
Supplementary Material

Supplymentary Material A

A1. Proof of Theorm 1

Theorm 1 Given a model f(x) is (L, �2)-locally lipchitz continious in a ball B(x, �2), then the
Saliency Map is (�, �2)-local robustenss where � is O(L).

Proof. We first introduce the following lemma.

Lemma 1 (Lipschitz continuity and gradient norm [32]). If a general function h : Rd
! R is

L-locally lipchitz continuous and continuously first-order differentiable in B(x, �p), then

L = max
x02B(x,�p)

||Ox0h(x0)||q (3)

where 1
p + 1

q = 1, 1  p, q, 1.

We start to prove Theorem 1. By Def. 6, we write the robustness of Saliency Map as

� = max
x02B

||Oxf(x) � Ox0f(x0)||2
||x� x0||2

(4)

Assume x
⇤ = arg maxx02B

||Oxf(x)�Ox0f(x0)||2
||x�x0||2 therefore

� =
||Oxf(x) � Ox⇤f(x⇤))||2

||x� x⇤||2


||Oxf(x)||2 + ||Ox⇤f(x⇤))||2
||x� x⇤||2


2||Ox†f(x†)||2
||x� x⇤||2

(5)

where x
† = arg maxx02B(x,�2) ||Ox0f(x0)||2. Since f(x) is (L, �2)-locally lipchitz continious, with

Lemma 1 and by choosing p = 2, we have L = ||Ox†f(x†)||2.

Therefore, we end the proof with

� 
2L

||x� x⇤||2
(6)

which indicates � is proportional to L.

A2. Proof of Proposition 1

Proposition 1 Given a model f(x) and we assume F = maxx2B |f(x)| < 1, and a user-
defined noise level �, the following equation holds for SmoothGrad: g(x) = Ez⇠N (x,�2I)Ozf(z) =
Ox[(f ⇤ q)(x)] where q(x) ⇠ N (0, �

2
I) and ⇤ denotes the convolution.

Proof. The proof of Proposition 1 follows Bonnets’ Theorem and Stein’s Theorem which have been
discussed by Lin et al. [25]. We first show that

Lemma 2. l Given a locally Lipschitz continuous function f : Rd
! R, and a Gaussian distribution

q(z) ⇠ N (x, �
2
I), we have

Eq[Ozh(z)] = Eq[(�
2
I)�1(z� x)h(z)] (7)

The proof of Lemma 2 is described by the Lemma 5 of Lin et al. [25] and follow the proof of Theorem
3 of Lin et al. [25] we show that

OxEq[h(z)] =

Z
h(z)OxN (z|x, �

2
I)dz (8)

=

Z
h(z)(�2

I)�1(z� x)N (z|x, �
2
I)dz (9)

= Eq[(�
2
I)�1(z� x)h(z)] (10)
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Therefore, we have Eq[Ozh(z)] = OxEq[h(z)]. Since

Eq[h(z)] =

Z
h(z)N (z|x, �

2
I)dz (11)

=

Z
h(z)q(z� x)dz (12)

=

Z
h(z)q(x� z)dz (13)

By the definition of convolution, Eq[h(z)] = f ⇤ q. Hence, we prove the proposition 1.

A3. Proof of Theorem 2

Theorem 2 Given a model f(x) and we assume |f(x)| < F < 1 in the input space, Smooth
Gradient with a user-defined noise level � is �-robustness globally where �  2F/�

2

To prove Theorem 2, we first introduce the following lemmas.

Lemma 3. The input Hessian H̃x of f̃�(x) is given by H̃x = 1
�4Ep[(z� x)(z� x)> � �

2
I)f(z)]

Proof. The first-order derivative of f̃�(x) has been offered by Lemma 2, with the help of which, we
find the second-order derivatives following the proof in [53].

We then generalize Lemma 1 to a multivariate output function.

Lemma 4. If a general function h : Rd
! Rm is L-locally lipchitz continuous measured in `2 space

and continuously first-order differentiable in B(x, �p), then

L = max
x02B(x,�p)

||Ox0h(x0)||⇤ (14)

where ||M||⇤ = sup{||x||2=1,x2Rd} ||Mx||2 is the spectral norm for arbitrary matrix M 2 Rm⇥d.

The proof of Lemma 4 is omitted since it is the repeat of Virmaux et al’s [48] Theorem 1.

