
A Proofs

A.1 Proof of the Main Theorem

Lemma 2. On space X there is a probability distribution p(x). r(x) : X → [0, 1] is a measurable
function on X . We consider sampling from p, accepting with probability r(x), and repeating this
procedure until a sample is accepted. We denote the resulting probability measure of the accepted
samples q(x). Then we have:

q(x) = p(x)r(x) /Z, Z = Ep[r(x)]. (5)

Proof. From the definition of rejection sampling, we can see that in order to get the distribution q(x),
we can sample x from p(x) and do rejection sampling with probability r′(x) = q(x) / (Mp(x)),
where M ≥ q(x)/ p(x) for all x. So we have r′(x) = r(x) / (ZM). If we choose M = 1/Z, then
from r(x) ≤ 1 for all x, we can see that M satisfies M ≥ q(x)/ p(x) = r(x) /Z, for all x. So we
can choose M = 1 /Z, resulting in r(x) = r′(x).

Theorem 2. Assume pd is the data generating distribution, and pg is the generator distribution
induced by the generator G : Z → X , where Z is the latent space with prior distribution p0(z).
Define p∗d = elog pg(x)+d(x)/Z0, where Z0 is the normalization constant.

Assume pg and pd have the same support. This assumption is typically satisfied when dim(z) ≥
dim(x). We address the case that dim(z) < dim(x) in Corollary 2. Further, let D(x) be the
discriminator, and d(x) be the logit of D, namely D(x) = σ (d(x)). We define the energy function
E(z) = − log p0(z)− d(G(z)), and its Boltzmann distribution pt(z) = e−E(z)/Z. Then we have:

1. p∗d = pd when D is the optimal discriminator.

2. If we sample z ∼ pt, and x = G(z), then we have x ∼ p∗d. Namely, the induced probability
measure G ◦ pt = p∗d.

Proof. (1) follows from the fact that when D is optimal, D(x) =
pg

pd+pg
, so D(x) = σ(log pd −

log pg), which implies that d(x) = log pd− log pg (which is finite on the support of pg due to the fact
that they have the same support). Thus, p∗d(x) = pd(x)/Z0, we must have Z0 = 1 for normalization,
so p∗d = pd.

For (2), for samples x ∼ pg, if we do rejection sampling with probability p∗d(x)/ (Mpg(x)) =

ed(x)/ (MZ0) (whereM is a constant withM ≥ p∗d(x)/ pg(x)), we get samples from the distribution
p∗d. We can view this rejection sampling as a rejection sampling in the latent space Z , where we
perform rejection sampling on p0(z) with acceptance probability r(z) = p∗d(G(z))/ (Mpg(G(z))) =

ed(G(z))/M . Applying lemma 1, we see that this rejection sampling procedure induces a probability
distribution pt(z) = p0(z)r(z)/C on the latent space Z . C is the normalization constant. Thus
sampling from p∗d(x) is equivalent to sampling from pt(z) and generating with G(z).

Corollary 2. Assume pd is the data generating distribution with small Gaussian noise added.
The generator G : Z → X is a deterministic function, where Z is the latent space endowed
with prior distribution p0(z). Assume z′ ∼ p1(z

′) = N(0, 1; z) is an additional Gaussian noise
variable with dim z′ = dimX . Let ε > 0, denote the distribution of the extended generator
G∗(z, z′) = G(z) + εz′ as pg. D(x) is the discriminator trained between pg and pd. Let d(x)
be the logit of D, namely D(x) = σ (d(x)). Define p∗d = elog pg(x)+d(x)/Z0, where Z0 is the
normalization constant. We define the energy function in the extended latent space E(z, z′) =

− log p0(z) − log p1(z
′) − d(G∗(z, z′)), and its Boltzmann distribution pt(z, z′) = e−E(z,z′)/Z.

Then we have:

1. p∗d = pd when D is the optimal discriminator.

2. If we sample (z, z′) ∼ pt, and x = G∗(z, z′), then we have x ∼ p∗d. Namely, the induced
probability measure G∗ ◦ pt = p∗d.

Proof. Let G∗(z, z′) be the generator G defined in Theorem 1, we can see that pd and pg have the
same support. Apply Theorem 1 and we deduce the corollary.
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B An Analysis of WGAN

B.1 An Analysis of the DOT algorithm

In this section, we first give an example that in WGAN, given the optimal discriminator D and pg , it
is not possible to recover pd.

Consider the following case: the underlying space is one dimensional space of real numbers R. pg is
the Dirac δ-distribution δ−1 and data distribution pd is the Dirac δ-distribution δa, where a > 0 is a
constant.

We can easily identity function f(x) = x is the optimal 1-Lipschitz function which separates pg and
pd. Namely, we let D(x) = x is the optimal discriminator.

However, D is not a function of a. Namely, we cannot recover pd = δa with information provided
by D and pg. This is the main reason that collaborative sampling algorithms based on W-GAN
formulation such as DOT could not provide exact theoretical guarantee, even if the discriminator is
optimal.

B.2 Mathematical Details of Approximating WGAN with EBMs

In the paper, we show that the optimization of WGAN can be viewed as an approximation of an
energy-based model. We present more details here.

