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Abstract

A major research direction in contextual bandits is to develop algorithms that are
computationally efficient, yet support flexible, general-purpose function approx-
imation. Algorithms based on modeling rewards have shown strong empirical
performance, yet typically require a well-specified model, and can fail when this
assumption does not hold. Can we design algorithms that are efficient and flexible,
yet degrade gracefully in the face of model misspecification? We introduce a
new family of oracle-efficient algorithms for ε-misspecified contextual bandits
that adapt to unknown model misspecification—both for finite and infinite action
settings. Given access to an online oracle for square loss regression, our algorithm
attains optimal regret and—in particular—optimal dependence on the misspecifi-
cation level, with no prior knowledge. Specializing to linear contextual bandits
with infinite actions in d dimensions, we obtain the first algorithm that achieves the
optimal Õ(d

√
T + ε

√
dT ) regret bound for unknown ε.

On a conceptual level, our results are enabled by a new optimization-based per-
spective on the regression oracle reduction framework of Foster and Rakhlin [22],
which we believe will be useful more broadly.

1 Introduction

The contextual bandit (CB) problem is an extension of the standard multi-armed bandit problem that
is relevant to a variety of applications in practice, including health services [43], online advertisement
[35, 4] and recommendation systems [8]. In the contextual bandit setting, at each round, the learner
observes a feature vector (or context) and an action set. The learner must select an action out of that
set and only observes the reward of that action. To make its selection, the learner has access to a
family of hypotheses (or policies), which map contexts to actions. The objective of the learner is to
achieve a cumulative reward that is close to that of the best hypothesis in hindsight for that specific
sequence of contexts and action sets.

A common approach to the contextual bandit problem consists of reducing it to a supervised learning
task such as classification or regression [33, 20, 6, 7, 42, 8, 36]. Recently, Foster and Rakhlin [22]
proposed SquareCB, an efficient reduction from K-armed contextual bandits to square loss regression
under realizability assumptions. One open question that comes up after this work is whether their
approach can be generalized to action spaces with many (or infinite) actions in d-dimensions. Another
open question is whether one can seamlessly shift from realizability to misspecified models without
requiring prior knowledge of the amount of misspecification. This is precisely the setup we study
here, where the action set is large or infinite, but where the learner has a ‘good’ feature representation
available up to some unknown amount of misspecification.

Adequately handling misspecification has been a subject of intense recent interest even for the simple
special case of linear contextual bandits. Du et al. [19] questioned whether “good” is indeed enough,
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that is, whether we can learn efficiently even without realizability. Lattimore et al. [34] gave a positive
answer to that question, provided the misspecification level ε is known in advance, and showed that
the price of misspecification (for regret) is roughly ε

√
dT , where d is the dimension and T is the time

horizon. However, they left the adapting to unknown ε as an open question.

Our results. We provide an affirmative answer to all of these questions. We generalize SquareCB
to infinite action sets, and use this strategy to adapt to unknown misspecification ε by combining it
with a bandit model selection procedure akin to the one proposed by Agarwal et al. [9]. Our algorithm
is oracle-efficient, and adapts to misspecification efficiently and optimally whenever it has access to
an online oracle for square loss regression. When specialized to linear contextual bandits, it answers
the question of Lattimore et al. [34].

An important conceptual contribution of our work is to show that one can view the action selection
scheme used by SquareCB as an approximation to a log-barrier regularized optimization problem,
which paves the way for a generalization to infinite action spaces. Another by-product of our results
is a generalization of the original CORRAL algorithm [9] for combining bandit algorithms, which is
simpler, flexible, and enjoys improved logarithmic factors.

1.1 Related Work

The contextual bandit is a well-studied problem, and misspecification in bandits and reinforcement
learning has been the subject of intense recent interest. We mention a few works which are closely
related to our results.

For linear bandits in d dimensions, Lattimore et al. [34] gave an algorithm with regret O(d
√
T +

ε
√
dT ), and left adapting to unknown misspecification for changing action sets as an open problem.

Concurrent work of Pacchiano et al. [38] solves this problem for the special case where contexts/action
sets are stochastic, and also leverages CORRAL-type aggregation of contextual bandit algorithms.
Our results resolve this question in the general adversarial setting.

Within the literature general-purpose contextual bandit algorithms, our approach builds on a recent
line of research that provides reductions to offline/online square loss regression [21, 22, 39, 46, 23].

