g(x) · (y − x) : h1, h2, g ∈ Cb(R)} Beiglböck et al. [2013]
Causal OT See Prop. 2.4 in Backhoff et al. [2017] Lassalle [2013]
Multi-marginal OT

{∑d
i=1 hi(xi) : hi ∈ Cb(R)

}
Pass [2015]

Multi-martingale OT

{∑d
i=1(h1,i(xi) + h2,i(yi) + gi(x1, ..., xd) · (yi − xi)) :

ht,i ∈ Cb(R), gi ∈ Cb(Rd)
} Lim [2016]

OT with basket constraints {h1(x) + h2(y) + c(x+ y −K)+ : h1, h2 ∈ Cb(R), c ∈ R} De Gennaro Aquino and Bernard [2019]

Finite calls MOT

{
c+

∑n1

i=1 αi,1(x−Ki,1)+ +
∑n2

i=1 αi,2(y −Ki,2)+

+ g(x) · (y − x) : c, αi,j ∈ R, g ∈ Cb(R)
} [Eckstein et al., 2019, Section 3.3]

Directional OT
{
h1(x) + h2(y) + c11{y>x} : h1, h2 ∈ Cb(R), c ∈ R

}
Nutz and Wang [2020]

are chosen to be uncorrelated Gaussian distributions in Rd with means 0 and variances 1 and 4,
respectively.9 In this case, the exact 2-Wasserstein distance is given by W2(µ1, µ2) = d.

The results are provided in Table 4 and Figures 2 and 3. This example corroborates the discussion
provided in Section 5. We report three different settings (base case (Pmbase), combined case (Pm), and
ψ-regularization (Pmψ)) for two different network sizes (m = 64 and m = 256). The case (Pm)base
results from the simple procedure of using alternating Adam steps for infimum and supremum
network, without using regularization, mixtures, or unrolling. The case (Pm) corresponds to the
combined case from Section 5.2, i.e., we use both a mixture of 5 generators and 5 steps of unrolling.
Finally, the case (Pmψ) is the divergence regularization, similar to the one used in Section 5.1, where

we set ψ∗j (x) = x2

150 , j = 1, 2.

When low computational power is available (m = 64), introducing a regularization (formulation
(Pmψ)) helps achieve more stability (even compared to (Pm)), particularly in high-dimensional
settings. If, on the other hand, one can increase the hidden dimension (m = 256) and consequently
the runtime, this can also guarantee accuracy and stability of the algorithm both for (Pm) and (Pmψ).
The accuracy of (Pmbase) is limited in either case.

9A similar example is discussed in Henry-Labordere [2019], Section 4.1.

17

Table 4: 2-Wasserstein distance in Rd

(Pm)base (Pm) (Pmψ)
Objective value Std dev iterations Objective value Std dev iterations Objective value Std dev iterations

m = 64
d
1 1.055 0.081 0.998 0.003 0.972 0.004
2 3.810 1.944 2.001 0.003 1.927 0.004
3 4.346 1.882 3.004 0.009 2.901 0.010
5 8.007 3.673 5.292 0.201 4.922 0.020
10 19.371 9.854 10.061 0.654 10.070 0.067

m = 256
d
1 1.110 0.285 1.000 0.003 1.024 0.007
2 2.048 0.057 2.004 0.007 2.026 0.009
3 3.076 0.093 2.998 0.006 3.002 0.012
5 5.359 0.177 4.993 0.005 5.028 0.015
10 16.396 1.800 9.997 0.008 10.035 0.015

Average objective values obtained over 5 runs (due to time constraints, we only used 2 runs for
(Pm) and m = 256) of computing the 2-Wasserstein distance between two uncorrelated Gaussian
distributions in Rd. For (Pm)base, the parameters are updated taking one infimum update for each
supremum update (and we do not include any regularization nor use other techniques for stabilization,
such as unrolling or mixtures of generators). For (Pm), the parameters are updated using 5 unrolling
steps of the discriminator (with single updating step for both infimum and supremum) and a mixture
of 5 generators. For (Pψ), we introduce the regularization function ψ∗j (x) = x2

150 , j = 1, 2, and
take 10 infimum updates for each supremum update. In this case, a single generator is used and no
unrolling procedure. The standard deviation of the objective values is computed over the last 5000
iterations.

18

Figure 2: Numerical convergence observed for the computation of the 2-Wasserstein distance in Rd
with formulation (Pm) and base optimization procedure (that is, without unrolling and mixture of
generators), which we refer to as (Pm)base. The left (resp. right) column shows the convergence
when the hidden dimension is set as 64 (resp. 256). The displayed graphs are median values across 5
runs with respect to the standard deviation of the objective values over the last 5000 iterations.

19

Figure 3: Comparison of the numerical convergence observed for the computation of the 2-Wasserstein
distance in Rd with formulations (Pm) and (Pmψ). The left (resp. right) column shows the conver-
gence when the hidden dimension is set as 64 (resp. 256). The displayed graphs are median values
across 5 runs (2 for (Pm) and m = 256) with respect to the standard deviation of the objective values
over the last 5000 iterations.

20

