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Abstract

Recent Reinforcement Learning (RL) algorithms making use of Kullback-
Leibler (KL) regularization as a core component have shown outstanding
performance. Yet, only little is understood theoretically about why KL
regularization helps, so far. We study KL regularization within an approxi-
mate value iteration scheme and show that it implicitly averages q-values.
Leveraging this insight, we provide a very strong performance bound, the
very first to combine two desirable aspects: a linear dependency to the
horizon (instead of quadratic) and an error propagation term involving an
averaging e�ect of the estimation errors (instead of an accumulation e�ect).
We also study the more general case of an additional entropy regularizer. The
resulting abstract scheme encompasses many existing RL algorithms. Some
of our assumptions do not hold with neural networks, so we complement
this theoretical analysis with an extensive empirical study.

1 Introduction

In Reinforcement Learning (RL), Kullback-Leibler (KL) regularization consists in penalizing
a new policy from being too far from the previous one, as measured by the KL divergence.
It is at the core of e�cient deep RL algorithms, such as Trust Region Policy Optimization
(TRPO) [37] (motivated by trust region constraints) or Maximum a Posteriori Policy Opti-
mization (MPO) [2] (arising from the view of control as probabilistic inference [26, 16]), but
without much theoretical guarantees. Recently, Geist et al. [20] have analyzed algorithms
operating in the larger scope of regularization by Bregman divergences. They concluded that
regularization doesn’t harm in terms of convergence, rate of convergence, and propagation
of errors, but these results are not better than the corresponding ones in unregularized
approximate dynamic programming (ADP).
Building upon their formalism, we show that using a KL regularization implicitly averages
the successive estimates of the q-function in the ADP scheme. Leveraging this insight, we
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provide a strong performance bound, the very first to combine two desirable aspects: 1)
it has a linear dependency to the time horizon (1 ≠ “)" 1, 2) it exhibits an error averaging
property of the KL regularization. The linear dependency in the time horizon contrasts with
the standard quadratic dependency of usual ADP, which is tight [35]. The only approaches
achieving a linear dependency we are aware of make use of non-stationary policies [8, 35]
and never led to practical deep RL algorithms. More importantly, the bound involves the
norm of the average of the errors, instead of a discounted sum of the norms of the errors for
classic ADP. This means that, while standard ADP is not guaranteed to converge for the
ideal case of independent and centered errors, KL regularization allows convergence to the
optimal policy in that case. The sole algorithms that also enjoy this compensation of errors
are Dynamic Policy Programming (DPP) [7] and Speedy Q-learning (SQL) [6], that also
build (implicitly) on KL regularization, as we will show for SQL. However, their dependency
to the horizon is quadratic, and they are not well amenable to a deep learning setting [43].
We also study the case of an additional entropy regularization, usual in practical algorithms,
and specifically the interplay between both regularizations. The resulting abstract framework
encompasses a wide variety of existing RL algorithms, the connections between some of them
being known [20], but many other being new, thanks to the implicit average of q-values. We
highlight that, even though our analysis covers the case where only the entropy regularization
is considered, it does not explain why it helps without an additional KL term. Some argue
that having a higher entropy helps exploration [38], other that it has beneficial e�ects on the
optimization landscape [3], but it also biases the solution of the MDP [20].
Our analysis requires some assumptions, notably that the regularized greedy step is done
without approximation. If this is reasonable with discrete actions and a linear parameteriza-
tion, it does not hold when neural networks are considered. Given their prevalence today, we
complement our thorough analysis with an extensive empirical study, that aims at observing
the core e�ect of regularization in a realistic deep RL setting.