Besides the standard references on oracle-based agnostic contextual bandits (e.g., [33, 20, 6, 7]),
ε-misspecification is somewhat related to the recent stream of literature on bandits with adversarially-
corrupted feedback [37, 27, 14]. See the discussion in the supplementary material.

2 Problem Setting

We consider the following contextual bandit protocol: At every round t = 1, . . . , T , the learner first
observes a context xt ∈ X and an action set At ⊆ A, where A ⊆ Rd is a compact action space; for
simplicity, we assume throughout that A = {a ∈ Rd : ‖a‖ ≤ 1}, but place no restriction on (At)Tt=1.
Given the context and action set, the learner chooses action at ∈ At, then observes a stochastic loss
`t ∈ [−1,+1] depending on the action selected. We assume that the sequence of context vectors xt
and the associated sequence of action sets At are generated by an oblivious adversary.

We let µ(a, x) := E[`t |xt = x, at = a] denote the mean loss function, which is unknown to the
learner. We adopt a semi-parametric approach to modeling the losses, in which µ(a, x) is modelled a
(nearly) linear in the action a, but can depend on the context x arbitrarily [22, 46, 15]. In particular,
we assume the learner has access to a class of functions F ⊆ {f : X → Rd}, where for each f ∈ F ,
〈a, f(x)〉 attempts to predict the value of µ(a, x). In a well-specified/realizable setting, one would
assume that there exists some f? ∈ F such that µ(a, x) = 〈a, f?(x)〉. In this paper, we make no
such assumption, but the regret incurred by our algorithms depends on how far this is from being
true. For each f ∈ F , we let πf (·, ·) denote the induced policy, whose action at time t is given by
πf (xt,At) := argmina∈At

〈a, f(xt)〉.
The goal of the learner is to minimize its pseudoregret Reg(T ) against the best unconstrained policy:

Reg(T ) := E
[∑T

t=1 µ(at, xt)− infa∈At µ(a, xt)
]
.

Here, and for the remainder of the paper, we use E[·] to denote the expectation with respect to both
the randomized choices of the learner and the stochastic realization of the losses `t.
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This setup recovers the usual finite-arm contextual bandit with K arms setting by taking At =
{e1, . . . , eK}. Another important special case is the well-studied linear contextual bandit setting,
which corresponds to the case where F consists of constant vector-valued functions that do not
depend on X . Specifically, for any Θ ⊆ Rd, we can take F = {x 7→ θ | θ ∈ Θ}. In this case, the
prediction 〈a, f(x)〉 simplifies to 〈a, θ〉, a constant linear function of the action space A. This special
case recovers the most widely studied version of linear contextual bandits [3, 12, 1, 16, 2, 10, 17], as
well as Gaussian process extensions [40, 31, 18, 41].

2.1 Misspecification

Contextual bandit algorithms based on modeling rewards typically rely on the assumption of a
well-specified model (or, “realizability”): That is, existence of a function f? ∈ F such that µ(a, x) =
〈a, f?(x)〉 for all a ∈ A and x ∈ X [16, 1, 6, 21]. Since this assumption may not be realistic in
practice, a more recent line of work has begun to develop algorithms for misspecified models. In
particular, Crammer and Gentile [17], Ghosh et al. [26], Lattimore et al. [34] and Foster and Rakhlin
[22] consider a uniform ε-misspecified setting in which

inff∈F supa∈A,x∈X |µ(a, x)− 〈a, f(x)〉| ≤ ε, (1)

for some misspecification level ε > 0. Notably, Lattimore et al. [34] show that for the linear setting,
regret must grow as Ω(d

√
T + ε

√
dT ). Since d

√
T is the optimal regret for a well-specified model,

ε
√
dT may be thought of as the price of misspecification.

In this paper, we consider a weaker average-case notion of misspecification. Given a sequence
S = (x1,A1), . . . , (xT ,AT ) of context-action set pairs, we define the average misspecification level
εT (S) as

εT (S) := inff∈F

(
1
T

∑T
t=1 supa∈At

(〈a, f(xt)〉 − µ(a, xt))
2
)1/2

. (2)

This quantity measures the misspecification level for the specific sequence S at hand. Of course, the
uniform bound in Eq. (1) directly implies εT (S) ≤ ε for all S in Eq. (2), and εT (S) = 0 whenever
the model is well-specified.

