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Abstract

Self-supervised depth estimators have recently shown results comparable to the
supervised methods on the challenging single image depth estimation (SIDE) task,
by exploiting the geometrical relations between target and reference views in the
training data. However, previous methods usually learn forward or backward image
synthesis, but not depth estimation, as they cannot effectively neglect occlusions be-
tween the target and the reference images. Previous works rely on rigid photometric
assumptions or on the SIDE network to infer depth and occlusions, resulting in
limited performance. On the other hand, we propose a method to “Forget About the
LiDAR” (FAL), with Mirrored Exponential Disparity (MED) probability volumes
for the training of monocular depth estimators from stereo images. Our MED repre-
sentation allows us to obtain geometrically inspired occlusion maps with our novel
Mirrored Occlusion Module (MOM), which does not impose a learning burden
on our FAL-net. Contrary to the previous methods that learn SIDE from stereo
pairs by regressing disparity in the linear space, our FAL-net regresses disparity by
binning it into the exponential space, which allows for better detection of distant
and nearby objects. We define a two-step training strategy for our FAL-net: It
is first trained for view synthesis and then fine-tuned for depth estimation with
our MOM. Our FAL-net is remarkably light-weight and outperforms the previous
state-of-the-art methods with 8× fewer parameters and 3× faster inference speeds
on the challenging KITTI dataset. We present extensive experimental results on
the KITTI, CityScapes, and Make3D datasets to verify our method’s effectiveness.
To the authors’ best knowledge, the presented method performs the best among all
the previous self-supervised methods until now.

1 Introduction

Single Image Depth Estimation (SIDE) is a critical computer vision task that has been pushed
forward by the recent advances in deep convolutional neural networks (DCNNs). In particular, the
self-supervised SIDE methods, which exploit geometrical dependencies in the training data, have
shown promising results [11, 12, 31], even compared to those of the methods that are supervised with
depth ground-truth [2,3,17,30]. However, the previous self-supervised SIDE methods [11,12,31] fail
because they are not trained directly for depth estimation, but indirectly for view synthesis. In these
methods, the occluded regions among the training images prevent them from learning precise depth.

We present a self-supervised method that can accurately learn the SIDE with our novel Mirrored
Exponential Disparity (MED) probability volumes. We show that our self-supervised SIDE method
achieves superior performance than the state-of-the-art (SOTA) self-, semi- and fully-supervised meth-
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Figure 1: Our proposed FAL-net with and without our novel Mirror Occlusion Module (MOM).

ods on the challenging KITTI [5] dataset. Hence, we propose to “Forget About the LiDAR”(FAL), or
3D laser scanning, for the supervised training of SIDE DCNNs. We recognize that instead of focusing
our efforts on developing unnecessary complex (and large) DCNN architectures, it is more worthwhile
to focus on loss functions and training strategies that can better exploit the geometrical dependencies
in the data for effective self-supervision. Our network, which we call FAL-net, incorporates our
proposed MED Probability Volumes into SIDE and achieves higher performance than all the most
recent SOTA methods of [11, 12], with almost 8× fewer model parameters. Moreover, our proposed
method performs inference of full-resolution depth maps more than 3× faster than [11,12]. The main
contributions of our work are summarized as follows:

1. A novel Mirrored Occlusion Module (MOM), which is a multi-view occlusion mask generation
module. The generated masks are very realistic and are used to filter the invalid image regions due
to parallax for two images with known (or estimated) camera positions (see Fig.1-(a)).

2. A new two-stage training strategy: Firstly, we train our FAL-net for stereoscopic view synthesis
penalizing the synthetic right-view in all image regions (see Fig.1-(b)); Secondly, we train our
FAL-net for SIDE using our MOM to remove the burden of learning the synthesis of right-occluded
contents which are not related to depth, and to provide self-supervision signals for the left-occluded
regions which are ignored in the photometric reconstructions (see Fig.1-(c)).

3. We shed light on the effectiveness of Mirrored Exponential Disparity (MED) representations
for self-supervised SIDE. This small change from the linear to the exponential domain makes our
FAL-net, even without MOM, perform surprisingly well, compared to the current SOTA methods.