2 Background and Notations

Let �X be the set of probability distributions over a finite set X and Y
X the set of applications

from X to the set Y . An MDP is a tuple {S, A, P, r, “} with S the finite state space, A the
finite set of actions, P œ �S#A

S the Markovian transition kernel, r œ RS#A the reward function
bounded by rmax, and “ œ (0, 1) the discount factor. For · Ø 0, we write v

·
max = rmax+· ln |A|

1" “

and simply vmax = v
0
max. We write 1 œ RS#A the vector whose components are all equal to

1. A policy fi œ �S
A associates a distribution over actions to each state. Its (state-action)

value function is defined as qfi(s, a) = Efi [
q$

t=0 “
t
r(St, At)|S0 = s, A0 = a], Efi being the

expectation over trajectories induced by fi. Any optimal policy satisfies fi! œ argmaxfi%�S
A

qfi

(all scalar operators applied on vectors should be understood point-wise), and q! = qfiú . The
following notations will be useful. For f1, f2 œ RS#A ,Èf1, f2Í = (

q
a f1(s, a)f2(s, a))s œ RS .

This will be used with q-values and (log) policies. We write Pfi the stochastic kernel induced
by fi, and for q œ RS#A we have Pfiq = (

q
sÕ P (s&|s, a)

q
aÕ fi(a&|s&)q(s&

, a
&))s,a œ RS#A . For

v œ RS , we also define Pv = (
q

sÕ P (s&|s, a)v(s&))s,a œ RS#A , hence Pfiq = P Èfi, qÍ.

The Bellman evaluation operator is Tfiq = r + “Pfiq, its unique fixed point being qfi. The
set of greedy policies w.r.t. q œ RS#A is G(q) = argmaxfi%�S

A
Èq, fiÍ. A classical approach to

estimate an optimal policy is Approximate Modified Policy Iteration (AMPI) [34, 36],
;

fik+1 œ G(qk)
qk+1 = (Tfik+1)m

qk + ‘k+1
,

which reduces to Approximate Value Iteration (AVI, m = 1) and Approximate Policy
Iteration (API, m = Œ) as special cases. The term ‘k+1 accounts for errors made when
applying the Bellman operator. For example, the classic DQN [27] is encompassed by this
abstract ADP scheme, with m = 1 and the error arising from fitting the neural network
(regression step of DQN). The typical use of m-step rollouts in (deep) RL actually corresponds
to an AMPI scheme with m > 1. Next, we add regularization to this scheme.
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3 Regularized MPI

In this work, we consider the entropy H(fi) = ≠Èfi, ln fiÍ œ RS and the KL divergence
KL(fi1||fi2) = Èfi1, ln fi1 ≠ ln fi2Í œ RS . First, we introduce a slight variation of the Mirror
Descent MPI scheme [20] (handling both KL and entropy penalties, based on q-values).

Mirror Descent MPI. For q œ RS#A and an associated policy µ œ �S
A , we define the

regularized greedy policy as G⁄,·
µ (q) = argmaxfi%�S

A
(Èfi, qÍ ≠ ⁄ KL(fi||µ) + ·H(fi)). Observe

that with ⁄ = · = 0, we get the usual greediness. Notice also that with ⁄ = 0, the KL term
disappears, so does the dependency to µ. In this case we write G0,· . We also account for
the regularization in the Bellman evaluation operator. Recall that the standard operator is
Tfiq = r + “P Èfi, qÍ. Given the form of the regularized greediness, it is natural to replace
the term Èfi, qÍ by the regularized one, giving T

⁄,·
fi|µ q = r + “P (Èfi, qÍ ≠ ⁄ KL(fi||µ) + ·H(fi)).

These lead to the following MD-MPI(⁄,·) scheme. It is initialized with q0 œ RS#A such that
Îq0Î$ Æ vmax and with fi0 the uniform policy, without much loss of generality (notice that
the greedy policy is unique whenever ⁄ > 0 or · > 0):

I
fik+1 = G⁄,·

fik
(qk)

qk+1 = (T ⁄,·
fik+1|fik

)m
qk + ‘k+1

. (1)

Dual Averaging MPI. We provide an equivalent formulation of scheme (1). This will be
the basis of our analysis, and it also allows drawing connections to other algorithms, originally
not introduced as using a KL regularization. All the technical details are provided in the
Appendix, but we give an intuition here, for the case · = 0 (no entropy). Let fik+1 = G⁄,0

fik
(qk).

