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Abstract

It is a truth universally acknowledged that an observed association without known1

mechanism must be in want of a causal estimate. Causal estimates from observa-2

tional data will be biased in the presence of ‘unobserved confounding’. However,3

we might hope that the influence of unobserved confounders is weak relative to4

a ‘large’ estimated effect. The purpose of this paper is to develop Austen plots, a5

sensitivity analysis tool to aid such judgments by making it easier to reason about6

potential bias induced by unobserved confounding. We formalize confounding7

strength in terms of how strongly the unobserved confounding influences treat-8

ment assignment and outcome. For a target level of bias, an Austen plot shows9

the minimum values of treatment and outcome influence required to induce that10

level of bias. Austen plots generalize the classic sensitivity analysis approach of11

Imbens [Imb03]. Critically, Austen plots allow any approach for modeling the12

observed data. We illustrate the tool by assessing biases for several real causal13

inference problems, using a variety of machine learning approaches for the initial14

data analysis. Code, demo data, and a tutorial are available at [removed].15

The high costs of randomized controlled trials coupled with the relative availability of (large scale)16

observational data motivate attempts to infer causal relationships from observational data. For ex-17

ample, we may wish to use a database of electronic health records to estimate the effect of a treat-18

ment. Causal inference from observational data must account for possible confounders that influ-19

ence both treatment assignment and the outcome; e.g., wealth may be a common cause influenc-20

ing whether a patient takes an expensive drug and whether they recover. Often, causal inference is21

based on the assumption of ‘no unobserved confounding’; i.e., the assumption that the observed co-22

variates include all common causes of the treatment assignment and outcome. This assumption is23

fundamentally untestable from observed data, but its violation can induce bias in the estimation of24

the treatment effect—the unobserved confounding may completely or in part explain the observed25

association. Our aim in this paper is to develop a sensitivity analysis tool to aid in reasoning about26

potential bias induced by unobserved confounding.27

Intuitively, if we estimate a large positive effect then we might expect the real effect is also posi-28

tive, even in the presence of mild unobserved confounding. For example, consider the association29

between smoking and lung cancer. One could argue that this association arises from a genetic mu-30

tation that predisposes carriers to both an increased desire to smoke and to a greater risk of lung31

cancer. However, the association between smoking and lung cancer is large—is it plausible that32

some unknown genetic association could have a strong enough influence to explain the association?33

Answering such questions requires a domain expert to make a judgment about whether plausible34

confounding is “mild” relative to the “large” effect. In particular, the domain expert must trans-35

late judgments about the strength of the unobserved confounding into judgments about the bias36

induced in the estimate of the effect. Accordingly, we must formalize what is meant by strength of37
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unobserved confounding, and to show how to translate judgments about confounding strength into38

judgments about bias.39

Figure 1: Austen plot showing how strong an unob-
served confounder would need to be to induce a bias of
2 in an observational study of the effect of combination
blood pressure medications on diastolic blood pressure
[Dor+16]. We chose this bias to equal the nominal aver-
age treatment effect estimated from the data. We model
the outcome with Bayesian Additive Regression Trees
and the treatment assignment with logistic regression—
Austen plots accommodate any choice of models. The
curve shows all values treatment and outcome influence
that would induce a bias of 2. The colored dots show the
influence strength of (groups of) observed covariates,
given all other covariates. For example, an unobserved
confounder with as much influence as the patient’s age
might induce a bias of about 2.

A prototypical example, due to Imbens [Imb03]40

(building on [RR83]), illustrates the broad ap-41

proach. The observed data consists of a treat-42

ment T , an outcome Y , and covariates X that43

may causally affect the treatment and outcome.44

Imbens [Imb03] then posits an additional un-45

observed binary confounder U for each patient,46

and supposes that the observed data and un-47

observed confounder were generated according48

to:49

Ui
iid∼ Bern(1/2)

Ti | Xi, Ui
ind∼ Bern(sig(γXi+αUi))

Yi | Xi, Ti, Ui
ind∼ Norm(τTi+βXi+δUi, σ

2).

