
Supplementary material

The following sections discuss in more detail the theoretical guarantees of our approach. §A presents
the optimality conditions underlying our shooting formulation and it is shown how these optimality
equations can be approximated via a collection of particles. §B proposes different regularizations,
whose choice is key for practical and theoretical results. We show that, under some conditions, the
Rademacher complexity of the set of flows can be bounded and apply our results in §B.5 to the
UpDown model. §C discusses the number of free parameters of our shooting approach in relation
to the number of free parameters for direct optimization. §D explains how the shooting equations
can be automatically derived via automatic differentiation. §E shows the universality of our UpDown
model. §F provides details on our experimental setup. Lastly, §G shows some additional experimental
results.

A Expectation approximation of optimality equations

We first discuss a general variational setup of supervised learning including regularization.

A.1 Variational setup

Suppose the data consists of input X ∈ Rd. Let f(·, θ(t)) be a vector field on Rd, e.g. the single
hidden layer of Eq. (3.7) or a linear (in parameter) layer. Consider the flow ϕ := ϕ(T, ·) generated
by f according to {

d
dtϕ(t,x) = f(ϕ(t,x), θ(t)) ,

ϕ(0,x) = x .
(A.1)

We consider the general task of minimizing,

Reg(ϕ) + γE[`(ϕ(X))] , (A.2)

where γ is a positive regularization parameter.

We now consider the particular case of a ResNet model where each layer is given by an UpDown
model Eq. (3.9) or even a single hidden layer Eq. (3.7).

Without loss of generality, set the terminal time to T = 1. Letting ρ0 denote the probability density
of X , minimizing Eq. (A.2) is equivalent to minimizing

inf
ϕ

[
Reg(ϕ) + γ

∫
Rd

`(ϕ(x))ρ0(x) dx

]
.

This can be rewritten as

inf
ϕ

[
Reg(ϕ) + γ

∫
Rd

`(x′)ρ1(x′) dx′
]
,

where ρ1(x) := ρ(1,x) is the flow of the continuity equation

∂tρ(t,x) + div(ρ(t,x)f(x, θ)) = 0 , ρ(0,x) = ρ0(x) ,

where div is the divergence operator on vector fields. Note that ρ1 can be regarded as the density
representing the data at time 1. In the following, we deal with a general regularization term Reg(ϕ) =∫ 1

0
R(θ(t), ρ(t)) dt, where theR term can depend on the density of data at time t. A particular though

important case is when the regularization R does not depend on ρ,
∫ 1

0
R(θ(t)) dt.

A.2 Optimality equations and Hamiltonian ensemble approximation

We detail the optimality equations when data points are represented by a probability measure. As
mentioned above, the regularity of the map is enforced via a penalty on the weights at each timepoint
and is the integral

∫ 1

0
R(θ(t)) dt or even more generally

∫ 1

0
R(θ(t), ρ(t)) dt. Using Lagrange multi-

pliers, this constraint can be enforced and minimizers of the energy should be saddlepoints of the

12

energy

L(ρ, θ, p) := γ

∫
Rd

`(x)ρ1(x) dx +

∫ 1

0

R(θ(t), ρ(t)) dt

+

∫ 1

0

∫
Rd

p(t,x)(∂tρ(t,x) + div(ρ(t,x)f(x, θ(t)))) dx dt ,

where p(t,x) is a time and space dependent function. The optimality equations are then
∂tρ(t,x) + div(ρ(t,x)f(t,x, θ(t))) = 0 ,

∂tp(t,x) +∇p(t,x) · f(t,x, θ(t)) = δR
δρ (θ(t), ρ(t)) ,

∂θR(θ(t), ρ(t))−
∫
Rd ∂θf(x, θ(t))>(∇p(t,x)ρ(t,x)) = 0 ,

(A.3)

where∇p is the gradient w.r.t. x of p(t,x) and δ denotes differentiation w.r.t. the indicated parameter.
The notation δR

δρ means the Fréchet derivative of the penalty w.r.t. the density ρ. Note that in our
current work, R is independent of ρ. However, this more general setup encompasses optimal transport
models, see Section B.2.

In practice, one does not have access to the full distribution and the variational setup needs to be
approximated. As proposed in the main text, we approximate it using a collection of particles that
follow the optimality equations which are Hamiltonian evolution equations for this collection of
particles. The collection of particles {(qj ,pj)} are defined by their state and costate. We estimate ρ
using the empirical measure 1

K

∑K
j=1 δqj(t)(·). Writing the optimality equation for this particular

empirical measure leads to the equation Eq. (3.4). When the number of particles tends to infinity,
we can hope to recover the optimal trajectory. However, we do not explore this question formally
here. We simply remark that this question is directly connected to expressiveness and generalization
properties of the constructed neural network and is also probably data dependent.

B Choice of regularization

The simplest regularization on the flow ϕ is given by

Reg(ϕ) =

∫ 1

0

R(θ(t)) dt , (B.1)

where R does not depend on ρ(t, ·). The first possibility is a quadratic penalty for the single-hidden-
layer vector field of Eq. (3.7), where R(θ(t)) = 1

2‖θ(t)‖
2
2 is the Frobenius norm of the parameter θ.