For Eq. (3):

∇φKL(pd||pt) =∇φEpd [− log pt(x)]

=∇φEpd [− log pg(x)−D(x) + logZ]

=− Epd [∇φD(x)] + Epd [∇φ logZ]
=− Epd [∇φD(x)] +∇φZ/Z

=− Epd [∇φD(x)] +
∑
x

[pg(x)e
D(x)∇φD(x)]/Z

=− Epd [∇φD(x)] +
∑
x

[pt(x)∇φD(x)]

=Ept [∇φD(x)]− Epd [∇φD(x)]

(6)

For Eq. (4):

∇θKL(pg||p′t) =∇θEpg [log pg(x)− log p′t(x)]

=Epg [∇θ log pg(x)] +
∑
x

[log pg(x)− log p′t(x)]∇θpg(x)

=0 +
∑
x

[−D(x)]∇θpg(x)

=−
∑
x

D(x)∇θpg(x)

=−∇θEpg [D(x)] = −Ez∼p0(z)[∇θD(G(z))]

(7)

C Experimental details

Source code of all experiments of this work is included in the supplemental material , where all
detailed hyper-parameters can be found.

C.1 Synthetic

The 25-Gaussians dataset is generated by a mixture of twenty-five two-dimensional isotropic Gaussian
distributions with variance 0.01, and means separated by 1, arranged in a grid. The Swiss Roll dataset
is a standard dataset for testing dimensionality reduction algorithms. We use the implementation from
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scikit-learn, and rescale the coordinates as suggested by [12]. We train a Wasserstein GAN model
with the standard WGAN-GP objective. Both the generator and discriminator are fully connected
neural networks with ReLU nonlinearities, and we follow the same architecture design as in DOT [12],
while parameterizing the prior with a standard normal distribution instead of a uniform distribution.
We optimize the model using the Adam optimizer, with α = 0.0001, β1 = 0.5, β2 = 0.9.

C.2 CIFAR-10 and CelebA

Figure 3: CIFAR-10 Langevin dynamics visualization, initial-
ized at a sample from the generator (left column). The latent
space Markov chain appears to mix quickly, as evidenced by
the diverse samples generated by a short chain. Additionally,
the visual quality of the samples improves over the course of
sampling, providing evidence that DDLS improves sample
quality.

Figure 4: Top-5 nearest neighbor im-
ages (right columns) of generated
CIFAR-10 samples (left column).

For CIFAR-10 dataset, we adopt the Spectral Normalization GAN (SN-GAN) [1] as our baseline
GAN model. We take the publicly available pre-trained models of unconditional SN-GAN and apply
DDLS. For CelebA dataset, we adopt DCGAN and WGAN as the baseline model following the
same setting in [56]. We first sample latent codes from the prior distribution, then run the Langevin
dynamics procedure with an initial step size 0.01 up to 1000 iterations to generate enhanced samples.
Following the practice in [57] we separately set the standard deviation of the Gaussian noise as 0.1.
We optionally fine-tune the pre-trained discriminator with an additional fully-connected layer and a
logistic output layer using the binary cross-entropy loss to calibrate the discriminator as suggested by
[10, 11].

We show more generated samples of DDLS during langevin dynamics in Fig. 6. We run 1000 steps
of Langevin dynamics and plot generated sample for every 10 iterations. We include 10000 more
randomly generated samples in the supplemental material.

C.3 Imagenet

We introduce more details of the preliminary experimental results on Imagenet dataset here. We run
the Langevin dynamics sampling algorithm with an initial step size 0.01 up to 1000 iterations. We
decay the step size with a factor 0.1 for every 200 iterations. The standard deviation of Gaussian
noise is annealed simultaneously with the step size. The discriminator is not yet calibrated in this
preliminary experiment.
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Figure 5: Progression of Inception Score with more Langevin dynamics sampling steps.

Algorithm 1 Discriminator Langevin Sampling
Input: N ∈ N+, ε > 0
Output: Latent code zN ∼ pt(z)
Sample z0 ∼ p0(z).
for i < N do
ni ∼ N(0, 1)
zi+1 = zi − ε/2∇zE(z) +

√
εni

i = i+ 1
end for

D DDLS Algorithm

We show the detailed algorithm using Langevin dynamics in Alg. 1.

E Hybrid WGAN-EBM Training Algorithm

In Sec. 3.4, we described an EBM algorithm which WGAN is approximately optimizing. Here we
detail this algorithm in Alg. 2.

Algorithm 2 WGAN-EBM Hybrid Algorithm
Input: N ∈ N+, ε > 0, δ > 0, Initialized Dφ(x), Gθ(z)
Output: Trained Dφ(x), Gθ(z)
for Model Not Converged do

Sample a batch zk0 ∼ p0(z), k = 1, 2, · · ·M .
Sample a batch of real data xk, k = 1, 2, · · ·M .
for i < N do
nki ∼ N(0, 1)
zki+1 = zki − ε/2∇zE(zki ) +

√
εnki , {E(z) = − log p0(x)−D(G(z))}

i = i+ 1
end for
φ = φ− δ(

∑M
k=1∇φD(G(zkN ))−∇φD(xk))

θ = θ + δ
∑M
k=1∇θD(G(zk0 ))

end for
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Figure 6: CIFAR-10 Langevin dynamics visualization

18


	Introduction
	Background
	Generative Adversarial Networks
	Energy-Based Models and Langevin Dynamics

	Methodology
	GANs as an Energy-Based Model
	Rejection Sampling and MCMC in Latent Space
	Main Theorem
	Sampling Wasserstein GANs with Langevin Dynamics
	Practical Issues and the Mode Dropping Problem

	Related Work
	Experimental results
	Synthetic dataset
	CIFAR-10 and CelebA
	ImageNet

	Conclusion and Future Work
	Broader Impact
	Proofs
	Proof of the Main Theorem

	An Analysis of WGAN
	An Analysis of the DOT algorithm
	Mathematical Details of Approximating WGAN with EBMs

	Experimental details
	Synthetic
	CIFAR-10 and CelebA
	Imagenet

	DDLS Algorithm
	Hybrid WGAN-EBM Training Algorithm