where sig is the sigmoid function. If we had ob-50

served Ui, we could estimate (τ̂ , γ̂, β̂, α̂, δ̂, σ̂2)51

from the data and report τ̂ as the estimate of52

the average treatment effect. Since Ui is not53

observed, it is not possible to identify the pa-54

rameters from the data. Instead, we make55

(subjective) judgments about plausible values56

of α—how strongly Ui affects the treatment57

assignment—and δ—how strongly Ui affects58

the outcome. Contingent on plausible α = α∗59

and δ = δ∗, the other parameters can be esti-60

mated. This yields an estimate of the treatment61

effect τ̂(α∗, δ∗) under the presumed values of62

the sensitivity parameters.63

The approach just outlined has a major draw-64

back: it relies on a parametric model for the full65

data generating process. The assumed model is equivalent to assuming that, had U been observed, it66

would have been appropriate to use logistic regression to model treatment assignment, and linear re-67

gression to model the outcome. This assumption also implies a simple, parametric model for the re-68

lationships governing the observed data. This restriction is out of step with modern practice, where69

we use flexible machine-learning methods to model these relationships. For example, the assump-70

tion forbids the use of neural networks or random forests, though such methods are often state-of-71

the-art for causal effect estimation.72

Austen plots The purpose of this paper is to introduce Austen plots, an adaptation of Imbens’ ap-73

proach that fully decouples sensitivity analysis and modeling of the observed data. An example74

Austen plot is shown in Figure 1. The high-level idea is to posit a generative model that uses a sim-75

ple, interpretable parametric form for the influence of the unobserved confounder, but that puts no76

constraints on the model for the observed data. We then use the parametric part of the model to for-77

malize “confounding strength” and to compute the induced bias as a function of the confounding.78

We further adapt two innovations pioneered by Imbens [Imb03]. First, we find a parameterization of79

the model so that the sensitivity parameters, measuring strength of confounding, are on a standard-80

ized, unitless scale. This allows us to compare the strength of hypothetical unobserved confounding81

to the strength of observed covariates, measured from data. Second, we plot the curve of all values82

of the sensitivity parameter that would yield given level of bias. This moves the analyst judgment83

from “what are plausible values of the sensitivity parameters?” to “are sensitivity parameters this84

extreme plausible?”85

Figure 1, an Austen plot for an observational study of the effect of combination medications on di-86

astolic blood pressure, illustrates the idea. A bias of 2 would suffice to undermine the qualitative87

conclusion that the blood-pressure treatment is effective. Examining the plot, an unobserved con-88
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founder as strong as age could induce this amount of confounding, but no other (group of) observed89

confounders has so much influence. Accordingly, if a domain expert thinks an unobserved con-90

founder as strong as age is unlikely then they may conclude that the treatment is likely effective. Or,91

if such a confounder is plausible, they may conclude that the study fails to establish efficacy.92

The purpose of this paper is adapting Imbens’ sensitivity analysis approach to allow for arbitrary93

models for observed data. The contributions are: 1. Positing a generative model that is both eas-94

ily interpretable and where the required bias calculations are tractable. 2. Deriving a reparameter-95

ization that standardizes the scale of influence strength, and showing how to estimate the influence96

strength of observed covariates for reference. And, 3. illustrative examples showing that Austen97

plots preserve the key elements of Imbens’ approach and are informative about sensitivity to unob-98

served confounding in real-world data.99

The key advantages of Austen plots as a sensitivity analysis method are1 1. Plausibility judgments100

are made on directly interpretable quantities, the total confounding influence on Y and T . Addition-101

ally, the Austen plot model does not rely on the detailed nature of the unobserved confounding—102

there may be one or many unobserved confounders, with any sort of distribution—all that matters103

is the total confounding influence. 2. The unobserved strength of confounding can be directly com-104

pared to the strength of observed covariates. 3. The method is entirely post-hoc. That is, the analyst105

does not need to consider any aspect of the sensitivity analysis when modeling the observed data. In106

particular, producing Austen plots requires only predictions from the data models. We provide soft-107

ware and a tutorial for producing the plots.2108

Notation For concreteness, we focus on the estimation of the average effect of a binary treatment.109

The data are generated independently and identically (Yi, Ti, Xi, Ui)
iid∼ P , where Ui is not ob-110

served and P is some unknown probability distribution. The average treatment affect (ATE) is111

ATE = E[Y | do(T = 1)]− E[Y | do(T = 0)].