We provide regret bounds that optimally adapt to εT (S) for any given realization of the sequence
S, with no prior knowledge of the misspecification level. The issue of adapting to unknown mis-
specification has not been addressed even for the stronger uniform notion (1). Indeed, previous
efforts typically use prior knowledge of ε to tune the exploration-exploitation scheme to encourage
conservative exploration when misspecification is large; see Lattimore et al. [34, Appendix E], Foster
and Rakhlin [22, Section 5.1], Crammer and Gentile [17, Section 4.2], and Zanette et al. [47] for
examples. Naively adapting such schemes using, e.g., doubling tricks, presents difficulties because
the quantity in Eq. (2) does not appear to be estimable without knowledge of µ.

2.2 Regression Oracles

Following Foster and Rakhlin [22], we assume access to an online regression oracle SqAlg, which is
simply an algorithm for sequential prediction with the square loss, using F as a benchmark class.
More precisely, the oracle operates under the following protocol. At each round t ∈ [T ], the algorithm
receives a context xt ∈ X , outputs a predictor ŷt ∈ Rd (in particular, we interpret 〈a, ŷt〉 as the
predicted loss for action a), then observes an action at ∈ A and loss `t ∈ [−1,+1] and incurs loss
(〈at, ŷt〉 − `t)2.4 Formally, we make the following assumption.
Assumption 1. The regression oracle SqAlg guarantees that for any (potentially adaptively chosen)
sequence {(xt, at, `t)}Tt=1,∑T

t=1(〈at, ŷt〉 − `t)2 − inff∈F
∑T
t=1(〈at, f(xt)〉 − `t)2 ≤ RegSq(T ) ,

for some function RegSq(T ).

For the finite-action setting, this definition coincides with that of Foster and Rakhlin [22].

4As in Foster and Rakhlin [22], the square loss itself does not play a crucial role, and can be replaced by
other loss that is strongly convex with respect to the learner’s predictions.
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While this type of oracle suffices for all of our results, our algorithms are stated more naturally in
terms of a stronger oracle which supports weighted online regression. In this model, we follow the
same protocol as in Assumption 1, except that at each time t, the regression oracle observes a weight
wt > 0 at the same time as the context xt, and the loss incurred is now wt · (〈at, ŷt〉 − `t)2. For
technical reasons, we also allow the oracle for this model to be randomized. We make the following
assumption.
Assumption 2. The weighted regression oracle SqAlg guarantees that for any (potentially adaptively
chosen) sequence {(wt, xt, at, `t)}Tt=1,

E

[
T∑
t=1

wt(〈at, ŷt〉 − `t)2 − inf
f∈F

T∑
t=1

wt(〈at, f(xt)〉 − `t)2

]
≤ E

[
max
t∈[T ]

wt

]
· RegSq(T ) ,

for some function RegSq(T ), where the expectation is taken with respect to the oracle’s randomization.

We show in the supplementary materialthat any unweighted regression oracle satisfying Assumption 1
can be transformed into a randomized oracle for weighted regression that satisfies Assumption 2,
with no overhead in runtime. Hence, to simplify exposition, for the remainder of the paper we state
our results in terms of weighted regression oracles satisfying Assumption 2.

Online regression has been well-studied, and many efficient algorithms are known for standard classes
F . One example, which is important for our applications, is when F is linear.
Example 1 (Linear Models). Suppose F = {x 7→ θ | θ ∈ Θ}, where Θ ⊆ Rd is a convex set with
‖θ‖ ≤ 1. Then the online Newton step algorithm [28] satisfies Assumption 1 with RegSq(T ) =
O(d log(T )) and—via our reduction —can be augmented to satisfy Assumption 2.

Further examples include kernels [45], generalized linear models [29], and standard nonparametric
classes [25]. We refer to Foster and Rakhlin [22] for a more extensive discussion.

Additional notation. We make use of the following additional notation. Given a set X , we let
∆(X) denote the set of all probability distributions over X . We let ‖x‖ denote the euclidean norm
for x ∈ Rd. For any positive definite matrix H ∈ Rd×d, we denote the induced norm on x ∈ Rd by
‖x‖2H = 〈x,Hx〉. For functions f, g : X → R+, we write f = O(g) if there exists some constant
C > 0 such that f(x) ≤ Cg(x) for all x ∈ X . We write f = Õ(g) if f = O(gmax{1,polylog(g)}),
and define Ω̃(·) analogously.

3 Adapting to Misspecification: An Oracle-Efficient Algorithm

We now present our main result: an efficient reduction from contextual bandits to online regression
that adapts to unknown misspecification εT (S) and supports infinite action sets. Our main theorem is
as follows.
Theorem 1. Suppose we have access to a weighted regression oracle SqAlg that satisfies Assump-
tion 2 for class F . Then there exists an efficient reduction which guarantees that for any sequence
S = (x1,A1), . . . , (xT ,AT ),

Reg(T ) = O
(√

dTRegSq(T ) log(T ) + εT (S)
√
dT
)
,

where εT (S) is the average misspecification level for S.