In the following section, we quickly review the most recent related works, followed by our method in
Section 3, and our experimental results in Section 4. We conclude our work in Section 5.

2 Related Works

Many recent works have tackled the SIDE task. These can be divided into supervised methods [2, 3,
15, 17, 30], which use the hard-to-obtain depth ground-truth, and the self-supervised methods, which
usually learn SIDE from left-right (LR) stereo pairs [7–9, 20, 22, 26, 31, 32] or video [6, 11, 12, 34, 35].

2.1 Supervised Methods

Among the top-performing fully-supervised SIDE methods, we can find the works of [3, 17]. Fu et al.
in their DORN [3] proposed to learn SIDE not as a regression task, but as a classification task by
discretizing depth predictions and ground-truths (GTs) in N intervals (quantized levels). On the other
hand, Luo et al. [17] proposed to train a SIDE network with both depth GT and stereo pairs. They
first synthesized a right-view from a left-view with a Deep3D-like [33] network, and then, similar
to [18], trained a stereo matching network in a fully-supervised manner.

2.2 Unsupervised Methods

Learning to predict depth without labels is a powerful concept, as the commodity cameras are not
limited by resolution nor distance as much as the expensive LiDAR equipment. Learning depth in a
self-supervised fashion is possible, thanks to the geometrical relationships between multiple captures
of the same scene. For the stereo case, some of the most prominent recent works include [22, 26, 31].
For the video case, the works of [10–12] are among the top-performing methods.

For the stereo case, Poggi et al. [22] proposed learning from a trinocular setup with center (C), left
(L), and right (R) views. Their 3Net [22] is trained with an interleaved protocol and has two decoders
to produce C↔L and C↔R respectively. During inference, the final center disparity is obtained by

2



combining CL and CR disparities following the post-processing in [7]. On the other hand, the recent
works of Tosiet al. [26] and Watsonet al. [31] explored incorporating classical stereo-disparity
estimation techniques, such as semi-global matching (SGM), as additional supervision for the SIDE
task. In these works, the SGM proxy labels are distilled either by LR-consistency checks [26] or by
analyzing the photometric reconstruction errors [31].

For the monocular video case, the work of Gordonet al. [10] proposed to learn not only camera
pose and depth (in a similar way as in the early work of Zhouet al. [35]), but also camera intrinsics
and lens distortion. Additionally, a segmentation network was used to predict and potentially ignore
likely-moving objects (truck, bike, car, etc.), as these do not contribute to the learning process. On
the other hand, Guiziliniet al. proposed Pack-net [11], which is a powerful auto-encoder network
with � 120M parameters, and 3D packing and unpacking modules. These modules utilize sub-pixel
convolutions and deconvolutions [24] instead of striding or pooling, and process the resulting channels
with standard 3D and 2D convolutions. Learning from video is carried out in a similar way to [6],
with an optional velocity supervision loss for scale-aware structure-from-motion. Supported by a
pre-trained semantic segmentation network and a PackNet [11] backbone, the later work of Guizilini
et al. [12] also learns from videos. Their method injects segmentation-task features into the decoder
side of their network, which helps to generate structurally better predictions.

3 Method

It has been shown that DCNNs can learn to predict depth from a single image in a self-supervised
manner when two or more views with known (or estimated) camera positions are available [4,6–9,
11,20,22,32,35]. Learning is commonly carried out by minimizing reconstruction errors between
depth-guided synthesized images and available views. However, reducing such an objective loss
function involves estimating the contents in the occluded regions, which degrades the networks'
performance on the depth estimation task. Previous works have attempted to handle such occluded
areas by learning uncertainty masks [8,35], analyzing the photometric reconstruction errors during
training time [6,10–12,32], and by letting the network hallucinate the occluded regions in the image
synthesis task [9,33]. All these methods fail in effectively making the occluded regions transparent
to the networks, as the geometrical dependencies of the given views are not taken into account.
Moreover, these methods become overloaded with the task of generating such uncertainty masks
or occluded contents, thus leading to the waste of their learning capacities for depth estimation
during training time. To solve this issue, our FAL-net with Mirrored Exponential Disparity (MED)
probability volumes and our new two-step training strategy are proposed.