The use of Pearl’s do notation indicates that the effect of interest is causal. The results that follow112

can also be simply adapted to the average treatment effect on the treated, see appendix A.113

The traditional approach to causal estimation assumes that the observed covariates X contain all114

common causes of Y and T . If this ‘no unobserved confounding’ assumption holds, then the ATE115

is equal to parameter, τ , of the observed data distribution, where116

τ = E[E[Y | X,T = 1]− E[Y | X,T = 0]]. (0.1)

The parameter τ can be estimated from a finite data sample. The general approach proceeds in two117

steps. First, we produce estimates ĝ and Q̂ for the propensity score g and the conditional expected118

outcome Q, where119

Definition 1. The propensity score g is g(x) = P(T = 1 | X = x) and the conditional expected120

outcome Q is Q(t, x) = E[Y | T = t,X = x].121

In modern practice, Q and g are often estimated by fitting flexible machine learning models. The122

second step is to plug the estimated Q̂ and ĝ in to some downstream estimator τ̂ . For example,123

following 0.1, the estimator124

τ̂Q =
1

n

∑
i

Q̂(1, xi)− Q̂(0, xi),

is a natural choice. Other estimators incorporate ĝ.125

We are interested in the case of possible unobserved confounding. That is, where U causally affects126

Y and T . If there is unobserved confounding then the parameter τ is not equal to the ATE, so τ̂ is127

a biased estimate. Inference about the ATE then divides into two tasks. First, the statistical task:128

estimating τ as accurately as possible from the observed data. And, second, the causal (domain-129

specific) problem of assessing bias = ATE − τ . We emphasize that our focus here is bias due to130

causal misidentification, not the statistical bias of the estimator. Our aim is to reason about the bias131

induced by unobserved confounding—the second task—in a way that imposes no constraints on the132

modeling choices for Q̂, ĝ and τ̂ used in the initial analysis.133

1See section 4 for a more detailed comparison with related work.
2Supplementary material.
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1 Sensitivity Model134

Our sensitivity analysis should impose no constraints on how the observed data is modeled. How-135

ever, sensitivity analysis demands some assumption on the relationship between the observed data136

and the unobserved confounder. It is convenient to formalize such assumptions by specifying a137

probabilistic model for how the data is generated. The strength of confounding is then formalized138

in terms of the parameters of the model (the sensitivity parameters). Then, the bias induced by the139

confounding can be derived from the assumed model. Our task is to posit a generative model that140

both yields a useful and easily interpretable sensitivity analysis, and that avoids imposing any as-141

sumptions about the observed data.142

To begin, consider the functional form of the sensitivity model used by Imbens [Imb03].143

logit P(T = 1 | x, u) = h(x) + αu (1.1)
E[Y | t, x, u] = l(t, x) + δu, (1.2)

for some functions h and l. That is, the propensity score is logit-linear in the unobserved confounder,144

and the conditional expected outcome is linear.145

By rearranging (1.1) to solve for u and plugging in to (1.2), we see that it’s equivalent to assume146

E[Y | t, x, u] = l̃(t, x) + δ̃ logit P(T = 1 | x, u). That is, the unobserved confounder u only147

influences the outcome through the propensity score. Accordingly, by positing a distribution on148

P(T = 1 | x, u) directly, we can circumvent the need to explicitly articulate U (and h).149

Definition 2. Let g̃(x, u) = P(T = 1 | x, u) denote the propensity score given observed covariates150

x and the unobserved confounder u.151

The insight is that we can posit a sensitivity model by defining a distribution on g̃ directly. The logit-152

linear model does not directly lead to a tractable sensitivity analysis. Instead, we choose:153

g̃(X,U) | X ∼ Beta(g(X)(1/α−1), (1−g(X))(1/α−1)).