The algorithm has building blocks: First, we extend the reduction of [22] to infinite action sets
via a new optimization-based perspective, and we show that the resulting algorithm has favorable
dependence on misspecification level when it is known in advance. Then, we combine this reduction
with a scheme which aggregates multiple instances to adapt to unknown misspecification. If the
time required for a single query to SqAlg is TSqAlg, then the per-step runtime of our algorithm is
Õ(TSqAlg + |At| · poly(d)).

As an important application, we solve an open question recently posed by Lattimore et al. [34]: we
exhibit an efficient algorithm for infinite-action linear contextual bandits which optimally adapts to
unknown misspecification.
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Corollary 1. Let F = {x 7→ θ | θ ∈ Rd, ‖θ‖ ≤ 1}. Then there exists an efficient algorithm that, for
any sequence S = (x1,A1), . . . , (xT ,AT ), satisfies

Reg(T ) = O
(
d
√
T log(T ) + εT (S)

√
dT
)
.

This result immediately follows from Theorem 1 by applying online Newton step algorithm as the
regression oracle, as in Example 1. Modulo logarithmic factors, this bound coincides with the one
achieved by Lattimore et al. [34] for the simpler non-contextual linear bandit problem, for which the
authors also present a matching lower bound.

The remainder of this section is dedicated to proving Theorem 1. The roadmap is as follows.
First, we revisit the reduction from K-armed contextual bandits to online regression by Foster and
Rakhlin [22] and provide a new optimization-based perspective. This new viewpoint leads to a natural
generalization from theK-armed case to the infinite action case. We then provide an aggregation-type
procedure which combines multiple instances of this algorithm to adapt to unknown misspecification,
and finally put all the pieces together to prove the main result. As an extension, we also give a variant
of the algorithm which enjoys improved bounds when the action sets At lie in low-dimensional
subspaces of Rd. Going forward, we abbreviate εT (S) to εT whenever the sequence S is clear from
context.

3.1 Oracle Reductions with Finite Actions: An Optimization-Based Perspective

An important special case of our setting, is the finite-arm contextual bandit problem, where
At = K := {e1, . . . , eK}. For this setting, Foster and Rakhlin [22] proposed an efficient and
optimal reduction called SquareCB, which is displayed in Algorithm 1. At each step, queries the
oracle SqAlg with the current context xt and receives a loss predictor θ̂t ∈ RK (so that (θ̂t)i pre-
dicts the loss of action i). The algorithm then samples an action from a probability distribution
introduced by Abe and Long [3]. Specifically for any θ ∈ RK and learning rate γ > 0, we define
abe-long(θ, γ) as the distribution p ∈ ∆([K]) obtained by first selecting any i? ∈ argmini∈[K] θi,

Algorithm 1: SquareCB [22]
Input: Learning rate γ, time horizon T .
Initialize Regression oracle SqAlg.
for t = 1, . . . , T do

Receive context xt.
Let θ̂t be the oracle’s prediction for xt.
Sample It ∼ abe-long(θ̂t, γ).
Play at = eIt and observe loss `t.
Update SqAlg with (xt, at, `t).

then defining

pi =

{
1

K+γ(θi−θi? ) , if i 6= i?,

1−
∑
i′ 6=i? pi, otherwise.

(3)

By choosing γ ∝
√
KT/(RegSq(T ) + εT ), this

algorithm guarantees that

Reg(T ) ≤ O
(√

KTRegSq(T ) + εT
√
KT

)
.

Since this approach is the starting point for our
results, it will be useful to sketch the proof. For p ∈ ∆(A), let Hp := Ea∼p[aa>] be the correlation
matrix, and āp := Ea∼p[a] be the expected action. Let the sequence S be fixed, and let f? ∈ F be
any regression function which attains the value of εT (S) in Eq. (2).5 With a?t := πf?(xt,At) and
θ?t := f?(xt), we have

E

[
T∑
t=1

µ(at, xt)− inf
a∈At

µ(a, xt)

]
≤ E

[
T∑
t=1

〈at − a?t , θ?t 〉

]
+ 2εTT

= E

[
T∑
t=1

〈āpt − a?t , θ?〉 −
γ

4
‖θ? − θ̂t‖2Hpt

]
+ E

[
T∑
t=1

γ

4
‖θ? − θ̂t‖2Hpt

]
+ 2εTT .