Since the space of vector fields is a finite dimensional linear space, it can be endowed with a scalar
product, which turns this space into a Reproducing Kernel Hilbert Space (RKHS). Therefore, the
linear in parameter - quadratic penalty setting of §3.1 is a particular case of vector fields encoded
by f(·, θ(t)) ∈ H , with H a RKHS embedded in W 1,∞ vector fields. This setting leverages strong
analytical and geometrical foundations [41, 11]:

1) When the activation function is smooth, the resulting vector field is smooth4, and consequently
the associated flow map ϕ is guaranteed to be a one-to-one smooth map (i.e., a diffeomorphism).
For instance, with the UpDown model, it is a homeomorphism in (x,v). Moreover, the quadratic
penalty induces a right-invariant distance on the set of flows generated by Eq. (A.1) and the distance
to identity of the resulting flow can be bounded by Reg(ϕ) (see [41, 11] for more details in a Sobolev
setting). 2) When the activation function is of ReLU type, the resulting map is still a W 1,∞ one-to-one
map (i.e., a homeomorphism) and has Lipschitz regularity.

Another type of regularization for the single-hidden-layer vector field of Eq. (3.7) we discuss is based
on the Barron norm [15]:

‖θ‖2B :=
1

d′

d′∑
j=1

‖θj1‖22(‖[θ2]j‖1 + ‖bj2‖1)2 ,

where θj1 denotes the jth column of θ1 and [θ2]j denotes the jth row of θ2. As discussed in the main
text, the reason we might consider a Barron norm penalty for the single-hidden-layer vector field in

4I.e smoothness asks for Lipschitz regularity vector field, which ensures existence and uniqueness of the flow.

13

Eq. (3.7) rather than the quadratic penalty is because of its theoretical results. Indeed, the Rademacher
complexity is bounded for the combination of a single-hidden-layer vector field with a Barron norm
penalty, but not when combined with a quadratic penalty.

B.1 Linear in parameters - quadratic energy

Now let us examine in detail models that are linear in parameters and have quadratic energy on
parameters: this case is the simplest to be studied, and computationally not as demanding as the
nonlinear case. As mentioned above, the set of possible vector fields f(·, θ(t)) is a finite dimensional
linear space, which is a reproducing kernel Hilbert space when endowed with an L2 norm. Since all
Hilbert norms in finite dimensions are equivalent, this choice of regularization is universal in this
class of quadratic penalties.

1. The vector field is f(·, θ(t)) = θ ·σ, where σ is a vector of maps. In this case, the optimality
equation reads

∂θf(x, θ(t))>(∇p(t,x)ρ(t,x)) =

∫
Rd

σ(x)>(∇p(t,x)ρ(t,x)) dx .

2. If the penalty R only depends on θ and is quadratic: R(θ(t)) = 1
2

∫ 1

0
‖θ(t)‖2 dt, then one

has δR
δθ (θ(t), ρ(t)) = θ(t).

Thus, under these two conditions, the parameters are explicit in terms of p, ρ and σ:

θ(t) =

∫
Rd

σ(x)>(∇p(t,x)ρ(t,x)) dx . (B.2)

Two observations are warranted. First, if, instead of quadratic regularization on the parameters, we
were to choose a RKHS norm (in the infinite dimensional case) as penalty, it would result in the
introduction of the kernel applied to the R.H.S. of Eq. (B.2). Second, from Eq. (B.2), one could be
tempted to derive an evolution equation for θ. This equation is known as the EPDiff equation [41]
and is unfortunately not a closed equation on the set of parameters θ(t) themselves. Therefore, our
approach is a possible way to approximate it.

An important property of this simple setting is that the norm of the vector field is preserved by the
forward model defined by the collection of Hamiltonian particles and it also holds in the continuous
setting. As stated in Section 3.1, the Hamiltonian is given by R(θ(t)) = 1

2 Tr
(
A(t)>MAA(t)

)
+

1
2b(t)

>Mbb(t) where A, b are the optimal parameters given by{
A(t) = MA

−1(−
∑K
j=1 pj(t)σ(qj(t))

>)

b(t) = Mb
−1(−

∑K
j=1 pj(t)) .

(B.3)

The Hamiltonian R(θ(t)) being constant gives a constant norm vector field.

B.2 Nonlinear in parameters - energy which depends on the distribution

For exposition purposes, we present two cases of interest which we have not well explored numeri-
cally.

Example of the Barron norm. Obviously, the single-hidden-layer vector field in Eq. (3.7) is not
linear in parameters. We have already discussed that it is proper in this case to endow the space with
norms such as the Barron norm [15]. For simplicity, consider the single-hidden-layer vector field in
Eq. (3.7) without b1, i.e., f(x(t), θ(t)) = θ1σ(θ2(x) + b2). A simple upper bound for the Barron
norm5 is

‖f(·, θ)‖2B :=
1

d′

d′∑
j=1

‖θj1‖22(‖[θ2]j‖1 + ‖[b2]j‖1)2 . (B.4)

5The actual Barron norm is defined as the infimum of the r.h.s. in Eq. (B.4) on all the possible representations
of the function f(·, θ) as a single-hidden-layer.

14

Again, θj1 denotes the jth column of θ1 and [θ2]j denotes the jth row of θ2.