We now prove Theorem 2. The robustness coefficient �̃ of SmoothGrad is equivalent to the robustness
of Saliency Map on f̃�(x) based on Lemma 1. By Def. 6, the robustness of Saliency Map is just
the local lipschitz smoothness constant, in the other word, the local lipschitz continuity constant of
Oxf̃�(x). Subsitute theh(x) in Lemma 4 with Oxf̃�(x), we have

�̃ = max
x02B(x,�p)

||H̃x0 ||⇤ (15)

Let x† = arg maxx02B(x,�p) ||H̃x0 ||⇤,

�̃ = ||H̃x† ||⇤ = ||
1

�4
Ep[(z� x

†)(z� x
†)> � �

2
I)f(z)]||⇤ (Lemma 3) (16)


1

�4
{||Ep[(z� x

†)(z� x
†)>f(z)]||⇤ + �

2
||Ep[f(z)I]||⇤} (17)


1

�4
{||Ep[(z� x

†)(z� x
†)>|f(z)|]||⇤ + �

2
||Ep[|f(z)|I]||⇤} (18)


1

�4
(F�

2 + �
2
F ) (19)

�̃ 
2F

�2
(20)
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A4: Proof of Proposition 2

Proposition 2. Given a model f(x) is (L, �2)-locally lipchitz continuous in the ball B(x, �p) and
assuming supx2Rd |f(x)| = F < 1. With a proper chosen noise level � >

p
�2F/L, the upper-

bound of the local robustness of Smooth Gradient is always smaller than the upper-bound of the local
robustness of Saliency Map.

Proof. Assume Smooth Gradient is (�0
, �2)-local robust and �̃-global robust. Denote B. Since the

global lipchitz constant is greater or equal to the local lipschitz constant [4] and by definition local
robustness is the local lipchitz constant for the attribution map, we have

�
0
 �̃ 

2F

�2
(21)

The second inequality is based on Theorem 2. We now start to prove the proposition. Given
� > 0,

p
�2F/L > 0, we have

�
2

>
F

L
�2 (22)

We consider a maximizer x⇤
2 B(x, �p) such that

x
⇤ = arg max

x02B(x,�2)

|f(x) � f(x0)|

||x� x0||2
(23)

Since ||x� x
0
||  �2 for any x

0
2 B(x, �2), we have ||x� x

⇤
||2  �2 We plug in this into Eq. (22)

�
2

>
||x� x

⇤
||2

L
F (24)

F

�2


L

||x� x⇤||2
(25)

2F

�2


2L

||x� x⇤||2
(26)

Based on Equation (6) in the proof of Theorem 1, given a model f(x) is (L, �2)-locally lipchitz
continuous in the ball B(x, �p), Saliency Map is (�, �2) robustness and � 

2L
||x�x⇤||2 and Thereom

2, we prove the proporstion.

A5. Proof of Theorem 3

Theorem 3 Given a twice-differentiable function f : Rd1 ! Rd2 , with the first-order Taylor
approximation, maxx02B(x,�2) ||Oxf(x)�Ox0f(x0)||2  �2 maxi |⇠i| where ⇠i is the i-th eigenvalue
of the input Hessian Hx.

Proof.

max
x02B(x,�2)

||Oxf(x) � Ox0f(x0)||2 ⇡ max
x02B(x,�2)

||Hx(x0
� x)||2 (Taylor Expansion) (27)

= max
x02B(x,�2)

||Hx||x
0
� x||2

x
0
� x

||x0 � x||2
||2 (28)

 max
x02B(x,�2)

||Hx�2
x
0
� x

||x0 � x||2
||2 (29)

= max
||✏||2=1

�2||Hx✏||2 (Definition of Spectral Norm) (30)

= �2 max
i

|⇠i| (31)

(32)
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A6. Proof of Proposition 3

Proposition 3(Singla et al’ s Closed-form Formula for Input Hessian) Given a ReLU network f(x),
the input Hessian of the loss can be approximated by H̃x = W (diag(p) � p

>
p)W>, where W is

the Jacobian matrix of the logits vector w.r.t to the input and p is the probits of the model. diag(p) is
an identity matrix with its diagonal replaced with p. H̃x is positive semi-definite.

Proof. The proof of Proposition 3 follows the proof of proposition 1 and Theorem 2 of Singla et
al [40].