The first expectation term above is bounded by O(KT/γ), which is established by showing that
abe-long(θ̂, γ) is an approximate solution to the per-round minimax problem

min
p∈∆(K)

max
θ∈RK

max
a?∈K

〈āp − a?, θ〉 −
γ

4
‖θ̂ − θ‖2Hp

, (4)

5If the infimum is not obtained, we can simply apply the argument that follows with a limit sequence.
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with value O(K/γ). The second expectation term is bounded by O(γ · (RegSq(T ) + εTT )), which
follows almost immediately from the definition of the square loss regret in Assumption 1 (see the
proof of Theorem 3 for details). Choosing γ to balance the terms leads to the result.

As a first step toward generalizing this result to infinite actions, we propose a new distribution which
exactly solves the minimax problem (4). This distribution is the solution to a dual optimization
problem based on log-barrier regularization, and provides a new principled approach to deriving
reductions.
Lemma 1. For any θ ∈ RK and γ > 0, the minimizer of Eq. (4) is log-barrier(θ, γ), given by

log-barrier(θ, γ) = argmin
p∈∆([K])

{
〈p, θ〉 − 1

γ

∑
a∈[K]

log(pa)

}
=

(
1

λ+ γ(θi −mini′ θi′))

)K
i=1

,

where λ is the unique value that ensures that the weights on the right-hand side above sum to one.

The abe-long distribution is closely related to the log-barrier distribution: Rather than finding the
optimal Lagrange multiplier λ that solves the log-barrier problem, the abe-long strategy simply plugs
in λ = K, then shifts weight to pi? to ensure the distribution is normalized. Since the log-barrier
strategy solves the minimax problem Eq. (4) exactly, plugging it into the results of Foster and Rakhlin
[22] and Simchi-Levi and Xu [39] in place of abe-long leads to slightly improved constants. More
importantly, this new perspective leads to a principled way to extend these reductions to infinite
actions.

3.2 Moving to Infinite Action Sets: The Log-Determinant Barrier

Algorithm 2: SquareCB.Inf

Input: Learning rate γ, time horizon T .
Initialize Regression oracle SqAlg.
for t = 1, . . . , T do

Receive context xt.
Let θ̂t be the oracle’s prediction for xt.
Play at ∼ logdet-barrier(θ̂t, γ;At).
Observe loss `t.
Update SqAlg with (xt, at, `t).

We generalize the log-barrier distribution to infinite
action sets using the log-determinant function. Our
logdet-barrier distribution is defined as follows.
Definition 1. For any θ ∈ Rd, action set A ⊂ Rd,
and γ > 0, the logdet-barrier(θ, γ;A) distribution is
defined as the solution to

argmin
p∈∆(A)

{
〈āp, θ〉 − γ−1 log det(Hp − āpāTp )

}
.

(5)

When dim(A) < d, we adopt the convention that
det(·) takes the product of only the first dim(A) eigenvalues of the matrix in its argument, so that the
solution above is well-defined. Our key result is that the logdet-barrier distribution solves a minimax
problem analogous to that of Eq. (4).

Lemma 2. Any solution to logdet-barrier(θ̂, γ;A) satisfies

max
θ∈Rd

max
a?∈A

〈āp − a?, θ〉 −
γ

4
‖θ̂ − θ‖2Hp

≤ γ−1 dim(A). (6)

By replacing the abe-long distribution with the logdet-barrier distribution in Algorithm 1, we obtain
an optimal reduction for infinite action sets. This algorithm, which we call SquareCB.Inf, is displayed
in Algorithm 2.
Theorem 2. Given a regression oracle SqAlg that satisfies Assumption 1 for class F , SquareCB.Inf

with learning rate γ ∝
√
dT/(RegSq(T ) + ε) guarantees that

Reg(T ) = O
(√

dTRegSq(T ) + ε
√
dT
)

for all sequences S with εT (S) ≤ ε.

The logdet-barrier optimization problem is closely related to the D-optimal experimental design
problem and to finding the John ellipsoid [30, 44], which correspond to the case where θ = 0 in
Eq. (5) [32]. By adapting specialized optimization algorithms for these problems (in particular, a
Frank-Wolfe-type scheme), we can efficiently solve the logdet-barrier problem. In particular, we have
the following proposition.
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Proposition 1. An approximation to (5) which achieves the same regret bound up to a constant factor
can be computed in time Õ(|At| · poly(d)) and memory Õ(log|At| · poly(d)) per round.