This optimization problem can be solved analytically, yielding fik+1 Ã fik exp qk

⁄ . By direct
induction, fi0 being uniform, we have fik+1 Ã fik exp qk

⁄ Ã · · · Ã exp 1
⁄

qk
j=0 qj . This means

that penalizing the greedy step with a KL divergence provides a policy being a softmax over
the scaled sum of all past q-functions (no matter how they are obtained). This is reminiscent
of dual averaging in convex optimization, hence the name.
We now introduce the Dual Averaging MPI (DA-MPI) scheme. Contrary to MD-MPI, we
have to distinguish the cases · = 0 and · ”= 0. DA-MPI(⁄,0) and DA-MPI(⁄,· > 0) are

Y
_]

_[

fik+1 = G0, ⁄
k+1 (hk)

qk+1 = (T ⁄,0
fik+1|fik

)m
qk + ‘k+1

hk+1 = k+1
k+2 hk + 1

k+2 qk+1

and

Y
_]

_[

fik+1 = G0,· (hk)
qk+1 = (T ⁄,·

fik+1|fik
)m

qk + ‘k+1

hk+1 = —hk + (1 ≠ —)qk+1 with — = ⁄
⁄+·

, (2)

with h0 = q0 for · = 0 and h" 1 = 0 for · > 0. The following result is proven in Appx. C.1.
Proposition 1. For any ⁄ > 0, MD-MPI(⁄,0) and DA-MPI(⁄,0) are equivalent (but not in

the limit ⁄ æ 0). Moreover, for any · > 0, MD-MPI(⁄,·) and DA-MPI(⁄,·) are equivalent.

Table 1: Algorithms encompassed by MD/DA-MPI (in italic if new compared to [20]).

only entropy only KL both
reg. Soft Q-learning [17, 21], DPP [7], CVI [25],
eval. SAC [22], Mellowmax [5] SQL [6] AL [9, 11]
unreg. softmax DQN [41] TRPO [37], MPO [2], softened LSPI [31],
eval. Politex [1], MoVI [43] MoDQN [43]

Links to existing algorithms. Equivalent schemes (1) and (2) encompass (possibly
variations of) many existing RL algorithms (see Tab. 1 and details below). Yet, we think
important to highlight that many of them don’t consider regularization in the evaluation
step (they use Tfik+1 instead of T

⁄,·
fik+1|fik

), something we abbreviate as “w/o”. If it does not
preclude convergence in the case · = 0 [20, Thm. 4], it is known for the case · > 0 and
⁄ = 0 that the resulting Bellman operator may have multiple fixed points [5], which is not
desirable. Therefore, we only consider a regularized evaluation for the analysis, but we will
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compare both approaches empirically. Now, we present the approaches encompassed by
scheme (1) (see also Appx. B.1). Soft Actor Critic (SAC) [22] and soft Q-learning [21] are
variations of MD-MPI(0,·), as is softmax DQN [41] but w/o. The Mellowmax policy [5] is
equivalent to MD-MPI(0,·). TRPO and MPO are variations of MD-MPI(⁄,0), w/o. DPP [7]
is almost a reparametrization of MD-MPI(⁄,0), and Conservative Value Iteration (CVI) [25]
is a reparametrization of MD-MPI1(⁄,·), which consequently also generalizes Advantage
Learning (AL) [9, 11]. Next, we present the approaches encompassed by schemes (2) (see
also Appx. B.2). Politex [1] is a PI scheme for the average reward case, building upon
prediction with expert advice. In the discounted case, it is DA-MPI(⁄,0), w/o. Momentum
Value Iteration (MoVI) [43] is a limit case of DA-MPI(⁄,0), w/o, as ⁄ æ 0, and its practical
extension to deep RL momentum DQN (MoDQN) is a limit case of DA-MPI(⁄,·), w/o.
SQL [6] is a limit case of DA-MPI(⁄, 0) as ⁄ æ 0. Softened LSPI [30] deals with zero-sum
Markov games, but specialized to single agent RL it is a limit case of DA-MPI(⁄,·), w/o.