The sensitivity parameter α plays the same role as in Imbens’ model: it controls the influence of154

the unobserved confounder U on treatment assignment. When α is close to 0 then g̃(X,U) | X is155

tightly concentrated around g(X), and the unobserved confounder has little influence. That is, U156

minimally affects our belief about who is likely to receive treatment. Conversely, when α is close157

to 1 then g̃ concentrates near 0 and 1; i.e., knowing U would let us accurately predict treatment158

assignment. Indeed, it can be shown that α is the change in our belief about how likely a unit was to159

have gotten the treatment, given that they were actually observed to be treated (or not):160

α = E[g̃(X,U) | T = 1]− E[g̃(X,U) | T = 0]. (1.3)

With the g̃ model in hand, we define our sensitivity model:161

Assumption 1 (Sensitivity Model).

g̃(X,U) | X ∼ Beta(g(X)(1/α−1), (1−g(X))(1/α−1))
T | X,U ∼ Bern(g̃(X,U))

E[Y | T,X,U ] = Q(T,X) + δ
(
logit g̃(X,U)− E[logit g̃(X,U) | X,T ]

)
.

This model has been constructed to satisfy the requirement that the propensity score and conditional162

expected outcome are the g and Q actually present in the observed data:163

P(T = 1 | X) = E[E[T | X,U ] | X] = E[g̃(X,U) | X] = g(X)

E[Y | T,X] = E[E[Y | T,X,U ] | T,X] = Q(T,X).

The sensitivity parameters are α, controlling the dependence between the unobserved confounder the164

treatment assignment, and δ, controlling the relationship with the outcome. In effect, by making an165

assumption about the propensity score directly, we have sidestepped the need to explicitly articulate166

the parts of the observed/unobserved relationship that are not actually relevant for the treatment167

effect estimation.168
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Bias We now turn to calculating the bias induced by unobserved confounding. By assumption, X169

and U together suffice to render the average treatment effect identifiable as:170

ATE = E[E[Y | T = 1, X, U ]− E[Y | T = 0, X, U ]].

Plugging in our sensitivity model yields,171

ATE = E[Q(1, X)−Q(0, X)] + δ(E[logit g̃(X,U) | X,T = 1]− E[logit g̃(X,U) | X,T = 0]).

The first term is the observed-data estimate τ , so172

bias = δ(E[logit g̃(X,U) | X,T = 1]− E[logit g̃(X,U) | X,T = 0]).

Then, by invoking Beta-Bernoulli conjugacy and standard Beta identities, we arrive at,173

Theorem 3. Under our sensitivity model, Assumption 1, an unobserved confounder with influence174

α and δ induces bias in the estimated treatment effect equal to175

bias = δE
[
ψ
(
g(X)(1/α− 1) + 1

)
−ψ

(
(1− g(X))(1/α− 1)

)
−ψ

(
g(X)(1/α− 1)

)
+ψ

(
(1− g(X))(1/α− 1) + 1

)]
,

where ψ is the digamma function176

Reparameterization The model in the previous section provides a formalization of confounding177

strength and tells us how much bias is induced by a given strength of confounding. This lets us178

translate judgments about confounding strength to judgments about bias. However, δ may be diffi-179

cult to interpret. Following Imbens [Imb03], we will reexpress the outcome-confounder strength in180

terms of the partial coefficient of determination:181

R2
Y,par(α, δ) =

E(Y −Q(T,X))2 − E(Y − E[Y | T,X,U ])2

E(Y −Q(T,X))2
.

This parameterization has two advantages over δ. First, R2
Y,par has a familiar interpretation—the182

proportion of previously unexplained variation in Y that is explained by the unobserved covariate183

U . Second, R2
Y,par has a fixed, unitless scale—enabling easy comparisons with reference values.184

The key to computing the reparameterization is the following result (proof in appendix):185

Theorem 4. Under our sensitivity model, Assumption 1, the outcome influence is186

R2
Y,par(α, δ) = δ2

1∑
t=0

E
[
ψ1

(
g(X)t(1− g(X))1−t(1/α− 1) + 1[T = t]

)]
E[(Y −Q(T,X))2]