Let us consider the case of R(θ(t)) = 1
2‖f(·, θ)‖2B. In this case, one has the following optimality

equations to solve

θj1(‖[θ2]j‖1 + ‖|[b2]j‖1)2 =

∫
Rd

σ([θ2]jx + [b2]j)
>(∇p(t,x)ρ(t,x)) dx ,

‖θj1‖22(‖[θ2]j‖1 + ‖[b2]j‖1)∂‖[θ2]kj ‖1 =

∫
Rd

[dσ([θ2]jx + [b2]j)(xk)]>(∇p(t, x)ρ(t,x)) dx ,

‖θj1‖22(‖[θ2]j‖1 + ‖[b2]j‖1)∂‖[b2]jk‖1 =

∫
Rd

[dσ([θ2]jx + [b2]j)(xk)]>(∇p(t,x)ρ(t,x)) dx .

These equations involve the subdifferential of the L1 norm, and optimization of this type of functions,
which involves sparsity, is a well-explored field [5]. We leave experiments with this norm for future
work. Note that in this case the norm of the vector field is not equal to the Hamiltonian and it is not a
constant of the flow.

B.3 L2 regularization, optimal transport

Last, we briefly mention a model that is part of our framework which has the advantage of not
specifying the penalty on the space of parameters encoding the vector field. In case there is no
obvious norm to be used on the space of vector fields, it is possible to use an L2 type of penalty on
the vector fields themselves instead of on the parameters.

Indeed, one way to be rather independent of the choice of the parameterization of the map consists in
introducing a cost that represents the L2 norm of the map. However, L2 depends on the choice of a
measure and this measure can be chosen as the density of the data, ρ(t,x). More precisely, one can
use

R(f, ρ(t)) =
1

2

∫
Rd

‖f(x, θ)‖2ρ(t,x) dx . (B.5)

In such a case, this formulation resembles finding an optimal transport (OT) map between ρ0 and ρ1.
Specifically, optimal transport is an optimization problem which can be solved via a fluid dynamic
formulation [9] introducing the kinetic penalty above. However, the two models (OT and the one
defined by the regularization Eq. (B.5)) differ since the optimization set for optimal transport is
the set of L2 vector fields with respect to measure ρ and the above formulation is a parameterized
approximation of this set.

This parameterized approximation needs to retain generalization properties of the optimized map.
Note however, that in the limit where the number of neurons goes to infinity, optimal transport
will be well-approximated since the optimization is performed on a dense subset of all vector
fields. Obviously, fixing the choice to a single-hidden-layer design implies a choice for d′ in
θ1(t) ∈ L(Rd′ ,Rd) and θ2(t) ∈ L(Rd,Rd′) of Eq. (3.7), which thus gives a regularization of the
computed approximation of the optimal transport map.

Computational burden. In either case of the Barron norm or the optimal transport type of penalty,
the implicit equation corresponding to the third equation in Eq. (A.3) has to be solved at each layer
of the discretization. We experimented with a simple strategy of unrolling the related minimization
scheme. An efficient approach to solve such implicit equations will be necessary for practical
implementations.

B.4 Rademacher complexity of bounded energy flows.

In this section, given a set of vector fields with bounded Rademacher complexity, we show that the
resulting flows also have bounded Rademacher complexity. The flow of a vector field f(·, θ(t)) is
a vector valued map denoted by ϕ. Let us first treat the case of the Rademacher complexity of a
component of the flow map ϕk.
Theorem 2. Let F be a space of vector fields defined on a compact space C ⊂ Rd. Assume that
the Rademacher complexity on n points in C of each component of the vector fields fk(t, ·) for
k = 1, . . . , d is controlled by M(n, t) which depends on n, then the Rademacher complexity of each
component of the flows at time 1 is bounded by

∫ 1

0
M(n, t) dt.

15

Proof. Recall that Rademacher complexity, see [39], of a class of functions F is defined as, for
Z = (z1, . . . , zn) ∈ C,

RadZ(F)
def.
= E

[
sup
g∈F

n∑
i=1

εig(zi)

]
,

where the {εi}ni=1 are i.i.d. Rademacher random variables. Our hypothesis ensures RadZ(F) ≤
M(n). Apply the definition of the flow to get

ϕ(1,x) = x +

∫ 1

0

f(ϕ(t,x), θ(t)) dt .

Therefore,

E

[
sup
ϕ∈F

n∑
i=1

εiϕ
k(zi)

]
≤ RadZ({Id}) +

∫ 1

0

E

[
sup

f(·,θ(t))

n∑
i=1

εif
k(ϕ(t, zi), θ(t))

]
dt ,

≤ 0 +

∫ 1

0

M(n, t) dt .

In the previous formula, we used the fact that the Rademacher complexity of a set comprised of a
single map is zero.

Corollary 3. Let H be a RKHS of vector fields whose kernel k is bounded on the diagonal
‖k(x,x)k‖∞ < ∞ , then, the set of flows denoted by F at time 1 of time-dependent vector fields

in B(0, R), the ball of radius R centered at the origin satisfies RadZ(F) ≤ 2R
√
‖k(x,x)k‖∞√

n
, where

RadZ(F) is the Rademacher complexity for n points.