3.1 Network Architecture

Before delving into our training strategy, it is worth to review our simple, yet effective FAL-net
architecture with Mirrored Exponential Disparity (MED) probability volumes. The FAL-Net is a
6-stage auto-encoder with one residual block after each strided convolution stage in the encoder
side and skip-connections between the encoder and the decoder. More details can be found in the
Supplemental. Our FAL-net maps a single left-view imageIL to aN -channel disparity logit volume
DL

L , f : IL 7! DL
L . DL

L can be passed through a softmax operation along the channel axis to obtain
the left-view MED probability volumeDP L

L . A sum of theN channels ofDP L
L , weighted by the

exponential disparity level valuedn , reveals the �nal predicted disparity mapD0
L , as given by

D0
L =

NX

n =0

dn DP L
L n

(1)
dn = dmax e

ln
dmax

dmin

�
n
N

� 1

�

(2)

wheredmin anddmax are the minimum and maximum disparity hyper-parameters respectively.
Eachn-channel ofDL

L can be warped (shifted) into the right view camera by the warping operation
g(�; dn )L ! R , and the resultingN -channel stack soft-maxed along the channel axis to obtain the
right-from-left MED probability volumeDP R

L . The element-wise multiplication, denoted by� , of
DP R

L with equally warpedN versions ofIL , followed by asum-reductionoperation, produces a
synthetic right viewI0R . This process is shown in the top-left of Fig. 3 and is described by

I0R =
NX

n =0

g(IL ; dn )L ! R � DP R
L n

(3)
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Figure 2: Effects of exponential disparity discretization.

The resulting left view depthD0
L and synthetic right viewI0R can be used to train the FAL-net in a

self-supervised fashion. Still, more importantly, the MED probability volumes (DP L
L , DP R

L , DP R
R ,

andDP L
R ) can be used in our novel Mirrored Occlusion Module (MOM) for accurate SIDE learning.

3.1.1 Exponential Disparity Discretization

Disparity probability volumes can be understood as the kernel elements of adaptive convolutions [9]
or as a way of depth discretization [3]. When interpreted as adaptive convolutions for the task of new
view synthesis as in [9,17,33], it might be reasonable to use linear quantization disparity levels as
they produce equally spaced kernel sampling positions. However, due to the inverse relation between
disparity and depth, linear quantization of disparity implies that most sampling positions will be used
for the very close-by objects, as depicted with the orange curve in Figure 2-(a). Linear quantization
in depth units is also not adequate, as it assigns very few sampling positions for the very close-by
objects as depicted with the blue curve in Fig. 2-(a). In a similar spirit to [3], we propose exponential
disparity discretization, which is described by Eq. 2 and depicted in Figure 2-(a) in yellow and
gray curves forN = 49 andN = 33 levels respectively. The effect of training our FAL-net with
33-linear, 33-exponential, and 49-exponential disparity quantization levels is shown in Fig. 2-(b,c,d)
respectively. In contrast with [3] our MED probability volumes are allowed to take any value from 0
to 1 (guided by the channel-wise softmax), as we do not impose a one-hot encoding classi�cation
loss. This freedom allows our MED probability volumes to softly blend when computing the �nal
disparity map, which helps in obtaining higher accuracy than [3] with fewer quantization levels.

3.2 Training Strategy

We de�ne a two-step training strategy. In the �rst step, we train our FAL-net for view synthesis
with l1, perceptual [14], and smoothness losses, and keep a �xed copy of the trained model. In the
second step, enabled by our Mirrored Occlusion Module, we �ne-tune our FAL-net for inverse depth
(disparity) estimation with an occlusion-free reconstruction loss, smoothness loss, and a “mirror loss”.
Our mirror loss uses a mirrored disparity predictionD0

LM , generated by the �xed model, to provide
self-supervision only to the regions that are occluded in the right view but visible in the left view.