Extra Notation Let Wl be the weight matrix of l-th layer to the l + 1-th layer and bl be the bias of
the l-th layer. Denote the ReLU activation as �(·). We use ŷ, p and y to represent the pre-softmax
output, the pose-softmax probability distribution and the one-hot ground-truth label.

Firstly, we describe the local-linearity of a ReLU network. The pre-softmax output ŷ of a ReLU
network can be written as

ŷ = �(· · ·�(W>
2 �(W>

1 x + b1) + b2) · ··) (33)

= W
>
x + b (34)

where each column Wi = @ŷi

@x . Therefore, assume we use Cross-Entropy loss as the training loss,
we can write the first-order gradient of the loss w.r.t input as

OxL =
@L

@ŷ

@ŷ

x
= W(p� y) (35)

Thirdly, we compute the input Hessian

Hx = O
2
xL = Ox(W(p� y)) = Ox(

X

i

Wi(pi � yi)) (36)

=
X

i

WiOx(pi � yi) (37)

=
X

i

Wi(Oxpi)
> (38)

=
X

i

Wi(
X

j

@pj

@ŷj

@ŷj

@xj
)> (39)

=
X

i

Wi(
X

j

@pj

@ŷj
Wj)

> (40)

=
X

i

X

j

Wi
@pj

@ŷj

>
W

>
j (41)

= WAW
> (42)

where A = @pj

@ŷj

>
= diag(p)�pp

> and diag(p) denotes a matrix with p as the diagonal entries and
0 otherwise. We use H̃x to denote WAW

>, the input Hessian of the Cross-Entropy loss. Finally, we
show H̃x is semi-positive definite (PSD). The basic idea is to show A is PSD and using Cholesky
decompostion we show H̃x is PSD as well. To show A is PSD, we consider

X

j 6=i

|Aij | =
X

j 6=i

|� pipj | = pi

X

j 6=i

pj = pi(1 � pi) > 0 (43)

The diagonal entries |Aij | = pi(1 � pi). With Gershgorim Circle theorem, all eigenvalues of A is
positive, so A is PSD. Therefore, we can find Cholesky decomposition of A such that A = MM

>.
Then H̃x = WMM

>
W

> = WM(WM)>, which means the Cholesky decomposition of H̃x

exists, so H̃x is PSD as well.
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Supplementary Material B

B1. Eigenvalue Computation of H̃x

In this section, we discuss the computation of eigenvalues of the input Hessian in SSR defined in Def.
7. As pointed out by Supplymentary Material A6, we can write

H̃x = WM(WM)> = BB
> (44)

where B = WM. Let the SVD of B be U⌃V, so that

BB
> = U⌃

2
U

> (45)

Note that B>
B = V⌃

2
V

> whose singular values are identical to H̃x and the dimension of B>
B is

c ⇥ c where c is the number of classes. Given H̃x is PSD, so the singular values and eigenvalues
coincide. Therefore, we can compute the eigenvalues of B>

B instead of running eigen-decomposition
on H̃x directly.

B2. Adversarial training and robustness of attribution

In the Sec. 4 we discuss the connection between the robustness of prediction and the robustness of
attributions with maxx02B(x,�2) ||OxL||2 with the first-order Talyer Expansion. In this section, we
also look into the second-order term. Firstly, we denote �L = max||✏||�2 |L((x+ ✏, y)�L((x, y)|.
With the second-order Taylor expansion, we can write

L(x + ✏, y) ⇡ L + OxL
>✏ +

1

2
✏>Hx✏ (46)

Therefore, we have

�L ⇡ max
||✏||�2

|OxL
>✏ +

1

2
✏>Hx✏| (47)

 max
||✏||�2

|OxL
>✏| + max

||✏||�2
|
1

2
✏>Hx✏| (48)

Simon-Gabriel et al. [37] demonstrates that the first term max||✏||�2 |OxL
>✏| = �2||OxL||2, we

now focus on the second term

max
||✏||�2

|
1

2
✏>Hx✏| = max

||✏||�2

||✏||22
2

|
✏>

||✏||2
Hx

✏

||✏||2
| (49)


�
2
2

2
max
||✏||=1

|✏>Hx✏| (50)

With Rayleigh quotient, we have max||✏||=1 |✏
>
Hx✏| = maxi |⇠i| where ⇠i is the i-th eigenvalue of

the Hessian. However, as mentioned by Simon-Gabriel et al. [37], the higher-order term has very
limited contribution to the upper-bound of �L compared with the first-order term. Therefore, with
second-order Taylor’s approximation, adversarial training optimizes a lower-bound of the sum of the
gradient norm and the largest eigenvalue of input hessian.