The algorithm and a full analysis for runtime and memory complexity, as well as the impact on the
regret, is provided in the supplementary material.

3.3 Adapting to Misspecification: Algorithmic Framework

The regret bound of SquareCB.Inf in Theorem 2 achieves optimal dependence on dimension and on
the misspecification level, but requires an a-priori upper bound on εT (S) to set the learning rate. We
now turn our attention to adapting to this parameter.

At a high level, our approach is to run multiple instances of SquareCB.Inf, each tuned to a different
level of misspecification, then run an aggregation procedure on top to learn the best instance. Specifi-
cally, if we initialize a collection of M := blog(T )c instances of Algorithm 2 in which the learning
rate for instancem is tuned for misspecification level ε′m := exp(−m) (that is, we follow a geometric
grid), then it is straightforward to show that there exists m? ∈ [M ] such that the m?th instance would
enjoy optimal regret if we ran it on the sequence S. Since m?th is not known a-priori, we run an
aggregation (or, “Corralling”) procedure [9] to select the best instance. This approach is, in general,
not suitable for model selection, since it typically requires prior knowledge of the optimal regret
bound to tune certain parameters appropriately [24]. We show that adaptation to misspecification is
an exception to this rule, and provides a simple setting where model selection for contextual bandits
is possible.

Algorithm 3: Corralling [9]
Input: Master algorithm Master, T
Initialize (Basem)Mm=1
for t = 1, . . . , T do

Receive context xt.
Receive At, qt,At from Master.
Pass (xt,At, qt,At

, ρt,At
) to

BaseAt
.

BaseAt
plays at and observes `t.

Update Master with
˜̀
t,At

= (`t + 1).

We consider the aggregation scheme in Algorithm 3,
which is a generalization of the CORRAL algorithm of
Agarwal et al. [9]. The algorithm is initialized with M
base algorithms, and uses a multi-armed bandit algo-
rithm with M arms as a master algorithm responsible for
choosing which base algorithm to follow at each round.

The master maintains a distribution qt ∈ ∆([M ]) over
the base algorithms. At each round t, it samples an algo-
rithm At ∼ qt and passes the current context xt into this
algorithm, as well as the sampling probability qt,At

and
a weight ρt,At

, where we define ρt,m := 1/mins≤t qs,m
for each m. The base algorithm At now plays a regular
contextual bandit round: Given the context xt, it proposes an arm at, which is pulled, receives the
loss `t, and updates its internal state. Finally, the master updates its state with the action-loss pair
(At, ˜̀

t,At
), where ˜̀

t,At
:= `t + 1 (for technical reasons, it is useful to shift the loss by 1 to ensure

non-negativity).

Let RegmImp(T ) := E
[∑T

t=1
I{At=m}
qt,m

(µ(at, xt)− infa∈At
µ(a, xt))

]
denote the importance-

weighted regret for base algorithm m, which is simply the pseudoregret incurred in the rounds
where Algorithm 3 follows this base algorithm, weighted inversely proportional to the probability
that this occurs. It is straightforward to show that for any choice of master and base algorithms, this
scheme guarantees that

Reg(T ) = E
[∑T

t=1
˜̀
t,At − ˜̀

t,m?

]
+ Regm

?

Imp(T ) , (7)

where ˜̀
t,m henceforth denotes the loss the algorithm would have suffered at round t if we had

At = m. That is, the regret of Algorithm 3 is equal to the regret RegM (T ) := E[
∑T
t=1

˜̀
t,At
− ˜̀

t,m? ]
of the master algorithm, plus the importance-weighted regret of the optimal base algorithm m?.

The difficulty in instantiating this general scheme lies in the fact that the important-weighted regret of
the best base typically scales with E[ραT,m? ] ·Regm

?

Unw(T ), where α ∈ [ 1
2 , 1] is an algorithm-dependent

parameter and RegmUnw(T ) := E[
∑T
t=1 I {At = m} (µ(at, xt)− infa∈At µ(a, xt))] denotes the un-

weighted regret of algorithm m. A-priori, the E[ραT,m? ] can be unbounded, leading to large regret.
The key to the analysis of Agarwal et al. [9], and the approach we follow here, is to use a master
algorithm with negative regret proportional to E[ραT,m? ], allowing to cancel this factor.
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Algorithm 4: SquareCB.Imp (for base alg. m)
Input: T , RegSq(T )
Initialize Weighted regression oracle SqAlg.
for t = (τ1, τ2, . . .) ⊂ [T ] do

Receive context xt and (qt,m, ρt,m).
Set γt,m =

min
{√

d
ε′m
,
√
dT/(ρt,mRegSq(T ))

}
.