Proof. The Rademacher complexity of the ball of radius R in the RKHS H [7, Lemma 22] is upper

bounded: RadZ(B(0, R)) ≤ 2R
√
‖k(x,x)k‖∞√

n
. We then directly apply Theorem 2.

A similar result also holds for vector fields generated by the single-hidden-layer vector field in
Eq. (3.7), see [15]. Last, we note that the result and its proof also hold if one uses the following
Rademacher complexity for vector valued functions [26],

RadZ(F)
def.
= E

sup
g∈F

n∑
i=1

d∑
j=1

εjεigj(zi)

 ,
for g = (gj)j=1,...,d ∈ F .

B.5 Consequences for the UpDown model

We put together the previous results on the UpDown model. First, the space of vector fields en-
dowed with the quadratic penalty on the parameters forms a RKHS. The variational formulation
implies that the norm of the velocity field generated by a given collection of Hamiltonian particles
{(qj(0),pj(0))} is preserved. In addition, this norm can be explicitly computed since the parameters
at time 0 can be computed in terms of {(qj(0),pj(0))}. Last, the generated space of maps has a
Rademacher complexity which is linearly bounded by this norm. In order to be fully explicit on
the constant for the Rademacher complexity, we need to compute supx∈C ‖k(x, x)‖ where k is the
kernel associated with the RKHS. Without making this quantity explicit here, we simply mention that
the bound degrades (i.e. increases) with increasing inflation factor α, as it can be expected.

C Analysis of the number of free parameters

It is instructive to understand the number of parameters for a shooting approach in comparison to the
typical approach of optimizing a neural network (where the parameter-dependency at optimality is
only considered implicitly at convergence of the numerical solution rather than explicitly during the
shooting). We focus on the cases of affine and convolutional layers for illustration.

16

Consider a DNN with a depth of L layers, where each hidden layer has P parameters. The number of
free parameters is then LP , compared to 2KS where K is the number of active particles, each of
them of size 2S6. Hence, solutions with less than LP/(2S) particles provide benefits in the number
of free parameters. Therefore, as the number of particles is reduced, we may parameterize the DNN
with a smaller number of parameters. Most remarkably, the number of free parameters is always 2KS
regardless of the number of parameters of a particular layer as the layer parameters are obtained
via the shooting equations based on the particle states. This is a consequence of regularizing the
parameters in our loss which couples them across time at optimality. We make this clearer in what
follows.

Affine layers. Recall that in our simple example of §3.1 the parameters θ(t) = [A(t), b(t)] of our
affine7 model are given as

A(t)= MA
−1

− K∑
j=1

pj(t)σ(qj(t))
>

 , b(t)= Mb
−1

− K∑
j=1

pj(t)

 . (C.1)

Here, A(t) and b(t) have d2 and d parameters, respectively; these parameters are indirectly given by
the set of particles {(qj(t),pj(t))} at any given time. Hence, for this model S = d and P = d(d+1).
If we assume we have K particles and compare to a discrete layer implementation of this model then
the particle-based approach will have less free parameters if

2Kd < Ld(d+ 1) .

Importantly, the state-space dimension, d, only enters the number of free parameters linearly for the
particle approach (2Kd), while there is a quadratic dependence for direct optimization (Ld(d+ 1)).
This is a direct consequence of the optimality condition which couples the parameters θ(t) across
time. One can see this phenomenon in action in Eq. (C.1), where the matrix A is expressed as the
sum of matrices pj(t)σ(qj(t))

> with rank ≤ 1. Concretely, a particle-based shooting approach uses
less parameters if the number of particles K < L(d+ 1)/2. Another interesting observation based on
this example is that even if we would have only considered a linear model (i.e., without the bias term,
b(t)) the number of parameters for the particles would have still remained at 2KS. This is again a
consequence of optimality and of our parameter regularization. Note that this also means that even
though our UpDown model

ẋ(t) = θ1(t)σ(v(t)) + b1(t), v̇(t) = θ2(t)x(t) + b2(t) + θ3(t)σ(v(t)) ,

has significantly more parameters θ(t) = [θ1(t), b1(t), θ2(t), b2(t), θ3(t)] when directly optimized,
this has no direct impact on the number of free parameters of its particle-based parameterization.
Only the state-space dimension matters. Concretely, if we were to instead consider a model of the
form

ẋ(t) = θ1(t)σ(v(t)), v̇(t) = θ2(t)x(t) ,

the particle-based parameterization would stay unchanged! Only the way how one infers θ(t) from
the particles changes.

Convolutional layers. Shooting approaches for convolutional models can also be derived. We did
not experiment with such models in this work. However, we show here that the number of free
parameters may also be decreased with a particle-based approach. This will be interesting to explore
in future work. Specifically, for convolutional layers a particle-based parameterization could be
particularly effective as one typically has quadratic complexity in the number of filters between
convolutional layers (i.e., if a layer with N feature channels is followed by a layer with M feature
channels, this will induce the estimation of N ×M convolutional filters and hence will drastically
influence the number of parameters for largeN orM). In contrast, a particle-based shooting approach

6For example, S for our UpDown model simply corresponds to the dimension of its state space: S = (α+1)d,
where α is the inflation factor and d the data dimension. Note that in our experiments with the UpDown model
we also learned an affine map from the initial conditions x(0) to the initial conditions v(0). Such a map has
αd(d + 1) parameters. These parameters are included in the table of Fig. 3 and in Tables 1/2 summarizing
the number of mode parameters. However, we will not consider parameters in our discussion here, as they
would equally apply to both a shooting and a direct optimization approach and could also be avoided by simply
initializing v(0) to zero. A similar initialization to zero approach is, for example, commonly taken in ResNets
when increasing the number of feature channels [20].