Supplementary Material C

C1. Implementation Details for Experiments

Attribution Methods.We use the predicted class as the quantity of interest for all attribution methods.
For IG, SG, and UG, we use 50 samples to approximate the expectation. For IG, we use the zero
baseline input. For SG, we use the noise standard deviation � = ratio⇥ (ux � lx) where ux is the
maximum pixel value of the input and lx is the minimum pixel value of the input and the noise ratio
ratio = 0.1 for CIFAR and Flower, ratio = 0.2 for ImageNet. For UG, we use r = 4 as the noise
radius for data range of [0, 255] in CIFAR and Flower and r = 0.2 ⇥ (ux � lx) for ImageNet. We
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employ bigger noise levels in ImageNet for both SG and UG because empirically we find higher
noise levels produce better visualizations (see Fig. 10) in dataset with such high dimensions.

Evaluation Metrics. Let z and z
0 be the original and perturbed attribution maps, respectively,

attribution attacks are evaluated with following metrics:

• Top-k Intersection (k-in) measures the intersection between features with top-k
attribution scores in the original and perturbed attribution map:

P
i2K n(z0)i where

n(x) = |x|/
Pd

j |xj | and K is the set of k-largest dimensions of n(z) [14].

• Spearman’s rank-order correlation (cor) [43] compares the rank orders of z and z
0 as

features with higher rank in the attribution map are often interpreted as more important.1

• Mass Center Dislocation (cdl) measures the spatial displacement of the "center" of
attribution scores by

Pd
i [zi � z

0
i]i [14].

• Cosine Distance (cosd) measures the change of directions bewteen attribution maps by
1 � hz, z

0
i/||z||2||z

0
||2.

Attribution Attacks. To implement the attribution attack, we adapt the release code2 by [14] and we
make the following changes:

1. We change the clipping function to projection to bound the norm of the total perturbation.
2. We use grad ⇥ input for Saliency Map, Smooth Gradient, and Uniform Gradient.
3. For the manipulate attack, we use the default parameters �0 = 1e11 and �1 = 1e6 in the

original paper.

For all experiments and all attribution attacks, we run the attack for 50 iterations.

IG-NORM Regularization. We use the following parameters to run IG-NORM regularization which
are default parameters in the release code3. We use Adam in the training.

epochs batch_size ✏1 � nbiter m approx_factor step_size
50 16 8/255 0.1 7 50 10 2/255

Table 1: Hyper-parameters used in IG-NORM training

where

• epochs: the number of epochs in the training.

• batch_size: size of each mini-batch in the gradient descent.

• ✏1: maximum allowed perturbation of the the input to run the inner-maximization

• �: penalty level of the IG loss.

• nbiter: the number of iterations used to approximate the inner-maximization of the IG-loss

• m: the number of samples used to approximate the path integral of IG.

• approx_factor: the actual samples used to approximate IG is m/approx_factor

• step_size: the size of each PGD iteration.
1we use the implementation on https://docs.scipy.org
2code is availabe on https://github.com/amiratag/InterpretationFragility
3https://github.com/jfc43/robust-attribution-regularization
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TopK Attack Manipulate Attack
SM IG SG UG SM IG SG UG

CIFAR-10
32 ⇥ 32

k-in 0.51 0.84 0.75 2.94 0.49 0.81 0.85 2.95
cor 1.85 1.96 1.67 1.85 1.82 1.95 1.70 1.89
cdl 2.93 3.05 1.97 3.08 2.93 2.83 1.83 2.98

cosd 0.70 0.60 0.62 0.67 0.72 0.61 0.59 0.54

Flower
64 ⇥ 64

k-in 0.97 1.39 1.72 2.00 1.08 1.51 1.48 2.03
cor 2.26 2.41 2.31 2.24 2.27 2.43 2.24 2.26
cdl 4.10 3.80 1.61 4.21 3.88 3.35 2.47 4.37
cor 0.53 0.40 0.28 0.50 0.49 0.36 0.36 0.47