4 Theoretical Analysis

Here, we analyze the propagation of errors of MD-MPI, through the equivalent DA-MPI, for
the case m = 1 (that is regularized VI, the extension to m > 1 remaining an open question).
We provide component-wise bounds that assess the quality of the learned policy, depending
on · = 0 or not. From these, ¸p-norm bounds could be derived, using [36, Lemma 5].

Analysis of DA-VI(⁄,0). This corresponds to scheme (2), left, with m = 1. The following
Thm. is proved in Appx. C.2.
Theorem 1. Define Ek = ≠

qk
j=1 ‘j, A

1
k = (I ≠ “Pfiú)" 1 ≠ (I ≠ “Pfik )" 1

and g
1(k) =

4
1" “

v⁄
max
k . Assume that ÎqkÎ$ Æ vmax . We have 0 Æ q! ≠ qfik Æ

--A1
k

Ek
k

-- + g
1(k)1.

Remark 1. The assumption ÎqkÎ$ Æ vmax is not strong. It can be enforced by simply

clipping the result of the evaluation step in [≠vmax , vmax ]. See also Appx. C.3.

To ease the discussion, we express an ¸$ -bound as a direct corollary of Thm. 1:

Îq! ≠ qfik Î$ Æ 2
1 ≠ “

......
1
k

kÿ

j=1
‘j

......
$

+ 4
1 ≠ “

v
⁄
max
k

.

We also recall the typical propagation of errors of AVI without regularization (e.g. [36], we
scale the sum by 1 ≠ “ to make explicit the normalizing factor of a discounted sum):

Îq! ≠ qfik Î$ Æ 2“

(1 ≠ “)2

3
(1 ≠ “)

kÿ

j=1
“

k" jÎ‘jÎ$

4
+ 2

1 ≠ “
“

k
vmax.

For each bound, the first term can be decomposed as a factor, the horizon term ((1 ≠ “)" 1 is
the average horizon of the MDP), scaling the error term, that expresses how the errors made
at each iteration reflect in the final performance. The second term reflects the influence
of the initialization over iterations, without errors it give the rate of convergence of the
algorithms. We discuss these three terms.
Rate of convergence. It is slower for DA-VI(⁄,0) than for AVI, “

k = o( 1
k ). This was to

be expected, as the KL term slows down the policy updates. It is not where the benefits of
KL regularization arise. However, notice that for k small enough and “ close to 1, we may
have 1

k Æ “
k. This term has also a linear dependency to ⁄ (through v

⁄
max), suggesting that a

lower ⁄ is better. This is intuitive, a larger ⁄ leads to smaller changes of the policy, and thus
to a slower convergence.
Horizon term. We have a linear dependency to the horizon, instead of a quadratic one,
which is very strong. Indeed, it is known that the square dependency to the horizon is tight
for API and AVI [35]. The only algorithms based on ADP having a linear dependency we
are aware of make use of non-stationary policies [35, 8], and have never led to practical
(deep) RL algorithms. Minimizing directly the Bellman residual would also lead to a linear
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dependency (e.g., [32, Thm. 1]), but it comes with its own drawbacks [19] (e.g., bias problem
with stochastic dynamics, and it is not used in deep RL, as far as we know).
Error term. For AVI, the error term is a discounted sum of the norms of the successive
estimation errors, while in our case it is the norm of the average of these estimation errors.
The di�erence is fundamental, it means that the KL regularization allows for a compensation
of the errors made at each iteration. Assume that the sequence of errors is a martingale
di�erence. AVI would not converge in this case, while DA-VI(⁄, 0) converges to the optimal
policy (Î 1