7In this section, we mean affine with respect to (σ(qj(t)))j∈1,...,K .

17

does not increase the number of parameters as it ties them together via the optimality conditions
expressed by the shooting equations. As a rough estimate for a standard convolutional ResNet for
L = 50, P = 1002 × 16, LP ≈ 8.106. Thus, if particles have size 40, we end up with at most 105

active particles.

General remarks. Nevertheless, all model parameters (e.g., [A(t), b(t)] or all convolutional filters
for a convolutional layer) are still instantiated during computation. It is important to note that
regardless of the chosen number of particles, a shooting neural network solution is a possible optimal
solution (for a given data set) at any given time, not only at convergence. One optimizes over the
family of possible neural network models with the goal of finding the element within this family that
best matches the observations.

D Automatic shooting

The general shooting equations were presented in Eq. (3.3). We then proceeded to explicitly derive
the shooting equations for a continuous DNN with linear-in-parameter layers and UpDown layers in
§3.1 and §3.2, respectively. While this was instructive, it is somewhat cumbersome, in particular,
for more complex models or when moving to convolutional networks. Fortunately, in practice these
shooting equations do not need to be derived by hand. Indeed, they are completely specified by the
Hamiltonian

H(p,x, θ) = p>(ẋ− f(t,x, θ)) +R(θ) ,

in the sense that the shooting equations in Eq. (3.3) are computed via differentiation ofH . Specifically,
the shooting equations in Eq. (3.3) are equivalently given by

ẋ = ∂H(p,x,θ)
∂p ,

ṗ = −∂H(p,x,θ)
∂x ,

θ ∈ arg minθH(p,x, θ) .

As discussed above, the last equation can be replaced by solving

∂θR(θ)−
N∑
i=1

∂θf(t,xi, θ)
T (pi) = 0 .

Automatic differentiation can be used to automatically obtain the shooting equations. As fitting a
shooting model requires differentiating the shooting equations, we in effect end up with differentiating
twice. This can be done seamlessly using modern deep learning libraries, such as PyTorch.

E Universality of the UpDown model

In this section, we set out to demonstrate that the UpDown model is universal in the sense that its
associated flow can come ε-close to the flow of any well behaving time-dependent vector field.

Recall the single-hidden-layer vector field in Eq. (3.7) with time-varying parameters θ(t) =
(θ1(t), θ2(t), b1(t), b2(t)). While shooting with the single hidden layer vector field is theoretically
appealing as it is universal [1], it would result in implicit shooting equations. We first show that the
UpDown model introduced in 3.2 can give the same flow as the single hidden layer (Lemma 5) and
then leverage this relationship to show that the UpDown model inherits the universality of the single
hidden layer (Proposition 6).
Lemma 4. Consider the single-hidden-layer vector field in Eq. (3.7) with θ2(t) and b2(t) being
piecewise C1 and θ1(t), b1(t) continuous. Then, there exists a parameterization of the UpDown model
that gives the same flow at a fixed time, T = 1.

Proof. We rewrite the differential equation

q̇(t) = θ1(t)σ(θ2(t)q + b2(t)) + b1(t) ,

by introducing the additional state variable v(t) = θ2(t)q(t) + b2(t) which we differentiate w.r.t.
time. We obtain v̇(t) = θ̇2(t)q(t) + ḃ2(t) + θ2(t)q̇(t) . Replacing q̇(t) by its formula, we get

v̇(t) = θ̇2(t)q(t) + ḃ2(t) + θ2(t)θ1(t)(σ(v(t)) + b1(t)) .

18

The system can be rewritten as

{
q̇(t) = θ1(t)σ(v(t)) + b1(t) ,

v̇(t) = θ3(t)q(t) + θ4(t)σ(v(t)) + b3(t) .
(E.1)

Therefore, with the initial condition v(0) = θ2(0)q(0) and q(0) = q0, the two systems of ordinary
differential equations are equivalent.

Note that the key point in Lemma 4 is the loss of regularity in the evolution of θ2 since we differenti-
ated once in time. For that reason, we now show that adding more dimensions using the inflation
factor α alleviate this issue. It is likely possible that one could prove a universality result using only
α = 1 but we shall leave this question for future work8. However, experimentally, the inflation factor
has a crucial effect on the performance of the optimization, as discussed in §4. Lemma 4 helps us
establish the next result.

Lemma 5. Consider the single-hidden-layer vector field in Eq. (3.7) with θ(t) being piecewise
continuous. Then, there exists a parameterization of the UpDown model that gives the same flow.