,

where ψ1 is the trigamma function.187

We do not reparameterize the strength of confounding on treatment assignment because, by design,188

α is already interpretable and on a fixed, unitless scale.189

Estimating bias In combination, Theorems 3 and 4 yield an expression for the bias in terms of α190

and R2
Y,par. In practice, we can estimate the bias induced by confounding by fitting models for Q̂191

and ĝ and replacing the expectations by means over the data. To avoid problems associated with192

overfitting, we recommend a data splitting approach. Namely, split the data into k folds and, for193

each fold, estimate Q(ti, xi) and g(xi) by fitting the Q̂ and ĝ models on the other k − 1 folds.194

2 Calibration using observed data195

The analyst must make judgments about the influence a hypothetical unobserved confounder might196

have on treatment assignment and outcome. To calibrate such judgments, we’d like to have a refer-197

ence point for how much the observed covariates influence the treatment assignment and outcome.198

In the sensitivity model, the degree of influence is measured by R2
Y,par and α. We want to measure199

the degree of influence of an observed covariate Z given the other observed covariates X\Z.200
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For the outcome, this can be measured as:201

R2
Y,X\Z :=

E(Y − E[Y | T,X\Z])2 − E(Y −Q(T,X))2

E(Y − E[Y | T,X\Z])2
.

In practice, estimate the quantity by fitting a new regression model Q̂Z that predicts Y from T and202

X\Z. Then we compute203

R̂2
Y,X\Z =

1
n

∑
i(yi − Q̂Z(ti, xi\zi))2 −

1
n

∑
i(yi − Q̂(ti, xi))

2

1
n

∑
i(yi − Q̂Z(ti, xi\zi))2

.

It is less clear how to produce the analogous estimate for the influence on treatment assignment. To204

facilitate the estimation, we reexpress α in a more convenient form (proof in appendix):205

Theorem 5. Under our sensitivity model, Assumption 1,206

α = 1− E[g̃(X,U)(1− g̃(X,U))]

E[g(X)(1− g(X))]
.

Then, we can measure influence of observed covariate Z on treatment assignment given X\Z in an207

analogous fashion to the outcome. We define gX\Z(X\Z) = P(T = 1 |X\Z), then fit a model for208

gX\Z by predicting T from X\Z, and estimate209

α̂X\Z = 1−
1
n

∑
i ĝ(xi)(1− ĝ(xi))

1
n

∑
i ĝX\Z(xi\zi)(1− ĝX\Z(xi\zi))

.

Grouping covariates The estimated values α̂X\Z and R̂2
Y,X\Z measure the influence of Z210

Figure 2: Austen plots preserve the qualitative conclusions of Im-
bens’ analysis without imposing any restriction on the modeling of
the observed data. In each plot, the black solid line indicates the
partial R2 and α values that would induce a bias of at least $1000.
Each plot also includes estimates for the strength of confounding
for each of the nine covariates (red circles) as well as recent lag in
earnings (RE75 and pos75, yellow circles), and the all preprogram
earnings (RE74, pos74, RE75, pos75, green circles).

conditioned on all the other con-211

founders. In some cases, this can212

be misleading. For example, if some213

piece of information is important but214

there are multiple covariates provid-215

ing redundant measurements, then216

the estimated influence of each co-217

variate will be small. To avoid this,218

we suggest grouping together related219

or strongly dependent covariates and220

computing the influence of the en-221

tire group in aggregate. For example,222

grouping income, location, and race223

as ‘socioeconomic variables’.224

3 Examples225

We now examine several examples226

of Austen plots for sensitivity anal-227

ysis, showing: (1) We preserve the228

qualitative usefulness of Imbens’ ap-229

proach, without any modeling re-230

strictions. (2) Austen plots are in-231

formative about bias due to unob-232

served confounding in real observa-233

tional studies. (3) The bias estimates234

tend to be conservative.3235

Imbens’ analysis To demonstrate the236

use of Austen plots, we replicate Im-237

bens [Imb03] example and produce238

3Code and data in supplementary material.
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sensitivity plots for variations on the LaLonde job training data [LaL86]. We use exactly the same239

data splitting and adjustment sets as Imbens [Imb03]. We find that the conclusions about the effects240

of unobserved confounding are substantively the same as Imbens [Imb03]. That is, we arrive at sen-241

sible sensitivity conclusions while liberating ourselves from the need for parametric assumptions on242

the observed data. We report bias for the average treatment effect on the treated.243