Set wt = γt,m/qt,m.
Compute oracle’s prediction θ̂t for xt, wt.
Sample at ∼ logdet-barrier(θt, γt,m;At).
Play at and observe loss `t.
Update SqAlg with (wt, xt, at, `t).

Base algorithm. As the first step towards
instantiating the aggregation scheme above,
we specify the base algorithm. We use a
modification to SquareCB.Inf based importance
weighting, which is designed to ensure that
the importance-weighted regret in Eq. (7) is
bounded. Pseudocode for the mth base algo-
rithm is given in Algorithm 4.

Let the instance m be fixed, and let Zt =
I{At = m} indicate the event that this instance
gets to select an arm; note that we have Zt ∼
Ber(qt,m) marginally. When Zt = 1, instance
m receives qt,m and ρt,m = maxs≤t q

−1
s,m from

the master algorithm. The instance then follows
the same update scheme as in the vanilla version of SquareCB.Inf, except that i) it uses an adaptive
learning rate γt,m, which is tuned based on ρt,m, and ii) it uses a weighted square loss regression
oracle (Assumption 2), with the weight wt set as a function of γt,m and qt,m.

We show that the importance weighted regret RegmImp(T ) for this scheme is bounded as follows.
Theorem 3. Given a regression oracle satisfying Assumption 2, the importance-weighted regret
RegImp(T ) of Algorithm 4 satisfies

RegmImp(T ) ≤ 3

2
E[
√
ρT,m]

√
dTRegSq(T ) +

((
ε′m
εT

+
εT
ε′m

)√
d+ 2

)
εTT. (8)

The key feature of this regret bound is that only the leading term involving RegSq(T ) depends on
the importance weights, not the second term involving the misspecification. This is allows us to get
away with tuning the master algorithm using only d, T , and RegSq(T ), but not εT , which is critical
to adapt without prior knowledge. Another important detail is that if ε′m is within a constant factor of
εT , the second term simplifies to O(εT

√
dT ) as desired.

3.4 Improved Master Algorithms for Combining Bandit Algorithms

It remains to provide a master algorithm for use within Algorithm 3. It turns out the master algorithm
proposed in Agarwal et al. [9] suffices for this task, we go a step further and propose a new master
algorithm which is simpler and enjoys slightly improved regret, removing logarithmic factors. While
this is not the focus of the paper, we believe that it to be a noteworthy contribution on its own because
it provides a new approach to designing master algorithms for bandit aggregation, and we hope that it
will be useful more broadly.

We call our new class of master algorithms (α,R)–hedged FTRL. We defer a precise definition and
analysis to supplementary material, and state only the relevant result for our aggregation setup here.
This result concerns a specific member of the hedged FTRL family called (α,R)–hedged Tsallis-INF,
which instantiates the framework using the Tsallis entropy as a regularizer [11, 5, 48] (our framework
also permits the popular EXP3[13]). The following result is a corollary of a more general theorem,
found in the supplementary material.

Corollary 2. Consider the adversarial multi-armed bandit problem with M arms, and losses ˜̀
t ∈

[0, 2]. For any α ∈ (0, 1) and R > 0, (α,R)–hedged Tsallis-INF with learning rate η =
√

1/(2T )
guarantees that for all m? ∈ [M ],

max
m∈[M ]

E

[
T∑
t=1

˜̀
t,At
− ˜̀

t,m

]
≤ 4
√

2MT + E
[
min

{
1

1− α
, 2 log(max

m
ρT,m)

}
Mα − ραT,m?

]
·R .

3.5 Putting Everything Together

Crucially, the regret bound in Corollary 2 has a negative R · ραT,m? term which, for sufficiently large
R and appropriate α, can be used to offset the regret incurred from importance-weighting the base
algorithms. In particular,

(
1
2 ,

3
2

√
dTRegSq(T )

)
–hedged Tsallis-INF has exactly the negative regret
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contribution needed to cancel the importance weighting term in Eq. (8) if we use SquareCB.Imp as the
base algorithm. In more detail, we combine the regret for the master and base algorithms as follows
to prove Theorem 1.

Proof sketch for Theorem 1. Using Eq. (7), it suffices to bound the regret of the bandit master
RegM (T ) and the important-weighted regret Regm

?