Proof. Without loss of generality, we only treat the case of one discontinuity in time of the parame-
terization; We thus assume that θ(t) is continuous on [0, t1[and [t1, 1]. We consider q,v1,v2 ∈ Rd
such that q,v1 are defined as in Lemma 4. We now define, up to time t1, v2(t) = θ(t1)v1(t)+θ2(t1)
which implies (differentiating w.r.t. time) that v2 follows an evolution equation similar to v1 and
thus can be encoded in the general form of Eq. (E.1). Now, q(t),v2(t) are defined on [t1, 1] by
the evolution Eq. (E.1) in order to coincide with the flow of single-hidden-layer vector field on
[t1, 1], q̇(t) = θ1(t)σ(v2(t))+ b1(t) and v̇2(t) = θ3(t)q(t)+θ4(t)σ(v2(t))+ b3(t) for well chosen
parameters as in Lemma 4. Since the value of v1(t) is not used in the evolution equation of q(t), we
can simply extend it by v1(t) = v1(t1) which is a valid evolution equation for Eq. (E.1).

In the general case, we decompose the time interval [0, 1] into k intervals [ti, ti+1[on which θ(t)
is continuous and the proposed method can be directly extended using an inflation factor α = k,
introducing vk ∈ Rd.

Note that the result of this lemma gives an equality between the two flows defined on the whole space
Rd. The next result is an approximation result which holds on a compact domain C ⊂ Rd. For a
function f : Rd → R, we denote ‖f‖C,∞ = supx∈C |f(x)|.
Proposition 6. The UpDown model is universal in the class of time-dependent vector fields. Let
C ⊂ Rd be a compact domain. For every time-dependent vector field (such that it is time continuous
and is Lipschitz in space) w : [0, 1] × Rd 7→ Rd and its associated flow ϕ(t,x) there exist time
dependent parameters of the UpDown model such that

{
q̇(t) = θ1(t)σ(v(t)) + b1(t) ,

v̇(t) = θ2(t)(q(t)) + b2 + θ3(t)σ(v(t)) ,

is ε-close to the solution ϕ(1,x), e.g. ‖ϕ(1,x)− q(1,x)‖C,∞ ≤ ε.

Proof. The proof is standard and we include it here for self-containedness. It is the consequence of [1]
and Lemma 5. Let B(0, r) a ball of radius r in Rd which contains ϕ(t,x) for all time t ∈ [0, 1]. The
flow associated with a given time-dependent vector field v(t, ·) can be approximated by a vector field
which is piecewise constant in time; i.e. let ε > 0 be a positive real, (by continuity in time of v(t, ·))
there exists a decomposition of [0, 1] into k intervals [ti, ti+1] and Lipschitz vector fields vi(x) =
f(x, θi) where f is the single hidden layer in Eq. (3.7) such that ‖vi(x)− v(t,x)‖B(0,r),∞ ≤ ε for
t ∈ [ti, ti+1]. Denote by w(t, ·) the time-dependent vector field defined by w(t, ·) = vi(·) for all

8Note that the case α = 1 is similar in its formulation to a second-order model on q.

19

t ∈ [ti, ti+1]. Thus, denoting the flow of v(t, ·) by ϕv and the flow of w(t, ·) by ϕw, we get

‖ϕv(1,x)− ϕw(1,x)‖ ≤
∫ 1

0

‖v(t, ϕv(t,x))− v(t, ϕw(t,x))‖+ ‖v(t, ϕw(t,x))− w(t, ϕw(t,x))‖ dt

‖ϕv(1,x)− ϕw(1,x)‖C,∞ ≤
∫ 1

0

Lip(v)‖ϕv(t,x)− ϕw(t,x)‖C,∞ + ‖v(t, ·)− w(·)‖B(0,r),∞ dt

≤
∫ 1

0

Lip(v)‖ϕv(t,x)− ϕw(t,x)‖C,∞ dt+ ε ,

where Lip(v) denotes a bound on the Lipschitz constant of v(t,x) w.r.t. x ∈ B(0, r) for all t ∈ [0, 1].
Then, the Grönwall lemma [41] gives

‖ϕv(1,x)− ϕw(1,x)‖C,∞ ≤ εeLip(v) . (E.2)

By Lemma 5, ϕw(1,x) can be approximated by the flow of the UpDown and the result is obtained via
the triangle inequality.

In this section, we focused on a universality result in the space of time-dependent vector fields.
Interestingly, due to the additional dimensions, it is likely that the model is universal in the space
of functions as well. This conjecture is supported by the quadratic 1D function regression example
which shows that the UpDown model is able to capture some maps which are not homeomorphic. We
leave this question for future work.

F Experimental settings

This section describes our experimental settings. We use our UpDown model for all experiments
and simply use a weighted Frobenius norm penalty for all parameters. Specifically, we weigh this
penalty for all parameters with 1 except for, θ3 which we penalize by 10. In our experiments, we
have observed better convergence properties for higher penalties on θ3. This might be due to the
special role that θ3 plays in the model as it subsumes a quadratic term in the original derivation of the
UpDown model (see §3.2). In all experiments, we also optimize over the affine map from x(0) to v(0)
for the data evolution.