The original purpose of the LaLonde job training data was to analyze the effect of a job training244

program on the annual earnings of a participant. The data consists of both an experimental (ran-245

domly assigned) part, and an observational sample from the Panel Study of Income Dynamics246

(PSID). We test on (1) the experimental sample, (2) the experimental treated with observational247

controls, (3) the same as 2, except with outcome defined as change in earnings since 1974, and (4)248

the same as 2, except individuals with high earnings pretreatment (>$5000) are dropped. We ad-249

just for: married, age, education, race, and earnings in 1974 and 1975. There are large differences250

in these background covariates between the experimental sample and the PSID controls—this is a251

main challenge for the LaLonde setup.252

Deviating from Imbens, we fit random forests for Q̂ and ĝ. This demonstrates the sensitivity analysis253

in the case where the observed data model does not have a simple parametric specification.254

Austen plots for these analyses are displayed in Figure 2. Following Imbens, we choose a bias of255

$1000 (for context, the effect estimate from the RCT is about $1800). The experimental sample256

(panel A) is robust to unobserved confounding: inducing a bias of $1000 would require an unob-257

served confounder with a much stronger effect than any of the measured covariates or earning vari-258

ables. By contrast, the non-experimental samples (panels B and C) are much more sensitive to un-259

observed confounding. Several of the covariates, if unobserved, would suffice to bias the estimate260

by $1000. Note that the sensitivity curves are the same for both B and C, since the outcome is just261

a linear transformation. Finally, the restricted sample (panel D) is both significantly more robust to262

bias than the full non-experimental samples, and the influence of the observed covariates is much263

reduced. Imposing the restriction mitigates the treatment-control population mismatch.264

Practical relevance Figure 3 shows Austen plots for two effects estimated from observational data.265

Figure 3: Austen plots are informative when applied to real data
analysis. The left-hand plot is for the estimated effect of IHDP
participation level on child IQ. The conclusions of this study seem
robust to unobserved confounding—even the observed covariate
groups do not have sufficient influence to undo the qualitative con-
clusion of the model. The right-hand plot is for the estimated effect
of combination treatment on diastolic blood pressure. In this case,
whether the study conclusions are reliable depends on whether
an unobserved confounder as influential as age is credible—we
should consult with an expert. In both cases, we model the out-
come with Bayesian Additive Regression Trees, and the propen-
sity score with logistic regression.

The first study is based on data from266

the Infant Health and Development267

Program (IHDP) [BG+92], an exper-268

iment targeted at low-birth-weight,269

premature infants that provided child270

care and home visits. We look at271

a study measuring the effect of the272

level of participation in IHDP child273

development centers in the two years274

preceding an IQ test on the outcome275

of the IQ test [Hil11, §6.1]. Level276

of participation is not randomly as-277

signed, so Hill [Hil11] estimates the278

effect by using Bayesian Additive279

Regression Trees (BART) [Chi+10]280

to control for a range of covariates.281

The second plot corresponds to the282

estimate of the effect of combina-283

tion blood pressure medications on284

diastolic blood pressure described in285

[Dor+16]. The data is derived from286

an American survey that includes a287

variety of socioeconomic and health288

factors. We again use BART.289

The Austen plots are informative for these examples. In the first case, the Austen plot increases our290

confidence in the qualitative result. In the second case, it suggests we should be cautious about the291

conclusions unless unobserved confounders as strong as age are deemed unlikely.292
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Table 1: The sensitivity model tends to be conservative in its bias estimates. Bias estimates for leaving out
a confounding covariate are computed according to the sensitivity model (using the left-out covariate data)
and by comparing non-parametric effect estimates from the full data (τx), and the left-out covariate data
(τx\z). In all cases, the sensitivity model estimate is larger.