k

qk
j=1 ‘jÎ$ converges to 0 by the law of large numbers). As far as we know, only

SQL and DPP have such an error term, but they have a worse dependency to the horizon.
Thm. 1 is the first result showing that an RL algorithm can benefit from both a linear
dependency to the horizon and from an averaging of the errors, and we argue that this explains,
at least partially, the beneficial e�ect of using a KL regularization. Notice that Thm. 4
of Geist et al. [20] applies to DA-VI(⁄, 0), as they study more generally MPI regularized by
a Bregman divergence. Although they bound a regret rather than q! ≠ qfik , their result is
comparable to AVI, with a quadratic dependency to the horizon and a discounted sum of
the norms of the errors. Therefore, our result significantly improves previous analyses.
We illustrate the bound with a simple experiment2, see Fig. 1, left. We observe that
AVI doesn’t converge, while DA-VI(⁄,0) does, and that higher values of ⁄ slow down the
convergence. Yet, they are also a bit more stable. This is not explained by our bound but is
quite intuitive (policies changing less between iterations).
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Figure 1: Left: behavior for Thm 1. Middle: function g
2(k). Right: behavior for Thm 2.

Analysis of DA-VI(⁄,·). This is scheme (2), right, with m = 1. Due to the non-vanishing
entropy term in the greedy step, it cannot converge to the unregularized optimal q-function.
Yet, without errors and with ⁄ = 0, it would converge to the solution of the MDP regularized
by the scaled entropy (that is, considering the reward augmented by the scaled entropy).
Our bound will show that adding a KL penalty does not change this. To do so, we introduce
a few notations. The proofs of the following claims can be found in [20], for example. We
already have defined the operator T

0,·
fi . It has a unique fixed point, that we write q

·
fi. The

unique optimal q-function is q
·
! = maxfi q

·
fi. We write fi

·
! = G0,· (q·

! ) the associated unique
optimal policy, and q

·
fi·

ú
= q

·
! . The next result is proven in Appx. C.4.

Theorem 2. For a sequence of policies fi0, . . . , fik, we define Pk:j = Pfik Pfik≠1 . . . Pfij if

j Æ k, Pk:j = I else. We define A
2
k:j = P

k" j
fi·

ú
+ (I ≠ “Pfik+1)" 1

Pk:j+1(I ≠ “Pfij ). We define

g
2(k) = “

k(1 + 1" —
1" “ )

qk
j=0( —

“ )j
v

·
max , with — as defined in Eq. (2). Finally, we define E

—
k =

(1 ≠ —)
qk

j=1 —
k" j

‘j. With these notations: 0 Æ q
·
! ≠ q

·
fik+1 Æ

qk
j=1 “

k" j
---A2

k:jE
—
j

--- + g
2(k)1.

2 We illustrate the bounds in a simple tabular setting with access to a generative model.
Considering random MDPs (called Garnets), at each iteration of DA-VI we sample a single transition
for each state-action couple and apply the resulting sampled Bellman operator. The error ! k is the
di!erence between the sampled and the exact operators. The sequence of these estimation errors is
thus a martingale di!erence w.r.t. its natural Þltration [ 6] (one can think about bounded, centered
and roughly independent errors). More details about this practical setting are provided in Appx. D.
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Again, to ease the discussion, we express an ¸$ -bound as a direct corollary of Thm. 2:

Îq
·
! ≠ q

·
fik+1Î$ Æ 2

(1 ≠ “)2

3
(1 ≠ “)

kÿ

j=1
“

k" jÎE
—
j Î$

4
+ “

k(1 + 1 ≠ —

1 ≠ “
)

kÿ

j=0

3
—

“

4j

v
·
max.

There is a square dependency to the horizon, as for AVI. We discuss the other terms.
Rate of convergence. It is given by the function g

2, defined in Thm. 2. If — = “, we
have g

2(k) = 2(k + 1)“k
v

·
max. If — ”= “, we have g

2(k) = (1 + 1" —
1" “ )—k+1" “k+1

—" “ . In all cases,
g

2(k) = o( 1
k ), so it is asymptotically faster than in Thm. 1, but the larger the —, the slower

the initial convergence. This is illustrated in Fig. 1, middle (notice that it’s a logarithmic
plot, except for the upper part of the y-axis).
Error rate. As with AVI, the error term is a discounted sum of the norms of errors.
However, contrary to AVI, each error term is not an iteration error, but a moving average of
past iteration errors, E