Simple function regression. We use 500 epochs for all experiments. For all particle-based exper-
iments we freeze the positions of the particles for the first 50 epochs. We use a ReLU activation
function and the MSE loss. We weigh the MSE loss by 100 and the parameter norm loss by 1. We
use 500 training samples, 1,000 testing samples and 1,000 validation samples and a batch size of
50. Note that for these simple examples there is, in practice, no real difference between the training,
testing, and validation data, as the number of samples is large and the domain is [−1.5, 1.5]. We
initialize the particle positions uniformly at random in [−1.5, 1.5] and draw the momenta from a
Gaussian distribution with zero mean and standard deviation 0.1. All time-integrations are done
via a fourth-order Runge-Kutta integrator with time-step 0.1. For optimization, we use Adam with
a learning rate of 0.01 and the ReduceLROnPlateau learning rate scheduler of PyTorch with a
learning rate reduction factor of 0.5.

Spiral. The spiral data is generated between time t = 0 and t = 10 with 200 uniformly spaced
timepoints. Training is only on small time snippets with an approximate length of 0.25 time-units.
Evaluation is on these short time snippets as well as on the entire trajectory by pasting together
solutions for these short time snippets, i.e., an individual short solution starts where the previous one
ends. Settings for the spiral are the same as for the simple function regression with the following
exceptions. We use 1,500 epochs and the step-size for the fourth-order Runge-Kutta integrator is
0.05. The MSE loss is still weighted by 100, but the parameter norm loss only by 0.01. We randomly
draw 100 new training samples during each epoch and use 100 evaluation samples and 1,000 short
range samples and 1 long-range testing sample. All samples are randomly drawn from the trajectory.
However, as the trajectory is traversed at highly nonuniform speed the samples are drawn from a
uniform distribution across the trace of the spiral. As for the simple function regression experiment,
there is little practical difference between the training, validation, and testing data as the problem is
so simple. However, this is not of concern in these experiments as the prime objective is to study the
fitting behavior of the different models. We use a batch size of 100.

20

Rotating MNIST. We use the data provided by the authors of [40] and follow the same autoencoder
architecture, except that our encoder maps into a 20-dimensional representation space. The number
of particles is set to 100 and the inflation factor α is set to 10. For optimization, we use Adam with a
learning rate of 0.001 and the CosineAnnealingLR learning rate scheduler of PyTorch. We train
for 500 epochs with a batch size of 25 and the parameter norm loss set to 0.1.

Bouncing balls. As in the rotating MNIST experiment, we rely on the data provided by the authors
of [40], follow their autoencoder architecture and set the dimensionality of the representation space
of the encoder to 50. The first three images of each sequence are provided to the encoder by
concatenating the images along the channel dimension. The inflation factor α is set to 20 and we use
100 particles. We optimize over 100 epoch using Adam with the CosineAnnealingLR learning rate
scheduler of PyTorch, the initial learning rate is set to 0.001 and the parameter norm loss is set to
0.0001.

G Additional results

Simple function regression. In Section 4, we considered approximating a quadratic-like function.
Here we show parallel results for approximating a cubic function y = x3. We will also include some
additional figures for the quadratic-like regression function. Note that whereas the cubic function
is invertible (but not diffeomorphic), the quadratic-like one considered in Section 4 is a simple
example of a non-invertible function. Tab. 1 shows the number of parameters for the four different
formulations for both regression functions. Fig. 6 shows for the cubic regression the test loss and the
network complexity, as measured by the Frobenius norm [28], for the four formulations. On average
the particle-based approaches show the best fits with the lowest complexity measures, indicating the
simplest network parameterization. Note however that while the dynamic particle approach greatly
outperformed the static particle approach for the quadratic-like function (see Fig. 2) this is not the
case here. In fact, the static particle approach shows slightly better fits than the dynamic one. This
might be because the cubic function is significantly simpler to fit and hence may not benefit as much
from the dynamic approach. To illustrate that fitting the quadratic-like function is indeed harder,
Figs. 7 and 8 show function fits for different numbers of particles for the cubic function and the
quadratic-like function, respectively. All these fits are for the particle-based dynamic UpDown model.
Clearly, very few particles can achieve reasonable fits for a simple function. As little as two particles
already show a good fit for the cubic function, whereas the quadratic-like function requires with
more particles. This supports our hypothesis that fitting more complex functions may require more
particles.

Since our approach is based on the time-integration of the UpDown model it is interesting to see 1) how
the mapping is expressed across time and 2) how the parameters, θ(t), of the UpDown model change
over time. Fig. 9 shows example mappings for the cubic and the quadratic-like function, respectively.
The estimated mappings are highly regular. Lastly, Figs. 10 and 11 show the time-evolutions of the
model parameters for the cubic and the quadratic-like function for two different inflation factors.
While different parameters show different dynamics, clear changes over time can be observed. In
particular, θ2(t) and b2(t) show strong changes. These parameters mostly control the behavior of the
hidden high-dimensional state, v, as θ3(t) is penalized significantly more in our model (see Sec.F)
and consequently shows more moderate changes.

Table 1: Number of parameters for the simple function regression cubic and quadratic experiments.