ImageNet
224 ⇥ 224

k-in 0.73 1.05 1.38 1.52 0.72 1.02 1.45 1.50
cor 1.73 1.90 2.08 2.15 1.73 1.89 2.10 2.14
cdl 22.45 14.17 9.74 5.81 21.98 14.36 8.26 5.48

cosd 0.93 0.76 0.49 0.41 0.93 0.76 0.47 0.41

Table 2: Evaluation of the top-k and manipulate attack on different dataset. We use k = 20, 80
and 1000 pixels, respectively for CIFAR-10, Flower, and ImageNet to ensure the ratio of k over
the total number of pixels (in the first column) is approximately consistent across the dataset. Each
number in the table is computed by firstly taking the average scores over all evaluated images and
then aggregating the results over different maximum allowed perturbation ✏1 = 2, 4, 8, 16 with the
area under the metric curve. The bold font identifies the most robust method under each metric for
each dataset.

TopK Attack Manipulate Attack
SM IG SG UG SM IG SG UG

SSR (Ours)
� = 0.3

time k-in 0.68 1.05 1.04 2.95 0.80 1.18 1.26 2.95
0.18h/e cor 2.21 2.37 2.15 2.26 2.24 2.40 2.21 2.29

acc. cdl 2.54 2.24 1.77 2.50 2.25 1.98 1.41 1.48
81.2% cosd 0.45 0.35 0.35 0.39 0.41 0.33 0.31 0.38

Mądry’s [26]
�2 = 0.25

time k-in 0.43 1.03 0.94 2.95 1.04 1.67 1.14 2.96
0.24h/e cor 2.01 2.30 2.01 2.04 2.15 2.48 2.04 2.28

acc. cdl 3.09 2.20 1.84 3.08 4.76 3.26 1.75 3.59
82.9% cosd 0.55 0.36 0.47 0.49 0.47 0.29 0.39 0.40

IG-NORM [8]
� = 0.1

time k-in 1.55 1.99 1.70 2.96 2.56 2.74 2.15 2.98
0.44h/e cor 2.75 2.86 2.73 2.78 2.91 2.95 2.80 2.89

acc. cdl 1.25 0.91 1.18 1.22 1.51 1.18 0.96 1.48
49.5% cosd 0.12 0.06 0.12 0.08 0.03 0.02 0.07 0.04

Table 3: Evaluation of the top-k and manipulate attack on CIFAR-10 with different training algorithm.
The natural training is included in Table 2. We use k = 20. Each number in the table is computed
by firstly taking the average scores over all evaluated images and then aggregating the results over
different maximum allowed perturbation ✏1 = 2, 4, 8, 16 with the area under the metric curve shown
in Fig. 2a. The bold font highlights the better one between Mądry’s training and SSR. Per-epoch
training time (time) and training accuracies (acc.) are listed on the second column.

C1.1 Full Experiments

Full results of attribution attack for different attribution methods and training methods are show in
Table 2 and 3. We include the preliminary results of variability experiments in Fig 6 for Saliency
Map.Given the long-period of training and testing, full results are still under processing and will be
released in the future. We include the preliminary results from other ✏ for adversarial training in Fig. 7.
We use the data range in [0, 255] and ✏ is calculated under `2 norms. We notice that when changing
the data range to [0, 1], adversarial training can provide much better robustness in attribution attack
as well. However, in this paper, given SSR is also trained on data range of [0, 255], we only compare
the results on [0, 255] in this section. We are working on providing more comprehensive and detailed
comparison in the future versions.
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Figure 6: Variability experiments of SSR on Saliency Map (using the left y-axis). We trained 11
ResNet-20 models with � = 0.3 on CIFAR-10. The results of NAT, Madry and IG-NORM (using the
right y-axis) are read from Table 2 and 3.

Figure 7: Evaluation of attribution attack on adversarially trained ResNet20 with `2 balls.

C2. Sensitivity of Hyper-parameters in SSR

choice of scaling s. We choose s = 1e6 from empirical tests for CIFAR-10 with data range in [0,
255]. We notice if data range [0, 1] is used, s = 1 is a good scaling factor. A proper s can be found
simply be setting s = 1 and � = 1 first to observe the scale of the regularization. The data range and
dimensions of the input determines the choice of the scaling parameter s.

choice of �. We run a simple parameter seach for � = 0.3, 0.5, 0.7, 0.9. We train all the models on
CIFAR-10 with 25 epochs and record the training accuracy in Tabel 4 and we run the topk attack
on each model respectively on same 500 images where the results are shown in Fig. 8. Higher �

will require more training time to reach better performance and it may not necessarily produce better
robustness than a small � on some metrics, e.g. top-k intersection. Therefore, for the consideration of
training time and robustness performance, we choose � = 0.3 in the Experiment II of Sec. 5.