Imp(T ) for the optimal instancem?. By Corollary 2,

using
(

1
2 ,

3
2

√
dTRegSq(T )

)
–hedged Tsallis-INF as the master algorithm gives

RegM (T ) ≤ O
(√

dTRegSq(T ) log(T )
)
− 3

2
E[
√
ρT,m? ]

√
dTRegSq(T ).

Whenever the misspecification level is not trivially small, the geometric grid ensures that there exists
m? ∈ [M ] such that e−1εT ≤ ε′m? ≤ εT . For this instance, Theorem 3 yields

Regm
?

Imp(T ) ≤ 3

2
E[
√
ρT,m? ]

√
dTRegSq(T ) +O(εT

√
dT ).

Summing the two bounds using Eq. (7) completes the proof.

3.6 Extension: Adapting to the Average Dimension

A canonical application of linear contextual bandit is the problem of online news article recommenda-
tion, where the context xt is taken to be a feature vector containing information about the user, and
each action a ∈ At is the concatenation of xt with a feature representation for a candidate article
(e.g., Li et al. [35]). In this application and others like it, it is often the case that while examples
lie in high-dimensional space, the true dimensionality dim(At) of the action set is small, so that
s := 1

T

∑T
t=1 dim(At)� d. If we have prior knowledge of s (or an upper bound thereof), we can

exploit this low dimensionality for tighter regret. In fact, following the proof of Theorem 3 and Theo-
rem 1, and bounding

∑T
t=1 dim(At) by sT instead of dT , we immediately obtain that Algorithm 3

enjoys improved regret Reg(T ) = O
(√

sTRegSq(T ) log(T ) + εT
√
sT
)

if s is replaced by d in
the algorithm’s various parameters. Our final result shows that it is possible to adapt to unknown
s and unknown misspecification simultaneously. The key idea to apply a doubling trick on top of
Algorithm 3
Theorem 4. There exists an algorithm that, under the same conditions as Theorem 1, satisfies
Reg(T ) = O

(√
sTRegSq(T ) log(T ) + εT

√
sT
)

without prior knowledge of s or εT .

We remark that while the bound in Theorem 4 replaces the d factor in the reduction with the data-
dependent quantity s, the oracle’s regret RegSq(T ) may itself still depend on d unless a sufficiently
sophisticated algorithm is used.

4 Discussion

We have presented the first general-purpose, oracle-efficient algorithms for contextual bandits that
adapt to unknown model misspecification. For infinite-action linear contextual bandits, our results
yield the first optimal algorithms that adapt to unknown misspecification with changing action sets.
Our results suggest a number of interesting conceptual questions:

• Can our optimization-based perspective lead to new oracle-based algorithms for more rich
types of infinite action sets? Examples include nonparametric actions and structured (e.g.,
sparse) linear actions.

• Can our reduction-based techniques be lifted to more sophisticated interactive learning
settings such as reinforcement learning?

On the technical side, we anticipate that our new approach to reductions will find broader use; natural
extensions include reductions for offline oracles [39] and adapting to low-noise conditions [23].

Lastly, we recall that in passing, we have derived a novel class of master algorithms for combining
bandit algorithms which enjoys more flexibility, an improvement in logarithmic factors, and a greatly
simplified analysis. We hope this result will be useful for future work on model selection in contextual
bandits.
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Broader Impact

This paper concerns contextual bandit algorithms that adapt to unknown model misspecification.
Because of their efficiency and ability to adapt to the amount of misspecification contained with no
prior knowledge, our algorithms are robust, and may be suitable for large-scale practical deployment.
On the other hand, our work is at the level of foundational research, and hence its impact on society
is shaped by the applications that stem from it. We will focus our brief discussion on the applications
mentioned in the introduction.

Health services [43] offer an opportunity for potential positive impact. Contextual bandits can be
used to propose medical interventions that lead to a better health outcomes. However, care must be
taken to ethically implement the explore-exploit tradeoff in this sensitive setting, and more research
is required. Online advertisements [4, 35] and recommendation systems [8] are another well-known
application. While improved, robust algorithms can lead to increased profits here, it is important to
recognize that this may positively impact society as a whole.

Lastly, we mention that predictive algorithms like contextual bandits become more and more powerful
as more information is gathered about users. This provides a clear incentive toward collecting as much
information as possible. We believe that the net benefit of research on contextual bandit outweighs
the harm, but we welcome regulatory efforts to produce a legal framework that steers the usage of
machine learning algorithms, including in contextual bandits, in a direction which is respects of the
privacy rights of users.
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