Study: LaLonde Restricted Blood Pressure IHDP
Omitted covariate: Education Age Socioeconomic

τx 2508.63 −2.33 12.72
τx\z 1982.54 −2.86 13.35

Nonparametric bias 526.09 0.53 −0.63
Sensitivity Model |bias| 986.90 1.91 0.75

Sensitivity model conservatism Any sensitivity analysis must be predicated on some assumption293

about the influence of the unobserved confounder. The bias curves and influence estimates in Austen294

plots are contingent on the assumed sensitivity model, Assumption 1. We motivated our particular295

choice by simplicity and tractibility. We also expect that our associated sensitivity model will often296

yield conservative values for bias; i.e., the bias anticipated by the sensitivity model is higher than297

the true bias induced by the real, physical, mechanism of confounding. The reason is that bias is298

monotonically increasing in both treatment and outcome influence. In reality, hidden confounders299

can have more complicated relationships that ‘cancel out’. For example, the effect of age in the300

blood pressure example might be: blood pressure increases with age, but young patients don’t take301

their medication (preferring diet and exercise), middle age patients take it at a base rate, and old302

patients don’t take the medication (fatalism). These effects cancel out somewhat, reducing the bias303

induced by failing to adjust for age. Assumption 1 does not allow for such cancellations.304

To test conservativism, we create deliberately confounded datasets by removing an ob-305

served confounder from our baseline data. We compute the bias anticipated by our model,306

bias(R2
Y,X\Z , αX\Z), using the measured influence strength of the covariate. We compute a non-307

parametric estimate of the bias by estimating the effect with the full data, estimating the effect with308

the deliberately confounded data, and taking the difference. The results are shown in table 1, and309

confirm the conservatism-in-practice. This increases our confidence that when an Austen plot sug-310

gests robustness to unobserved confounding we do indeed have such robustness.311

4 Related Work312

There are a wealth of approaches to sensitivity analysis. The most closely related approaches to ours313

are sensitivity analysis based on parametric models in the style of Imbens [Imb03]. These typically314

assume some relatively simple parametric latent variable model, where the latent variable is the un-315

observed confounder. Dorie et al. [Dor+16] extends an Imbens-like approach to accomodate BART316

as the outcome model. Cinelli and Hazlett [CH20] allow for arbitrary kinds of confounders and317

propensity score models, but require that the outcome is modeled with linear regression. Cinelli et al.318

[Cin+19] make concrete assumptions about the edges of a causal DAG and use causal identification319

tools to translate those assumptions into effect (hence, bias) estimates. However, they assume that320

all relationships in the DAG are linear. Rosenbaum and Rubin [RR83] assume a categorical covari-321

ate and a binary confounder. They don’t impose any explicit additional constraints on the propensity322

score or outcome model, but their general approach requires 4 sensitivity parameters for each level323

of the observed covariate; making the sensitivity analysis practical requires further assumptions.324

A different line of work relaxes parametric assumptions at the price of requiring the analyst to make325

judgments about more abstract sensitivity parameters [e.g., Fra+19; She+11; VA11; DV15]. For ex-326

ample, Franks et al. [Fra+19] allow arbitrary models to be used for the initial analysis. Their sensi-327

tivity model is adapted from the missing data literature, and requires the analyst to specify P(T =328

t | Y (1− t), X)—the posterior belief about probability of treatment assignment had the counterfac-329

tual outcome under no-treatment been observed. The sensitivity parameters used by these methods330

are more abstruse than the ones used in parametric-model-based sensitivity analysis. However, the331

subjective judgments required for each analysis are quite different, and these alternative approaches332

may be easier in some scenarios. In this sense, these methods are complimentary to the sensitivity333

analysis approach proposed in this paper.334
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5 Societal Consequences335

This paper addressed sensitivity analysis for causal inference. We have extended Imbens’ approach336

to allow the use of arbitrary machine-learning methods for the data modeling. Austen plots provide337

an entirely post-hoc and blackbox manner of conducting sensitivity analysis. In particular, they make338

it substantially simpler to perform sensitivity analysis. This is because the initial analysis can be339

performed without have a sensitivty analysis already in mind, and because producing the sensitivity340

plots only requires predictions from models that the practitioner has fit anyways.341