� 0.3 0.5 0.7 0.9

train acc. 0.81 0.78 0.70 0.62

Table 4: Training accuracies v.s. � in SSR on CIFAR-10 (s = 1e6).

C3. Extra Experiment of Attribution Attack with Adversarial Training

Adversarial training on ImageNet usually takes a long time with limited resources. Therefore, we
only investigate how robust attribution maps are on a pre-trained ResNet-504 model and the results
are shown in Table 5. It shows that if a user has enough time and GPU resources, using adversarial
training can also produce considerably good robustness on gradient-based attributions.

C4. Extra Experiments of Transfer Attack

Setup of Experiments. We describe the detailed setup for the Experiment III of Sec. 5. Experiments
are conducted on 200 images from ImageNet dataset. A pre-trained5 ResNet-50 model with standard
training is used. We first generate perturbed images by attacking Saliency Map, then we evaluate

4we use the released weight file from https://github.com/MadryLab/robustness
5we use the released weight file from https://github.com/MadryLab/robustness
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Figure 8: Attribution attack on ResNet-20 models with different hyper-parameter � and the identical
scaling term s = 1e6. The y-axis is the AUC score for each metric over ✏1 = 2, 4, 8, 16 as described
in Fig 2a.

TopK Manipulate
SM IG SG UG SM IG SG UG

k-in 2.22 2.55 2.30 2.23 2.20 2.42 2.32 2.22
cor 2.69 2.87 2.72 2.71 2.69 2.82 2.73 2.70
cdl 5.70 2.89 5.55 5.75 5.69 3.27 5.23 5.69

cosd 0.31 0.18 0.22 0.21 0.32 0.22 0.22 0.22

Table 5: Robust model (adversarially trained with ✏1 = 8) evaluation of the top-k,manipulate and
mass center attack on ImageNet dataset. We use k = 1000 pixels. Each number in the table is
computed by firstly taking the average scores over all evaluated images and then aggregating the
results over different maximum allowed perturbation ✏1 = 2, 4, 8, 16 with the area under the metric
curve. The bold font identifies the most robust method under each metric.

the difference between all attribution maps on the original and perturbed images. The number of
iterations in the original saliency map attack is 50, number of steps for IG,SG and UG is 50. Top-K
intersection (K=1000), correlation, mass center dislocation and cosine distance are used to measure
the difference. Each number in the table is computed by firstly taking the average scores over all
evaluated images and then aggregating the results over different maximum allowed perturbation
✏1 = 2, 4, 8, 16 with the area under the metric curve.

In the Experiment III of Sec. 5, we show the transferability of attribution attack. We here further
show the transfer attack with mass center attack of Saliency Map on all other attribution methods in
Table 6. Compared with Smooth Gradient and Uniform Gradient, Integtrated Gradient also has larger
dissimilarity on all metrics.
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Mass center
SM IG SG UG

k-in 0.71 1.01 1.44 1.54
cor 1.73 1.87 2.12 2.17
cdl 24.41 17.34 8.99 5.09

cosd 1.01 0.79 0.47 0.41

Table 6: Transferability evaluation of mass center attack. We attack on the Saliency Map (SM) and
evaluate the difference between all attribution maps on the original and perturbed images.

Figure 9: Visualization results of 7 baseline methods.

Supplementary Material D

D1. Visual Comparison

In this section, besides the robustness, we compare the visualizaiton of Uniform Gradient with several
existing methods shown in Fig 9. The visualization shows that Uniform Gradient is also able to
visually denoise the original Saliency Map.
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Figure 10: Visualization results of Uniform Gradient with different noise radius.

D2: UniGrad under different smoothing radius

Choosing the noise radius r is also a hyper-parameter tuning process. We provide visualization of
the same input with different noise radius from 2 to 64 under 0-255 scale with 50 times sampling
to approximate the expectation in Fig 10. When the noise radius is too low, it can not denoise the
Saliency Map while if the noise radius is too high, the attribution map becomes "too dark".
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