—
k = —E

—
k" 1 + (1 ≠ —)‘k. In the ideal case where the sequence of these

errors is a martingale di�erence with respect to the natural filtration, this term no longer
vanishes, contrary to 1

k Ek. However, it can reduce the variance. For simplicity, assume that
the ‘j ’s are i.i.d. of variance 1. In this case, it is easy to see that the variance of E

—
k is

bounded by 1 ≠ — < 1, that tends toward 0 for — close to 1. Therefore, we advocate that
DA-VI1(⁄,·) allows for a better control of the error term than AVI (retrieved for — = 0).
Notice that if asymptotically this error term predominates, the non-asymptotic behavior is
also driven by the convergence rate g

2, which will be faster for — closer to 0. Therefore, there
is a trade-o�, illustrated in Fig. 1, right (for the same simple experiment2). Higher values of
— lead to better asymptotic performance, but at the cost of slower initial convergence rate.
Interplay between the KL and the entropy terms. The l.h.s. of the bound of Thm. 2
solely depends on the entropy scale · , while the r.h.s. solely depends on the term — = ⁄

⁄+· .
DA-VI(⁄,·) approximates the optimal policy of the regularized MDP, while we are usually
interested in the solution of the original one. We have that Îq! ≠ qfi·

ú Î$ Æ · ln |A|
1" “ [20], this

bias can be controlled by setting an (arbitrarily) small · . This does not a�ect the r.h.s.
of the bound, as long as the scale of the KL term follows (such that ⁄

⁄+· remains fixed
to the chosen value). So, Thm. 2 suggests to set · to a very small value and to choose ⁄

such that we have a given value of —. However, adding an entropy term has been proven
e�cient empirically, be it with arguments of exploration and robustness [22] or regarding
the optimization landscape [3]. Our analysis does not cover this aspect. Indeed, it applies
to ⁄ = — = 0 (that is, solely entropy regularization), giving the propagation of errors of
SAC, as a special case of [20, Thm. 3]. In this case, we retrieve the bound of AVI (E0

j = ‘j ,
g

2(k) Ã “
k), up to the bounded quantity. Thus, it does not show an advantage of using

solely an entropy regularization, but it shows the advantage for considering an additional
KL regularization, if the entropy is of interest for other reasons.
We end this discussion with some related works. The bound of Thm. 2 is similar to the one
of CVI, despite a quite di�erent proof technique. Notably, both involve a moving average
of the errors. This is not surprising, CVI being a reparameterization of DA-VI. The core
di�erence is that by bounding the distance to the regularized optimal q-function (instead
of the unregularized one), we indeed show to what the algorithm converges without error.
Shani et al. [40] study a variation of TRPO, for which they show a convergence rate of
O( 1'

k
), improved to O( 1

k ) when an additional entropy regularizer is considered. This is to
be compared to the convergence rate of our variation of TRPO, O( 1

k ) = o( 1'
k
) (Thm. 1)

improved to g
2(k) = o( 1

k ) with an additional entropy term (Thm. 2). Our rates are much
better. However, this is only part of the story. We additionally show a compensation of
errors in both cases, something not covered by their analysis. They also provide a sample
complexity, but it is much worse than the one of SQL, that we would improve (thanks to the
improved horizon term). Therefore, our results are stronger and more complete.

Limitations of our analysis. Our analysis provides strong theoretical arguments in favor
of considering KL regularization in RL. Yet, it has also some limitations. First, it does not
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provide arguments for using only entropy regularization, as already extensively discussed
(even though it provides arguments for combining it with a KL regularization). Second, we
study how the errors propagate over iterations, and show that KL allows for a compensation
of these errors, but we say nothing about how to control these errors. This depends heavily
on how the q-functions are approximated and on the data used to approximate them. We
could easily adapt the analysis of Azar et al. [6] to provide sample complexity bounds for
MD-VI in the case of a tabular representation and with access to a generative model, but
providing a more general answer is di�cult, and beyond the scope of this paper. Third, we
assumed that the greedy step was performed exactly. This assumption would be reasonable
with a linear parameterization and discrete actions, but not if the policy and the q-function
are approximated with neural networks. In this case, the equivalence between MD-VI and
DA-VI no longer holds, suggesting various ways of including the KL regularizer (explicitly,
MD-VI, or implicitly, DA-VI). Therefore, we complement our thorough theoretical analysis
with an extensive empirical study, to analyse the core e�ect of regularization in deep RL.