3.2.1 Mirrored Occlusion Module

Our novel Mirrored Occlusion Module (MOM) is a multi-view occlusion mask generation module
which allows our FAL-net to directly learn SIDE by cross-generating occlusion maps from the MED
probability distributions of two training images with known (or estimated) camera positions. These
generated occlusion maps get improved as the network learns better depth. Our second training step
with the MOM is depicted in Figure 3. At each iteration, the FAL-net runs the forward pass for each
left and right view to obtain the MED probability volumesDP L

L , DP R
L , DP R

R , andDP L
R . In our MOM,

all the channels of each probability volume are warped to their opposite camera views byg(�; dn )
correspondingly, and reduced to one single channel via summation to give rise to four sub-occlusion
masks (two for each input view). The sub-occlusion masks that are aligned to their respective input
view are more detailed, and can be further re�ned by an element-wise multiplication with their
homologous (or “mirror”) sub-occlusion generated by the opposite view, as can be observed in the
bottom of Fig. 3. These operations yield the two �nal occlusion masksOL andOR . The occlusion
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Figure 3: Our proposed training strategy and novel Mirrored Occlusion Module (MOM).

masks can be given as a function ofDP L
L andDP L

R by (OL is described by swapping R$ L)

OR = max

"
NX

n =0

g
�

DP L
L n

; dn

�

L ! R

#

�

"
NX

n =0

g
�

DP L
R n

; dn

�

L ! R

#

; 1 (4)

Please note that the sum-reduction operation on the sub-occlusion masks is not bounded between 0
and 1, as the planes of the probability distributions are �rst warped (shifted) to the target view byg(�)
in Eq. (4). This shifting not only generates “holes”, which are the occluded regions, but also areas
where the summation is> 1. The latter is the reason why the “max” operator (not shown in Fig. 3) is
applied to cap the �nal occlusion masksOL andOR between 0 and 1.

Also note thatOL andOR are both needed for training on depth estimation. For a left input view
IL , OR is used to prevent the network from learning view synthesis, asOR effectively removes
right-occluded contents that are only visible in the right view. On the other hand,OL , in combination
with a mirrored disparity estimateD0

LM , is used to provide self-supervision signals to the output
disparity values corresponding to the left-occluded regions that are only visible in the left view, as
shown in the top-right of Fig. 3. The dark regions inOL (not visible in the right view) are not affected
by the photometric reconstruction losses and often result in depth artifacts, as can be observed in Fig.
1-(b). D0

LM is obtained by feeding the �xed FAL-net with a horizontally �ipped version ofIL , and
�ipping the output disparity again. It is well-known that this operation is equivalent to making the
network treatIL as the right view, thus generating artifacts on the right-side instead of the left-side
of the objects [7, 9, 20, 22]. Note that contrary to [20, 22], the contribution of the �xed FAL-net
throughD0

LM is weighted by1 � OL , which prevents the FAL-net under training from learning
over-smoothness.

3.2.2 Loss Functions

The total loss for learning inverse depth, as used in the second step of training, is given by:

l =
1
2

(lL
rec + lR

rec + lL
m + lR

m + � ds lL
ds + � ds lR

ds ) (5)

where the total loss is divided by 2 as the network runs on the left and right views.� ds weights the
contribution of the smoothness loss.� ds was empirically found effective when set to0:0008during
the �rst training step and doubled to0:0016in the second step of MOM �ne-tuning.

Occlusion-free reconstruction loss.The combination ofl1 and perceptual loss [14] has shown to be
effective for multiple tasks that involve image reconstruction or view synthesis [9,19,36]. We adopt
this combination to enforce a similarity between the training views and their synthetic counterparts.
The �rst 3 maxpool layers, denoted by� l (�), from the pre-trained VGG19 [25] on the ImageNet
classi�cation task were used on our occlusion-free reconstruction loss, which is given by

lR
rec = jjOR � (I0R � IR )jj1 + � p

3X

l =1

jj � l (OR � I0R + (1 � OR ) � IR ) � � l (IR )jj2
2 (6)
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Table 1: Ablation studies on KITTI [5] (K). CS! K: Trained on CS and re-trained on K. K+CS:
Concurrent K and CS training. #Par: Parameters in millions. K+20e: �ne tuned with +20 epochs

# Methods data #Par abs rel# sq rel# rmse# rmselog # a1 " a2 " a3 "
7 FAL-netB49 K+CS 17 0.071 0.287 2.905 0.109 0.941 0.990 0.998