The ideal positive consequence is that routine use of Austen plots will improve the credibility of342

machine-learning based causal inferences from observational data. Austen plots allow us to both343

use state-of-the-art models for the observed part of the data, and to reason coherently about the344

causal effects of potential unobserved confounders. The availability of such a tool may speed the345

adoption of machine-learning based causal inference for important real-world applications (where,346

so far, adoption has been slow).347

On the negative side, an accelerated adoption of machine-learning methods into causal practice may348

be undesirable. This is simply because the standards of evidence and evaluation used in common349

machine-learning practice do not fully reflect the needs of causal practice. Austen plots partially350

bridge this gap, but they just one of the elements required to establish credibility.351
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Appendix

Anonymous Author(s)
Affiliation
Address
email

A Average Treatment Effect on the Treated384

In many situations, the average treatment effect (ATT) on the treated is a more convenient estimand385

than the ATE.386

Bias The same logic we used to derive an expression for the bias of the ATE can be used to derive387

an expression for the bias of the ATT. For the bias estimand, we just change take the expectation388

over X in Theorem 3 conditioned on T = 1. In practice, the bias can be estimated by taking the389

mean over only treated units. Note that the reparameterization calculation does not change.390

Calibration using observed data Reference values for the ATT can be computed in exactly the391

same way as for the ATE—i.e., it is not required to restrict the expectations to only the treated units.392

This is because the bias expression is given in terms of ‘full data’ α and R2
Y,par.393

B Proofs394

Theorem 4. Under our sensitivity model, Assumption 1, the outcome influence is395

R2
Y,par(α, δ) = δ2

1∑
t=0

E
[
ψ1

(
g(X)t(1− g(X))1−t(1/α− 1) + 1[T = t]

)]
E[(Y −Q(T,X))2]

,

where ψ1 is the trigamma function.396

Proof. First, we write:397

E(Y − E[Y | T,X,U ])2 = E(Y −Q(T,X))2

− 2δE[(Y −Q(T,X))(logit g̃(X,U)− E[logit g̃(X,U) | X,T ])]
+ δ2E((logit g̃(X,U)− E[logit g̃(X,U) | X,T ]))2

= E(Y −Q(T,X))2 − δ2E[var(logit g̃(X,U) | X,T )]. (B.1)

Where we’ve used,398

E[(Y −Q(T,X))(logit g̃(X,U)− E[logit g̃(X,U) | X,T ])]
= E[E[(Y −Q(T,X)) | T,X,U ](logit g̃(X,U)− E[logit g̃(X,U) | X,T ])]]

and other standard conditional expectation manipulations.399

The usefulness of (B.1) is that var(logit g̃(X,U) | X,T ) has an analytic expression. Namely, by400

Beta-Bernoulli conjugacy, this is the variance of a logit-transformed Beta distribution. The analytic401

expression for this variance is,402

var(logit g̃(X,U) | X,T ) = ψ1

(
g(X)(1/α− 1) + T

)
+ψ1

(
(1− g(X))(1/α− 1) + 1− T

)
,

where ψ1 is the trigamma function. The claimed result follows by plugging in this expression into403

(B.1).404

405

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



Theorem 5. Under our sensitivity model, Assumption 1,406

α = 1− E[g̃(X,U)(1− g̃(X,U))]

E[g(X)(1− g(X))]
.

Proof. The key insight is:407

var(g̃) = E[var(g̃ | g)] + var(E[g̃ | g])
= E[αg(1− g)] + var(g),

where the first line is the law of total variance, and the second line uses the assumed Beta distribution408

of g̃ | g. Accordingly,409

α =
var(g̃)− var(g)

E[g(1− g)]
.

Now, observe that by the law of total variance,410

var(T ) = E[var(T | g)] + var(E[T | g])
= E[g(1− g)] + var(g),

where we have used that T | g is Bernoulli. By the same logic,411

var(T ) = E[g̃(1− g̃)] + var(g̃).

Whence,412

var(g̃)− var(g) = E[g(1− g)]− E[g̃(1− g̃)].
The result follows immediately.413
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