5 Empirical study

Before all, we would like to highlight that if regularization is a core component of successful
deep RL algorithms (be it with entropy, KL, or both), it is never the sole component. For
example, SAC uses a twin critic [18], TRPO uses a KL hard constraint rather than a KL
penalty [39], or MPO uses retrace [29] for value function evaluation. All these further
refinements play a role in the final performance. On the converse, our goal is to study the
core e�ect of regularization, especially of KL regularization, in a deep RL context. To achieve
this, we notice that DA-VI and MD-VI are extensions of AVI. One of the most prevalent
VI-based deep RL algorithm being DQN [28], our approach is to start from a reasonably
tuned version of it [15] and to provide the minimal modifications to obtain deep versions of
MD-VI or DA-VI. Notably, we fixed the meta-parameters to the best values for DQN.

Practical algorithms. We describe briefly the variations we consider, a complementary
high-level view is provided in Appx. E.1 and all practical details in Appx. E.2. We modify
DQN by adding an actor. For the evaluation step, we keep the DQN loss, modified to
account for regularization (that we’ll call “w/”, and that simply consists in adding the
regularization term to the target q-network). Given that many approaches ignore the
regularization there, we’ll also consider the DQN loss (denoted “w/o” before, not covered by
our analysis). For the greedy step, MD-VI and DA-VI are no longer equivalent. For MD-VI,
there are two ways of approximating the regularized policy. The first one, denoted “MD

direct”, consists in directly solving the optimization problem corresponding to the regularized
greediness, the policy being a neural network. This is reminiscent of TRPO (with a penalty
rather than a constraint). The second one, denoted “MD indirect”, consists in computing the
analytical solution to the greedy step (fik+1 Ã fi

—
k exp( 1

⁄ —qk)) and to approximate it with a
neural network. This is reminiscent of MPO. For DA-VI, we have to distinguish · > 0 from
· = 0. In the first case, the regularized greedy policy can be computed analytically from an
h-network, that can be computed by fitting a moving average of the online q-network and of
a target h-network. This is reminiscent of MoDQN. If · = 0, DA-VI(⁄,0) is not practical in
a deep learning setting, as it requires averaging over iterations. Updates of target networks
are too fast to consider them as new iterations, and a moving average is more convenient.
So, we only consider the limit case ⁄, · æ 0 with — = ⁄

⁄+· kept constant. This is MoDQN
with fixed —, and the evaluation step is necessarily unregularized (⁄ = · = 0). To sum up,
we have six variations (three kinds of greediness, evaluation regularized or not), restricted to
five variations for · = 0.

Research questions. Before describing the empirical study, we state the research questions
we would like to address. The first is to know if regularization, without further refinements,
helps, compared to the baseline DQN. The second one is to know if adding regularization in
the evaluation step, something required by our analysis, provides improved empirical results.
The third one is to compare the di�erent kinds of regularized greediness, which are no longer
equivalent with approximation. The last one is to study the e�ect of entropy, not covered by
our analysis, and its interplay with the KL term.
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Figure 2: Cartpole.

Figure 3: Asterix.

Environments. We consider two environments here (more are provided in Appx. E). The
light Cartpole from Gym [14] allows for a large sweep over the parameters, and to average
each result over 10 seeds. We also consider the Asterix Atari game [10], with sticky actions,
to assess the e�ect of regularization on a large-scale problem. The sweep over parameters is
smaller, and each result is averaged over 3 seeds.