FAL-netB49 K 17 0.075 0.298 2.905 0.112 0.937 0.989 0.997
FAL-netB33 K 17 0.076 0.304 2.890 0.112 0.938 0.989 0.997
FAL-netA33 K 6.6 0.085 0.367 3.161 0.124 0.924 0.986 0.997
FAL-netB49 CS 17 0.112 0.559 3.950 0.158 0.876 0.974 0.993

6 FAL-netB33 (scratch) K 17 0.078 0.330 2.950 0.113 0.938 0.989 0.997
5 FAL-netB33 w/o MOM K+20e 17 0.081 0.349 3.259 0.120 0.928 0.987 0.997
4 FAL-netB49 w/o MOM K+CS 17 0.074 0.318 3.086 0.114 0.935 0.989 0.997

FAL-netB49 w/o MOM CS! K 17 0.085 0.391 3.229 0.125 0.924 0.985 0.996
FAL-netB49 w/o MOM CS 17 0.127 0.721 4.406 0.179 0.845 0.961 0.988

3 FAL-netB49 w/o MOM K 17 0.076 0.331 3.167 0.116 0.932 0.988 0.997
2 FAL-netA33 w/o MOM K 6.6 0.087 0.386 3.303 0.127 0.921 0.986 0.997

FAL-netB33 w/o MOM K 17 0.079 0.329 3.033 0.116 0.933 0.988 0.997
FAL-netC33 w/o MOM K 26 0.080 0.344 3.184 0.119 0.928 0.987 0.997

1 FAL-netBL33 w/o MOM K 17 0.109 0.890 6.118 0.190 0.845 0.950 0.982

where� is the hadamard product. Note thatOR blendsI0R with IR to be fed “occlusions-free” to
the VGG19.� p roughly balanced the contribution between thel1 and perceptual losses and was
empirically set to� p=0:01 for all our experiments. See Supplemental for results on� p=0. Setting
OR =OL =1 yields the vanilla reconstruction loss used in the �rst step of learning view synthesis.

Edge-preserving smoothness loss.We adopt the widely used edge-preserving smoothness loss
[7,8,11]. In our FAL-net, this term prevents the network from learning depth distributions that would
give rise to “too much occlusions” in our MOM. In contrast with the previous works, we add a
parameter = 2 to regulate the amount of edge preservation.

lL
ds = jj@x D0

L � e�  j@x IL j jj1 + jj@y D0
L � e�  j@y IL j jj1 (7)

Mirror loss. This term provides self-supervision signals to the visible contents in the left view that
are occluded in the right view, from a pass of the �xed FAL-net on a mirroredIL . As can be noted
from OL in Fig. 3, the contribution of the mirrored disparity mapD0

LM is very limited, and given by

lL
m = (1 =max(D0

LM )) jj (1 � OL ) � (D0
L � D0

LM )jj1 (8)

wheremax(D0
LM ) is the maximum disparity value inD0

LM that weights down the mirror loss.

4 Experiments and Results

Experiments were mainly conducted on the benchmark dataset, KITTI [5], which contains stereo
images captured from a driving perspective with projected 3D laser scanner pseudo-ground-truths.
For training, the widely used Eigen train split [2] was adopted, which consists of 22,600 training LR
pairs. Using the metrics de�ned in [2], we evaluated our models on the two Eigen test split datasets:
the original [2] and the improved versions [28], consisting of 697 and 652 test images respectively.
We also trained and evaluated our FAL-net on the high-resolution CityScapes [1] driving dataset and
on the Make3D [23] dataset, respectively, to challenge the generalization power of our method.

4.1 Implementation Details

All our models were trained with the Adam optimizer with default betas with a batch size of 8 (4 left,
4 right). In the �rst training step (view synthesis), our FAL-net was updated via 50 epochs with an
initial learning rate (lr) of 1� 10� 4 that halves at epochs 30 and 40. In the second training step (depth
estimation), our model is trained for 20 epochs, with an initial lr of 5� 10� 5, that halves at epoch
10. Random data augmentations are performed on-the-�y with resize (with a factor of 0.75 to 1.5)
followed by a crop of size 192x640, horizontal �ipping, and changes in gamma, brightness, and color
brightness. Training takes 3 days for the �rst step and 1 day for the second step on a Titan XP GPU.
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