Inflation factor
#Particles 4 8 16 32 64 128

static/dynamic w/ particles

2 28 52 100 196 388 772
5 58 106 202 394 778 1,546

15 158 286 542 1,054 2,078 4,126
25 258 466 882 1,714 3,378 6,706

dynamic direct n/a 153 461 1,557 5,669 21,573 84,101
static direct n/a 37 105 337 1,185 4,417 17,025

21

0.2

0.4

0.6

0.8

L
o
ss

1* 1*2* 1* 1*1*1* 1* 1*

Static direct Static with particles Dynamic direct Dynamic with particles

α =128α =64α =32α =16

-1.5

-1.0

-0.5

0.0

1* 2* 1*1*

lo
g
2
(c
o
m
p
le
xi
ty
)

α =128α =64α =32α =16

Figure 6: Function fit (15 particles) for cubic y = x3 for 10 random initializations. Left: Test loss; Right:
time-integral of log2 of the Frobenius norm complexity. Lower is better for both measures. * indicates number
of removed outliers (outside the interquartile range (IQR) by ≥ 1.5× IQR); α denotes the inflation factor.

y

0

y

0

2 particles 5 particles

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

y

0

y

0

15 particles 25 particles

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x x

Figure 7: Fits for the cubic function with inflation factor 16 and for different numbers of particles. Vertical lines
indicate particle positions after optimization. While subtle, the figures suggest that using more particles allows
for better approximation of the function. This is confirmed by the test loss values in Fig. 6 (bottom left).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

x x

x

3.0

2.75

2.50

2.25

3.0

2.75

2.50

2.25

y

y y

y

3.0

2.75

2.50

2.25

3.0

2.75

2.50

2.25

2 particles 5 particles

25 particles15 particles

Figure 8: Fits for the quadratic-like function for inflation factor 16 with different numbers of particles. Vertical
lines indicate particle positions after optimization. As this function is more complex than the cubic function 2
and 5 particles is not sufficient for a fit. But 15 and 25 particles result in a well-fitting approximation.

Spiral. Tab. 2 shows the number of parameters in each of the four formulations for the spiral
experiment. This table complements the Table in Fig. 3 which only showed the number of parameters
when using 15 particles.

22

q 1 q 1

0.0 0.2 0.4 0.6 0.8 1.0
Time

-3

-2

-1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0
Time

-1

0

1

2

3

Cubic Quadratic-like

Figure 9: Mapping of the cubic function (left) and the quadratic-like function (right). As can be seen, the
mappings are highly regular.

Table 2: Number of parameters for the spiral experiment.

Inflation factor
#Particles 16 32 64 128

static/dynamic w/ particles
15 1,116 2,172 4,284 8,508
25 1,796 3,492 6,884 13,668
50 3,496 6,792 13,384 26,568

static direct n/a 1,282 4,610 17,410 67,586
dynamic direct n/a 6,026 22,282 85,514 334,858

23

0.0 0.2 0.4 0.6 0.8 1.0
Time

-0.2

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Time

-0.02

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0
Time

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.0 0.2 0.4 0.6 0.8 1.0
Time

-0.0712

-0.0710

-0.0708

-0.0706

-0.0704

0.0 0.2 0.4 0.6 0.8 1.0
Time

- 0.06

- 0.04

- 0.02

0.00

0.02

0.04

Inflation factor (α): 64

0.0 0.2 0.4 0.6 0.8 1.0

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8 1.0

-0.015

-0.010

-0.005

0.000

0.005

0.010

Time Time

0.0 0.2 0.4 0.6 0.8 1.0

Time

-0.002

-0.001

0.000

0.001

0.002

0.003

Inflation factor (α): 16

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.003275

0.003300

0.003325

0.003350

0.003375

0.003400

0.003425

0.0 0.2 0.4 0.6 0.8 1.0
Time

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015
b1 b2

θ3θ2θ1

θ3θ2θ1

b1 b2

Figure 10: Weight evolution across time (i.e., continuous depth) for 15 particles when fitting the cubic function
using the UpDown model: ẋ(t) = θ1(t)σ(v(t)) + b1(t), v̇ = θ2(t)x(t) + b2(t) + θ3(t)σ(v(t)). Results are
for the dynamic with particles approach. Top: Inflation factor 16. Bottom: Inflation factor 64. Changes in
parameter values can clearly be observed.

24

Time Time Time

Time Time

b 2

Inflation factor (α): 64

Time Time Time

Inflation factor (α): 16

Time Time

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0

- 0.01

0.00

0.01

0.02

0.0 0.2 0.4 0.6 0.8 1.0

0.1986

0.1988

0.1990

0.1992

0.1994

0.1996

0.1998

0.0 0.2 0.4 0.6 0.8 1.0
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04
b2b1

θ1 θ2 θ3

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.0 0.2 0.4 0.6 0.8 1.0

- 0.001

0.000

0.001

0.002

0.003

0.0 0.2 0.4 0.6 0.8 1.0

0.2195

0.2200

0.2205

0.2210

0.2215

0.2220

0.0 0.2 0.4 0.6 0.8 1.0

-0.01

0.00

0.01

0.02

0.03 b2b1

θ1 θ2 θ3

Figure 11: Weight evolution across time (i.e., continuous depth) for 15 particles when fitting the quadratic-like
function using the UpDown model: ẋ(t) = θ1(t)σ(v(t)) + b1(t), v̇ = θ2(t)x(t) + b2(t) + θ3(t)σ(v(t)).
Results are for the dynamic with particles approach. Top: Inflation factor 16. Bottom: Inflation factor 64.
Changes in parameter values can clearly be observed.

25