Visualisation. For each environment, we present results as a table, the rows corresponding
to the type of evaluation (w/ or w/o), the columns to the kind of greedy step. Each element
of this table is a grid, varying — for the rows and · for the columns. One element of this
grid is the average undiscounted return per episode obtained during training, averaged over
the number of seeds. On the bottom of this table, we show the limit cases with the same
principle, varying with ⁄ for MD-VI and with — for DA-VI (ony w/o, as explained before).
The scale of colors is common to all these subplots, and the performance of DQN is indicated
on this scale for comparison. Additional visualisations are provided in Appx. E.

Discussion. Results are provided in Fig. 2 and 3. First, we observe that regularization
helps. Indeed, the results obtained by all these variations are better than the one of DQN,
the baseline, for a large range of the parameters, sometime to a large extent. We also observe
that, for a given value of · , the results are usually better for medium to large values of
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— (or ⁄), suggesting that KL regularization is beneficial (even though too large KL
regularization can be harmful in some case, for example for MD direct, · = 0, on Asterix).
Then, we study the e�ect of regularizing the evaluation step, something suggested by our
analysis. The e�ect of this can be observed by comparing the first row to the second row
of each table. One can observe that the range of good parameters is larger in the first row
(especially for large entropy), suggesting that regularizing the evaluation step helps.
Yet, we can also observe that when · = 0 (no entropy), there is much less di�erence between
the two rows. This suggests that adding the entropy regularization to the evaluation step
might be more helpful (but adding the KL term too is costless and never harmful).
Next, we study the e�ect of the type of greediness. MD-direct shows globally better results
than MD-indirect, but MD-indirect provides the best result on both environments (by a small
margin), despite being more sensitive to the parameters. DA is more sensitive to parameters
than MD for Cartpole, but less for Asterix, its best results being comparable to those of MD.
This let us think that the best choice of greediness is problem dependent, something
that goes beyond our theoretical analysis.
Last, we discuss the e�ect of entropy. As already noticed, for a given level of entropy, medium
to large values of the KL parameter improve performance, suggesting that entropy works
better in conjunction with KL, something appearing in our bound. Now, observing the
table corresponding to · = 0 (no entropy), we observe that we can obtain comparable best
performance with solely a KL regularization, especially for MD. This suggests that entropy
is better with KL, and KL alone might be su�cient. We already explained that
some beneficial aspects of entropy, like exploration or better optimization landscape, are not
explained by our analysis. However, we hypothesize that KL might have similar benefits. For
examples, entropy enforces stochastic policies, which helps for exploration. KL has the same
e�ect (if the initial policy is uniform), but in an adaptive manner (exploration decreases
with training time).

6 Conclusion

We provided an explanation of the e�ect of KL regularization in RL, through the implicit
averaging of q-values. We provided a very strong performance bound for KL regularization,
the very first RL bound showing both a linear dependency to the horizon and an averaging the
estimation errors. We also analyzed the e�ect of KL regularization with an additional entropy
term. The introduced abstract framework encompasses a number of existing approaches,
but some assumptions we made do not hold when neural networks are used. Therefore,
we complemented our thorough theoretical analysis with an extensive empirical study. It
confirms that KL regularization is helpful, and that regularizing the evaluation step is
never detrimental. It also suggests that KL regularization alone, without entropy, might be
su�cient (and better than entropy alone).
The core issue of our analysis is that it relies heavily on the absence of errors in the greedy
step, something we deemed impossible with neural networks. However, Vieillard et al.
[42] proposed subsequently a reperameterization of our regularized approximate dynamic
scheme. The resulting approach, called “Munchausen Reinforcement Learning”, is simple
and general, and provides agents outperforming the state of the art. Crucially, thanks to
this reparameterization, there’s no error in their greedy step and our bounds apply readily.
More details can be found in [42].
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Broader impact. Our core contribution is theoretical. We unify a large body of the
literature under KL-regularized reinforcement learning, and provide strong performance
bounds, among them the first one ever to combine a linear dependency to the horizon and
an averaging of the errors. We complement these results with an empirical study. It shows
that the insights provided by the theory can still be used in a deep learning context, when
some of the assumptions are not satisfied. As such, we think the broader impact of our
contribution to be the same as the one of reinforcement learning.
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